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1 Simple Random Sampling

The goal is to estimate the mean and the variance of a variable of interest in a finite
population by collecting a random sample from it. Suppose there are N members of the
population, numbered 1 through N and let the values assumed by the variable of interest
be x1, x2, . . . , xN . Not all the xi’s are necessarily distinct (for example, if we are interested
in estimating the proportion of Democrats in a population of voters, we might assign xi = 1
if the i’th voter is Democrat and 0 if they are Republican. In this case the population
proportion of voters is the mean of the xi’s.). We denote the distinct values of the xi’s by
ξ1, ξ2, . . . , ξm and let ni denote the frequency of ξi in the population. The population mean
µ is given by,

µ =
1

N

n∑
i=1

xi =
1

N

m∑
i=1

ξi ni ,

and the population variance σ2 is

σ2 =
1

N

n∑
i=1

(xi − µ)2 =
1

N

n∑
i=1

x2
i − µ2 =

1

N

m∑
i=1

ξ2
i ni − µ2 .

We denote the relative frequencies of the ξi’s in the population by {p1, p2, . . . , pm} where
pi = ni/N .

1.1 SRSWR: simple random sampling with replacement

A sample of size n is collected with replacement from the population. Thus, an individual
is drawn (randomly), their x value recorded, and the individual is then returned to the
population. Now, a second individual is drawn, and the process continues n times. Let
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X1, X2, . . . , Xn be the random variables obtained thus. Then, the Xis are an i.i.d. sample
from the distribution of a random variable X such that P (X = ξj) = pj for j = 1, 2, . . . ,m.
Let

µ̂ =
1

n

n∑
i=1

Xi, and σ̂2 =
1

n− 1
E

(
n∑

i=1

(Xi −X)2

)
.

Then,
E (µ̂) = µ and E (σ̂2) = σ2 .

This will be proved in class. The standard CLT can be used to construct a C.I. (confidence
interval) for µ.

1.2 SRSWOR: simple random sampling without replacement

A sample of size n is collected without replacement from the population. Thus the first
member is chosen at random from the population, and once the first member has been chosen,
the second member is chosen at random from the remaining N − 1 members and so on, till
there are n members in the sample. A typical sample therefore looks like (k1, k2, . . . , kn) and
the number of all possible ordered samples is easily seen to be N × (N − 1)× . . . (N −n+ 1)
and each ordered sample has equal probability, namely (Πn

l=1 (N − l + 1)) of being selected.
Let X1, X2, . . . Xn denote the observed value of the variables for the members in the sample;
thus X1 = xk1 , . . . , Xn = xkn . The Xi’s are random variables and X1 is easily seen to have
marginal distribution given by,

P (X1 = ξj) = pj , j = 1, 2, . . . ,m .

In fact each Xi has the same distribution as X1. To see this note that the event {Xi = ξ1}
happens if and only if the i’th member of the sample is one of the members of the population
whose variable value equals ξ1. Without loss of generality assume that the first n1 members
have variable value equal to ξ1; in other words x1 = x2 = . . . = xn1 = ξ1. Now, the number of
ordered samples in which the i’th member is 1, is precisely Πn−1

l=1 (N−1−l+1) = Πn−1
l=1 (N−l).

Thus the chance that the i’th member is 1 is precisely Πn−1
l=1 (N− l)/(Πn

l=1 (N− l+1)) = 1/N .
Similarly, the chance that the i’th member is s where s is between 1 and n1 is 1/N . Thus,
the chance that {Xi = ξ1} is simply n1× 1/N = n1/N = p1. It can be argued similarly that
P (Xi = ξj) = pj for all j.

We now consider the joint distribution of (Xi, Xj) for i 6= j. We will show that the
joint distribution of (Xi, Xj) for any i 6= j is the same as that of (X1, X2). Now, it is not
difficult to see that,

P (X1 = ξs, X2 = ξr) =
ns

N

nr

N − 1
, for s 6= r ,
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and

P (X1 = ξs, X2 = ξs) =
ns

N

ns − 1

N − 1
.

Now, consider P (Xi = ξs, Xj = ξr) for i 6= j, and with r and s different. Without loss of
generality let i < j and also let x1 = x2 = . . . = xns = ξs and let xns+1 = . . . = xns+nr = ξr.
Thus the event {Xi = ξs, Xj = ξr} is the disjoint union of the events {ki = u, kj = v}
where 1 ≤ u ≤ ns and ns + 1 ≤ v ≤ ns + nr, and there are ns nr such pairs.
Now, the number of ordered samples that lead to ki = u and kj = v is precisely
nu,v = (N − 2) × (N − 3) × . . . × (N − 2 − (n − 2) + 1) (since we are fixing the i’th
and the j’th members at u and v respectively and then choosing n − 2 distinct integers
out of the remaining N − 2 population members. Hence the required probability is
nu,v/N × (N − 1)× . . . (N −n+ 1) and this is just 1/N (N − 1). Thus the probability of the
event {Xi = ξs, Xj = ξr} is just ns nr × 1/N (N − 1) which is the same as the probability
that {X1 = ξs, X2 = ξr}. The case when r = s can be similarly handled.

We are now in a position to study the properties of the sample-based estimates of µ
and σ2. We estimate µ by µ̂ = (X1 + X2 + . . . + Xn)/n = X and the sample variance
by σ̂2 = (1/(n − 1))

∑n
i=1 (Xi − X)2. In the sampling with replacement case, we have

seen that µ̂ and σ̂2 are unbiased estimates of µ and σ2 respectively. In the SRSWOR case
X1, X2, . . . , Xn are identically distributed as X1 and it is easy to check that E(X1) = µ and
Var(X1) = σ2. Now,

E(µ̂) =
1

n

n∑
i=1

E(Xi) =
1

n
× nµ = µ .

Thus as in SRSWR, X is an unbiased estimator of µ. In SRSWR, Var(X) = σ2/n; however
this is not the case with SRSWOR because the Xi’s are not independent and the correlation
factor consequently needs to be taken into account, while computing the variance of X. To
compute the variance of X we proceed as follows.

Var(X) =
1

n2

∑
i,j

Cov (Xi, Xj)

=
1

n2

(
n∑

i=1

Var(Xi) +
∑
i 6=j

Cov(Xi, Xj)

)

=
1

n
σ2 +

n− 1

n
Cov(X1, X2) .

Now,
Cov(X1, X2) = E(X1X2)− µ2 .
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Also, letting pij denote the probability that X1 = ξi and X2 = ξj, we have

E(X1X2) =
∑
i,j

ξ1 ξj pij

=
m∑

i=1

ξi pi

m∑
j=1

ξj
pij

pi

=
m∑

i=1

ξi pi

(
m∑

j=1

ξj
nj

N − 1
− ξi
N − 1

)

=
m∑

i=1

ξi pi

(
m∑

j=1

ξj
N

N − 1
pj −

ξi
N − 1

)

= −
m∑

i=1

1

N − 1
ξ2
i pi +

N

N − 1

(
m∑

i=1

ξi pi

)2

= − 1

N − 1
(σ2 + µ2) +

N

N − 1
µ2

= − 1

N − 1
(σ2) + µ2 .

Thus,

Cov(X1, X2) = − 1

N − 1
(σ2) + µ2 − µ2 = − 1

N − 1
(σ2) .

Now, plugging the above into the expression for Var(X), we get,

Var(X) =
1

n
σ2 (1− n− 1

N − 1
) .

Thus, we get what is called “ a finite population correction factor” for the variance.

Now, if we try to estimate σ2 as before, by s2, where

s2 =
1

n− 1

n∑
i=1

(
Xi −X

)2
,

the estimate is no longer unbiased (in contrast to what happens with SRSWR). Rather,
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E(s2) =
1

n− 1
E

(
n∑

i=1

(Xi −X)2

)

=
1

n− 1
E

(
n∑

i=1

X2
i − nX

2

)

=
1

n− 1

(
n∑

i=1

E(X2
i )− nE(X

2
)

)
=

1

n− 1

(
nσ2 + nµ2 − n

(
Var(X) + µ2

))
=

1

n− 1

(
nσ2 − n 1

n

N − n
N − 1

σ2

)
=

1

n− 1
σ2 nN − n−N + n

N − 1

=
1

n− 1
σ2 (n− 1)

N

N − 1

= σ2 N

N − 1
.
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