Rapid loss of immunity is necessary to explain historical cholera epidemics

Ed Ionides & Aaron King

University of Michigan
Departments of Statistics and Ecology & Evolutionary Biology
Bengal: cholera’s homeland
Cholera: unsolved puzzles

- **Mode of transmission**
 - contaminated water: environmental reservoir
 - food-borne/direct fecal-oral
 - transient hyperinfectious state (<18 hr)

- **Seasonality**
 - two peaks per year
 - regional climate drivers: monsoon rainfall and winter
 - multi-year climate drivers: El Niño-Southern Oscillation (ENSO)

- **Immunity**
 - volunteer studies: >3 yr immunity following severe infection
 - community study of reinfections in Matlab, Bangladesh: risk of reinfection equal to risk of primary infection
 - 1.6 yr average duration between primary infection and reinfection
 - retrospective statistical analyses (Koelle & Pascual 2004): 7–10 yr immunity following severe infection
Cholera: unsolved puzzles

- Mode of transmission
 - contaminated water: environmental reservoir
 - food-borne/direct fecal-oral
 - transient hyperinfectious state (<18 hr)
- Seasonality
 - two peaks per year
Cholera: unsolved puzzles

Dacca cholera mortality

0 1000 3000 5000
Cholera: unsolved puzzles

- **Mode of transmission**
 - contaminated water: environmental reservoir
 - food-borne/direct fecal-oral
 - transient hyperinfectious state (<18 hr)

- **Seasonality**
 - two peaks per year
 - regional climate drivers: monsoon rainfall and winter temperatures?
Cholera: unsolved puzzles

- Mode of transmission
 - contaminated water: environmental reservoir
 - food-borne/direct fecal-oral
 - transient hyperinfectious state (<18 hr)

- Seasonality
 - two peaks per year
 - regional climate drivers: monsoon rainfall and winter temperatures?

- Multi-year climate drivers
 - El Niño-Southern Oscillation (ENSO)

- Immunity
 - volunteer studies: >3 yr immunity following severe infection
 - community study of reinfections in Matlab, Bangladesh: risk of reinfection equal to risk of primary infection
 - 1.6 yr average duration between primary infection and reinfection
 - retrospective statistical analyses (Koelle & Pascual 2004): 7–10 yr immunity following severe infection
Cholera: unsolved puzzles

- **Mode of transmission**
 - contaminated water: environmental reservoir
 - food-borne/direct fecal-oral
 - transient hyperinfectious state (<18 hr)

- **Seasonality**
 - two peaks per year
 - regional climate drivers: monsoon rainfall and winter temperatures?

- **Multi-year climate drivers**
 - El Niño-Southern Oscillation (ENSO)

- **Immunity**
 - volunteer studies: > 3 yr immunity following severe infection
 - community study of reinfections in Matlab, Bangladesh:
 - risk of reinfection equal to risk of primary infection
 - 1.6 yr average duration between primary infection and reinfection
 - retrospective statistical analyses (Koelle & Pascual 2004): 7–10 yr immunity following severe infection
Inapparent infections

- most cholera infections are mild or asymptomatic
Inapparent infections

- most cholera infections are mild or asymptomatic
- reports of the asymptomatic:symptomatic ratio range from 3 to 100
Inapparent infections

- most cholera infections are mild or asymptomatic
- reports of the asymptomatic:symptomatic ratio range from 3 to 100
- it is easy to underestimate the degree to which one underestimates a quantity one cannot observe
Inapparent infections

- most cholera infections are mild or asymptomatic
- reports of the asymptomatic:symptomatic ratio range from 3 to 100
- it is easy to underestimate the degree to which one underestimates a quantity one cannot observe
- **Needed:** an approach that allows indirect inference about unobserved variables
Inapparent infections

- most cholera infections are mild or asymptomatic
- reports of the asymptomatic:symptomatic ratio range from 3 to 100
- it is easy to underestimate the degree to which one underestimates a quantity one cannot observe
- **Needed:** an approach that allows indirect inference about unobserved variables
- historical cholera mortality records are a rich source of information, but have been difficult to fully exploit
Historical cholera mortality

Dacca
Historical cholera mortality
Historical cholera mortality
Historical cholera mortality
SIRS model

\[P \xrightarrow{b} S \xrightarrow{\lambda(t)} I \xrightarrow{\gamma} R_1 \xrightarrow{k\epsilon} \ldots \xrightarrow{k\epsilon} R_k \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>force of infection</td>
<td>(\lambda(t))</td>
</tr>
<tr>
<td>recovery rate</td>
<td>(\gamma)</td>
</tr>
<tr>
<td>disease death rate</td>
<td>(m)</td>
</tr>
<tr>
<td>mean long-term immune period</td>
<td>(1/\epsilon)</td>
</tr>
<tr>
<td>CV of long-term immune period</td>
<td>(1/\sqrt{k})</td>
</tr>
</tbody>
</table>
SIRS model

\[
P \xrightarrow{b} S \xleftarrow{\lambda(t)} I \xrightarrow{\gamma} R_1 \xrightarrow{k\varepsilon} \cdots \xrightarrow{k\varepsilon} R_k
\]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>force of infection</td>
<td>(\lambda(t))</td>
</tr>
<tr>
<td>recovery rate</td>
<td>(\gamma)</td>
</tr>
<tr>
<td>disease death rate</td>
<td>(m)</td>
</tr>
<tr>
<td>mean long-term immune period</td>
<td>(1/\varepsilon)</td>
</tr>
<tr>
<td>CV of long-term immune period</td>
<td>(1/\sqrt{k})</td>
</tr>
</tbody>
</table>
SIRS model

Parameter	Symbol
force of infection | $\lambda(t)$
recovery rate | γ
disease death rate | m
mean long-term immune period | $1/\varepsilon$
CV of long-term immune period | $1/\sqrt{k}$
SIRS model

\[P \xrightarrow{b} S \xrightarrow{\lambda(t)} I \xrightarrow{\gamma} R_1 \xrightarrow{k\varepsilon} \cdots \xrightarrow{k\varepsilon} R_k \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force of infection</td>
<td>(\lambda(t))</td>
</tr>
<tr>
<td>Recovery rate</td>
<td>(\gamma)</td>
</tr>
<tr>
<td>Disease death rate</td>
<td>(m)</td>
</tr>
<tr>
<td>Mean long-term immune period</td>
<td>(1/\varepsilon)</td>
</tr>
<tr>
<td>CV of long-term immune period</td>
<td>(1/\sqrt{k})</td>
</tr>
</tbody>
</table>
SIRS model

\[P \xrightarrow{b} S \xrightarrow{\lambda(t)} I \xrightarrow{\gamma} R_1 \xrightarrow{k\varepsilon} \ldots \xrightarrow{k\varepsilon} R_k \]

<table>
<thead>
<tr>
<th>parameter</th>
<th>symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>force of infection</td>
<td>(\lambda(t))</td>
</tr>
<tr>
<td>recovery rate</td>
<td>(\gamma)</td>
</tr>
<tr>
<td>disease death rate</td>
<td>(m)</td>
</tr>
<tr>
<td>mean long-term immune period</td>
<td>(1/\varepsilon)</td>
</tr>
<tr>
<td>CV of long-term immune period</td>
<td>(1/\sqrt{k})</td>
</tr>
</tbody>
</table>
SIRS model

\[\lambda(t) = \left(e^{\beta_{\text{trend}} t} \beta_{\text{seas}}(t) + \xi(t) \right) \frac{l(t)}{P(t)} + \omega \]
SIRS model

\[\lambda(t) = \left(e^{\beta_{trend} t} \beta_{seas}(t) + \xi(t) \right) \frac{l(t)}{P(t)} + \omega \]

\(\beta_{trend} = \text{trend in transmission} \)
SIRS model

\[\lambda(t) = \left(e^{\beta_{trend} t} \beta_{seas}(t) + \xi(t) \right) \frac{l(t)}{P(t)} + \omega \]

\[\beta_{seas}(t) = \text{seasonality in transmission} \]

semimechanistic approach: use flexible function
SIRS model

\[\lambda(t) = \left(e^{\beta_{trend} t} \beta_{seas}(t) + \xi(t) \right) \frac{l(t)}{P(t)} + \omega \]

\[\xi(t) = \text{environmental stochasticity} \]
SIRS model

\[\lambda(t) = \left(e^{\beta_{trend} t} \beta_{seas}(t) + \xi(t) \right) \frac{l(t)}{P(t)} + \omega \]

\[\omega = \text{environmental reservoir} \]
\[\lambda(t) = \left(e^{\beta_{\text{trend}} t} \beta_{\text{seas}}(t) + \xi(t) \right) \frac{l(t)}{P(t)} + \omega \]

\[P(t) = \text{censused population size} \]
SIRS model

\[
\frac{dS}{dt} = \frac{dP(t)}{dt} + \delta P(t) - (\lambda(t) + k\epsilon R_k + \delta) S
\]

\[
\frac{dI}{dt} = \lambda(t) S - (m + \gamma + \delta) I(t)
\]

\[
\frac{dR_1}{dt} = \gamma I - (k\epsilon + \delta) R_1
\]

\[
\vdots
\]

\[
\frac{dR_k}{dt} = k\epsilon R_{k-1} - (k\epsilon + \delta) R_k
\]

Stochastic force of infection:

\[
\lambda(t) = \left(e^{\beta_{\text{trend}} t} \beta_{\text{seas}}(t) + \xi(t)\right) \frac{I(t)}{P(t)} + \omega
\]
Likelihood maximization by iterated filtering

- new frequentist approach
 (Ionides, Bretó, & King, PNAS 2006)
- can accommodate:
 - continuous-time models
 - nonlinearity
 - stochasticity
 - unobserved variables
 - measurement error
 - nonstationarity
 - covariates
- based on well-studied sequential Monte Carlo methods
 (particle filter)
- “plug and play” property
- Implemented in pomp, an open-source R package
 (www.r-project.org)
Duration of immunity
SIRS model

<table>
<thead>
<tr>
<th>parameter</th>
<th>symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>force of infection</td>
<td>$\lambda(t)$</td>
</tr>
<tr>
<td>recovery rate</td>
<td>γ</td>
</tr>
<tr>
<td>disease death rate</td>
<td>m</td>
</tr>
<tr>
<td>mean long-term immune period</td>
<td>$1/\varepsilon$</td>
</tr>
<tr>
<td>CV of long-term immune period</td>
<td>$1/\sqrt{k}$</td>
</tr>
</tbody>
</table>
SIRS model predictions

- estimated cholera fatality (across districts): 0.0039 ± 0.0021.

- In the historical period, fatality in severe cases was c. 60%.

- Model prediction: lots of silent shedders.

- Evidence for silent shedders is mixed and weak.

- Q: Is it necessary that all exposed individuals become infectious?
SIRS model predictions

- estimated cholera fatality (across districts): 0.0039 ± 0.0021.
- in the historical period, fatality in severe cases was c. 60%
SIRS model predictions

- estimated cholera fatality (across districts): 0.0039 ± 0.0021.
- in the historical period, fatality in severe cases was c. 60%.
- model prediction: lots of silent shedders.
SIRS model predictions

- estimated cholera fatality (across districts): \(0.0039 \pm 0.0021\).
- in the historical period, fatality in severe cases was c. 60%.
- model prediction: lots of silent shedders
- evidence for silent shedders is mixed and weak
SIRS model predictions

- Estimated cholera fatality (across districts): 0.0039 ± 0.0021.
- In the historical period, fatality in severe cases was c. 60%.
- Model prediction: lots of silent shedders.
- Evidence for silent shedders is mixed and weak.
- **Q:** Is it necessary that all exposed individuals become infectious?
Two-path model

\[P \quad b \rightarrow S \quad c\lambda(t) \rightarrow I \quad m \rightarrow M \quad \gamma \rightarrow R_1 \quad k\varepsilon \rightarrow \ldots \rightarrow k\varepsilon \rightarrow R_k \]

\[(1 - c)\lambda(t) \rightarrow Y \quad \rho \]

<table>
<thead>
<tr>
<th>parameter</th>
<th>symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>force of infection</td>
<td>(\lambda(t))</td>
</tr>
<tr>
<td>probability of severe infection</td>
<td>(c)</td>
</tr>
<tr>
<td>recovery rate</td>
<td>(\gamma)</td>
</tr>
<tr>
<td>disease death rate</td>
<td>(m)</td>
</tr>
<tr>
<td>mean long-term immune period</td>
<td>(1/\varepsilon)</td>
</tr>
<tr>
<td>CV of long-term immune period</td>
<td>(1/\sqrt{k})</td>
</tr>
<tr>
<td>mean short-term immune period</td>
<td>(1/\rho)</td>
</tr>
</tbody>
</table>
Two-path model

\[P \xrightarrow{b} S \xrightarrow{c\lambda(t)} I \xrightarrow{\gamma} R_1 \xrightarrow{k_1\varepsilon} \ldots \xrightarrow{k_{\varepsilon}} R_k \]

- Parameter symbols:
 - Force of infection: \(\lambda(t) \)
 - Probability of severe infection: \(c \)
 - Recovery rate: \(\gamma \)
 - Disease death rate: \(m \)
 - Mean long-term immune period: \(1/\varepsilon \)
 - CV of long-term immune period: \(1/\sqrt{k} \)
 - Mean short-term immune period: \(1/\rho \)
Two-path model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>force of infection</td>
<td>$\lambda(t)$</td>
</tr>
<tr>
<td>probability of severe infection</td>
<td>c</td>
</tr>
<tr>
<td>recovery rate</td>
<td>γ</td>
</tr>
<tr>
<td>disease death rate</td>
<td>m</td>
</tr>
<tr>
<td>mean long-term immune period</td>
<td>$1/\varepsilon$</td>
</tr>
<tr>
<td>CV of long-term immune period</td>
<td>$1/\sqrt{k}$</td>
</tr>
<tr>
<td>mean short-term immune period</td>
<td>$1/\rho$</td>
</tr>
</tbody>
</table>
Two-path model

\[\frac{dS}{dt} = k\epsilon R_k + \rho Y + \frac{dP(t)}{dt} + \delta P(t) - (\lambda(t) + \delta) S \]

\[\frac{dI}{dt} = c\lambda(t) S - (m + \gamma + \delta) I(t) \]

\[\frac{dY}{dt} = (1 - c)\lambda(t) S - (\rho + \delta) Y \]

\[\frac{dR_1}{dt} = \gamma I - (k\epsilon + \delta) R_1 \]

\[\vdots \]

\[\frac{dR_k}{dt} = k\epsilon R_{k-1} - (k\epsilon + \delta) R_k \]

Stochastic force of infection:

\[\lambda(t) = \left(e^{\beta_{trend} t} \beta_{seas}(t) + \xi(t) \right) \frac{I(t)}{P(t)} + \omega \]
Model comparison

<table>
<thead>
<tr>
<th>model</th>
<th>log likelihood</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>two-path</td>
<td>-3775.8</td>
<td>7591.6</td>
</tr>
<tr>
<td>SIRS</td>
<td>-3794.3</td>
<td>7622.6</td>
</tr>
<tr>
<td>SARMA((2,2)×(1,1))</td>
<td>-3804.5</td>
<td>7625.0</td>
</tr>
<tr>
<td>Koelle & Pascual (2004)</td>
<td>-3840.1</td>
<td>—</td>
</tr>
<tr>
<td>seasonal mean</td>
<td>-3989.1</td>
<td>8026.1</td>
</tr>
</tbody>
</table>
Goodness of fit

<table>
<thead>
<tr>
<th>district</th>
<th>r^2</th>
<th>district</th>
<th>r^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakergang</td>
<td>0.856</td>
<td>Jessore</td>
<td>0.754</td>
</tr>
<tr>
<td>Bankura</td>
<td>0.559</td>
<td>Khulna</td>
<td>0.735</td>
</tr>
<tr>
<td>Birbhum</td>
<td>0.509</td>
<td>Malda</td>
<td>0.596</td>
</tr>
<tr>
<td>Bogra</td>
<td>0.570</td>
<td>Midnapur</td>
<td>0.666</td>
</tr>
<tr>
<td>Burdwan</td>
<td>0.589</td>
<td>Mohrshidabad</td>
<td>0.631</td>
</tr>
<tr>
<td>Calcutta</td>
<td>0.756</td>
<td>Mymensingh</td>
<td>0.805</td>
</tr>
<tr>
<td>Chittagong</td>
<td>0.712</td>
<td>Nadia</td>
<td>0.734</td>
</tr>
<tr>
<td>Dacca</td>
<td>0.848</td>
<td>Noakhali</td>
<td>0.701</td>
</tr>
<tr>
<td>Dinajpur</td>
<td>0.078</td>
<td>Pabna</td>
<td>0.690</td>
</tr>
<tr>
<td>Faridpur</td>
<td>0.785</td>
<td>Rangpur</td>
<td>0.594</td>
</tr>
<tr>
<td>Hooghly</td>
<td>0.569</td>
<td>Rashahi</td>
<td>0.690</td>
</tr>
<tr>
<td>Howrath</td>
<td>0.769</td>
<td>Tippera</td>
<td>0.767</td>
</tr>
<tr>
<td>Jaipaguri</td>
<td>0.109</td>
<td>24 Parganas</td>
<td>0.839</td>
</tr>
</tbody>
</table>
Goodness of fit

r^2
Simulated vs. actual data

SIRS model
Simulated vs. actual data

two-path model
Parameter estimates

- Cholera fatality: 0.07 ± 0.05
- Probability of severe infection: $\hat{c} = 0.008 \pm 0.005$
- $R_0 = 1.10 \pm 0.27$
- Duration of long-term immunity: 2.6 \pm 1.8 yr
- Duration of short-term immunity: 0.3–8.3 wk
- Geographical variability in force of infection
Parameter estimates

- cholera fatality: 0.07 ± 0.05
- probability of severe infection: $\hat{c} = 0.008 \pm 0.005$
Parameter estimates

- cholera fatality: 0.07 ± 0.05
- probability of severe infection: $\hat{c} = 0.008 \pm 0.005$
- $\hat{R}_0 = 1.10 \pm 0.27$
Parameter estimates

\[R_0(t) \]

\[c(0, \text{max(seas)}) \]

\[J \quad F \quad M \quad A \quad M \quad J \quad J \quad A \quad S \quad O \quad N \quad D \quad J \]

\[0.0 \quad 2.5 \quad 5.0 \quad 7.5 \quad 10.0 \]

\[R_0(t) \]

\[c(0, \text{max(seas)}) \]
Parameter estimates

- cholera fatality: 0.07 ± 0.05
- probability of severe infection: $\hat{c} = 0.008 \pm 0.005$
- $R_0 = 1.10 \pm 0.27$
Parameter estimates

- cholera fatality: 0.07 ± 0.05
- probability of severe infection: $\hat{c} = 0.008 \pm 0.005$
- $R_0 = 1.10 \pm 0.27$
- duration of long-term immunity: 2.6 ± 1.8 yr
- duration of short-term immunity: $0.3–8.3$ wk
Parameter estimates

- cholera fatality: 0.07 ± 0.05
- probability of severe infection: $\hat{c} = 0.008 \pm 0.005$
- $\hat{R}_0 = 1.10 \pm 0.27$
- duration of long-term immunity: 2.6 ± 1.8 yr
- duration of short-term immunity: $0.3–8.3$ wk
Parameter estimates

- cholera fatality: 0.07 ± 0.05
- probability of severe infection: $\hat{c} = 0.008 \pm 0.005$
- $R_0 = 1.10 \pm 0.27$
- duration of long-term immunity: 2.6 ± 1.8 yr
- duration of short-term immunity: 0.3–8.3 wk
- geographical variability in force of infection
Geographical patterns

environmental reservoir
Geographical patterns
transmission, Jan–Feb

\(b_0 \)
Geographical patterns transmission, Mar–Apr
Geographical patterns

transmission, May–Jun
Geographical patterns

transmission, Jul–Aug

b₃
Geographical patterns

transmission, Sep–Oct
Geographical patterns
transmission, Nov–Dec
Contrasting views of endemic cholera dynamics

View of Koelle & Pascual (2004):

- long-term immunity (7–10 yr)
- modest asymptomatic ratio (c. 70:1)
- spatial heterogeneity slows epidemic
- seasonal drop in transmission stops epidemic
- waning of immunity interacts with climate drivers on multi-year scale
Contrasting views of endemic cholera dynamics

New view:

- rapidly waning immunity
- high asymptomatic ratio (>160:1)
- susceptible depletion slows and stops epidemic
- loss of immunity replenishes susceptibles rapidly
- waning of immunity interacts with climate drivers on seasonal scale
- multi-year climate drivers?
Public health implications

- What determines the switch probability c?

- Serological profile data suggest declines with age.

- Dose/hyperinfectiousness.

- Foodborne/direct fecal-oral mode is most important.

- Lower doses provide short-term immunity.

- Unintended consequences of neglect of household transmission?

- Presence of vibriophage in environment?
Public health implications

- What determines the switch probability c?
- Serological profile data suggest c declines with age
Public health implications

McCormack et al. (1969)

Figure 5. Age specific attack rate per 1,000 population in the control groups of the PSCRL Matlab vaccine trial area.
Public health implications

- What determines the switch probability c?
- Serological profile data suggest c declines with age
- Dose/hyperinfectiousness
 - Foodborne/direct fecal-oral mode is most important
 - Lower doses provide short-term immunity
Public health implications

- What determines the switch probability c?
- Serological profile data suggest c declines with age
- Dose/hyperinfectiousness
 - Foodborne/direct fecal-oral mode is most important
 - Lower doses provide short-term immunity
- Unintended consequences of neglect of household transmission?
Public health implications

- What determines the switch probability c?
- Serological profile data suggest c declines with age
- Dose/hyperinfectiousness
 - Foodborne/direct fecal-oral mode is most important
 - Lower doses provide short-term immunity
- Unintended consequences of neglect of household transmission?
- Presence of vibriophage in environment?
Alternative hypotheses?

- inhomogeneities
- behavioral effects
Extensions

- Recent data (1966–2005, Matlab, Bangladesh)
- Discrete population continuous time models
- Other diseases
 - malaria
 - measles
 - influenza
R. G. Feachem (1982) on the seasonal patterns of cholera epidemics in Bengal:

They are such a dominant feature of cholera epidemiology, and in such contrast to the other bacterial diarrhoeas which peak during the monsoon in mid-summer, that their explanation probably holds the key to fundamental insights into cholera transmission, ecology, and control.
Seasonality

R. G. Feachem (1982) on the seasonal patterns of cholera epidemics in Bengal:

They are such a dominant feature of cholera epidemiology, and in such contrast to the other bacterial diarrhoeas which peak during the monsoon in mid-summer, that their explanation probably holds the key to fundamental insights into cholera transmission, ecology, and control.

to understand seasonality, we must allow for the interaction of short-term immunity with seasonal environmental drivers
Thanks to . . .

- Mercedes Pascual
- Menno Bouma
- Carles Bretó
- Katia Koelle
- Diego Ruiz Moreno
- Andy Dobson
- the R project (www.r-project.org)
- NSF/NIH Ecology of Infectious Diseases
Thank you!