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Overview

Our agenda is to collect together some approaches to likelihood based
inference:

Profile likelihood.

Fisher information (observed and expected).

Local asymptotic normality.

Smoothed likelihood.

Monte Carlo likelihood.

We then see how these ideas combine to facilitate inference for complex
dynamic systems.



Profile likelihood: some definitions

The log likelihood function for model fY (y ; θ) and data y∗ is
λ(θ ; y∗) = log fY (y∗ ; θ),

A maximum likelihood estimate (MLE) is
θ̂∗ = θ̂(y∗) = arg maxθ λ(θ ; y∗).

We suppose θ = (φ, ψ) with φ ∈ R1 and ψ ∈ Rp−1. Here, φ is a focal
parameter for which we are interested in obtaining a confidence
interval.

The profile log likelihood function for φ is defined as
λP (φ ; y∗) = maxψ λ

(
(φ, ψ) ; y∗

)
.

The profile log likelihood is maximized at a marginal MLE,
φ̂∗ = φ̂(y∗) = arg maxφ λ

P (φ ; y∗).

A profile likelihood confidence interval with cutoff δ is defined as{
φ : λP (φ ; y∗) > λP

(
φ̂∗ ; y∗

)
− δ
}
.



Profile likelihood: some history

Profile likelihood confidence intervals are equivalent to likelihood ratio
tests, which have a long history.

Box and Cox (1964) graphed the profile likelihood under the name of
maximized likelihood, and constructed confidence intervals using the
χ2 cutoff.

Cox and Snell (1970) made an early use of the name “profile
likelihood.” Use of “maximized likelihood” continued through 1970’s
but is now antiquated.

Much work in the 1980’s focused on how to modify profile likelihood
for improved higher-order asymptotic behavior (Barndorff-Nielsen,
1983).

Profile likelihood has uses in semiparametric inference (Murphy and
van der Vaart, 2000). The proportional hazard “partial likelihood”
(Cox, 1972) is a semiparametric profile likelihood.



Fisher information and observed Fisher information

Fisher information, evaluated at the MLE, is

Iij = E
[
− ∂
∂θi∂θj

λ(θ̂∗ ;Y )
]

Observed Fisher information is
I∗ij = − ∂

∂θi∂θj
λ(θ̂∗ ; y∗)

The asterisk denoting observed Fisher information indicates the
additional data dependence.
Corresponding standard errors and 95% confidence intervals for
φ = θi are
SEF =

√
[I−1]ii CIF =

[
θ̂∗ − 1.96 SEF , θ̂

∗ + 1.96 SEF
]

SE∗
F =

√
[I∗−1]ii CI∗F =

[
θ̂∗ − 1.96 SE∗

F , θ̂
∗ + 1.96 SE∗

F

]
An identity: d2

dφ2
λP (φ ; y∗) = −

[
I∗−1
ii

]−1
[Exercise].

Observed Fisher information together with the MLE fully escribes a
quadratic log likelihood function.
For a quadratic likelihood function, CI∗F is equal to the profile
likelihood confidence interval [Exercise],
CIP =

{
φ : λP (φ ; y∗) > λP (φ̂∗ ; y∗)− 1.92

}
.



In favor of observed Fisher information and profile
likelihood

Heuristically, the error on an estimator depends on the amount of
information observed in the actual experiment.

Efron and Hinkley (1978) argued for observed Fisher information,
SE∗

F , over SEF . Formal reasoning was limited to special cases, with
arguments based on ancillarity.

Lindsay and Li (1997) used a risk framework to show SE∗
F generally

gives asymptotically optimal estimation of (φ̂− φ)2.

CIP transforms naturally if φ is reparameterized by h(φ). If there is
an unknown h such that the log likelihood is [approximately] quadratic
for any y∗, CIP [approximately] corresponds to CI∗F computed on this
scale. Thus, heuristically, we may expect CIP to have comparable
asymptotic optimality to CI∗F but better finite sample behavior.



Local asymptotic normality

LAN (Le Cam, 1986) concerns a sequence of statistical models,
fY,n(yn ; θ), and the behavior of the log likelihood ratio,
Λn(θ) = log fYn(Yn ; θ)− log fYn(Yn ; θ0) when Yn ∼ FY,n(yn ; θ0).

fY,n(yn ; θ) has LAN with information matrix K if there is a sequence

of random variables ∆n
d−→ N(0,K) such that, for all bounded {tn},

Λn
(
θ0 + tnn

−1/2
)

= tTn∆n − 1
2 t
T
nKtn + op(1; θ0).

K is the asymptotic information rate concerning θ; it coincides with
the Fisher information under regularity conditions. From Hájek’s
convolution theorem, an estimator θ̂n is asymptotically efficient if

LAN holds and n1/2(θ̂n − θ0)
d−→ N(0,K−1)

Bickel et al. (1993) discuss LAN and demonstrate the utility of the
LAN framework for semiparametrics



Maximum quadratic likelihood estimator (MQLE)

LAN justifies the following estimation procedure:

1 Evaluate the log likelihood at a grid of points in the
neighborhood of a

√
n-consistent estimator.

2 Fit a quadratic through these points.

3 Obtain the maximum of this quadratic.

This is called Le Cam’s one-step estimator. We will say maximum
quadratic likelihood estimator (MQLE).

MQLE is efficient under LAN and more generally when the likelihood
is locally asymptotic quadratic (Le Cam, 1986).

Under regularity, LAN is equivalent to asymptotic normality of MLE.

MQLE can succeed when LAN holds but the MLE behaves badly.

LAN can be easier to prove than asymptotic normality of the MLE.

The one-step estimator is, in some sense, better than the MLE.

But, who would use LAN for data analysis when the log
likelihood is grossly non-quadratic
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A non-smooth likelihood: fY (y|θ) ∝ exp(−|y − θ|α)
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Dotted: MQLE, initialized at
the median.

Dashed: maximum smoothed
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This model does not satisfy the usual Cramér conditions for the MLE.
MQLE and MSLE are 15% more efficient than MLE (Ionides, 2005).

Perhaps more importantly, they are not worse!

In higher dimensions, or when we must rely on Monte Carlo
approximation of the likelihood, MQLE and MSLE may be
easier to implement.
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More on maximum smoothed likelihood estimation (MSLE)

MSLE (Ionides, 2005) involves the following steps:

1 Evaluate the log likelihood at a grid of points in the
neighborhood of a

√
n-consistent estimator.

2 Fit a smooth curve through these points.

3 Obtain the maximum of this smooth curve.

MSLE replaces the quadratic of MQLE with a smoother.

The smoothed likelihood can be used to construct profile confidence
intervals.

As long as the smoother fits a quadratic through points on a
quadratic, MSLE inherits asymptotic optimality from MQLE.

The loess smoother in R is a 2nd order local polynomial smoother
with this property.



Monte Carlo profile confidence intervals for dynamic
systems

Monte Carlo methods to evaluate and maximize the likelihood
function enable the construction of confidence intervals and
hypothesis tests, facilitating scientific investigation using models for
which the likelihood function is intractable.

When Monte Carlo error can be made small, by sufficiently exhaustive
computation, then the standard theory and practice of
likelihood-based inference applies. One may still want to use MSLE to
enable reliable inference at reduced computational cost.

As datasets become larger, and models more complex, situations arise
where no reasonable amount of computation can render Monte Carlo
error negligible.

We seek profile likelihood methodology enabling frequentist inferences
accounting for Monte Carlo error.

This methodology facilitates inference for computationally challenging
dynamic latent variable models.



A metamodel for a Monte Carlo profile

A Monte Carlo metamodel is a statistical model fitted to output of
a Monte Carlo algorithm.

We have independent Monte Carlo profile likelihood evaluations(
λ̆Pk (y∗), k ∈ 1 :K

)
at points φ1:K = (φ1, . . . , φK).

Without loss of generality we can write

[M1] λ̆Pk (y∗) = λP (φk ; y∗) + βk(y
∗) + εk(y

∗), k ∈ 1 :K,

where Monte Carlo errors ε1:K(Y ) are, by construction, mean zero
and independent conditional on Y . In [M1], βk(y

∗) is Monte Carlo
bias.

Local to the MLE, we may make additional metamodel assumptions:
[M2] βk(y

∗) = β(y∗) : constant bias.
[M3] Var

[
εk(y

∗)
]

= σ2(y∗) <∞ : constant variance.

We can complete the metamodel by proposing parametric or
nonparametric specifications of λP (φ ; y∗).



A quadratic metamodel for the profile likelihood

LAN suggests a quadratic metamodel,

λ̆Pk (y) = −â(y)φ2k + b̂(y)φk + ĉ(y) + εk, Var(εk) = σ2(y).

The unknown coefficients â∗ = â(y∗), b̂∗ = b̂(y∗) and ĉ∗ = ĉ(y∗)
make a quadratic approximation to the intractable likelihood.

We fit the metamodel to the Monte Carlo profile evaluations, using
linear regression to estimate (â∗, b̂∗, ĉ∗) by (ă∗, b̆∗, c̆∗).

The marginal MLE φ̂∗ can be approximated by the maximum of
λ̆Q(φ ; y∗), which is given by φ̆Q(y∗, ε) = b̆(y∗, ε)

/
2ă(y∗, ε)

We can separate the variability of φ̆Q(Y, ε) into two components:
1 Statistical error is uncertainty from randomness in the data, viewed as

a draw from the statistical model. This is the usual statistical error of
b̂(y∗)/2â(y∗) as an estimate of φ0.

2 Monte Carlo error is the uncertainty from implementing a Monte
Carlo estimator. This is the error in b̆(y∗, ε)/2ă(y∗, ε) as a Monte Carlo

estimate of b̂(y∗)/2â(y∗).



Monte Carlo error and statistical error

Routine application of the delta method gives a central limit
approximation for the Monte Carlo error on the maximum, conditional
on Y = y∗,

b̆∗

2ă∗
≈ N

[(
b̂∗

2â∗

)
, SE2

mc

]
,

where

SE2
mc =

1

4ă∗2

{
Var
[
b̆∗]− 2b̆∗

ă∗
Cov

[
ă∗, b̆∗

]
+
b̆∗

2

ă∗2
Var
[
ă∗
]}
.

The usual statistical standard error, 1
/√

2â∗, is not available to us.
Its Monte Carlo estimate is

SE stat =
1√
2ă∗

.

Under suitable regularity, these two error sources are additive, and so

SE total =

√
SE2

mc + SE2
stat.



Using SE total for a Monte Carlo adjusted profile (MCAP)

The usual χ2 cutoff for profile confidence intervals is based on
quadratic asymptotics. It is robust to reparameterization, and can be
applied to either the actual profile or a smoothed version.

Exactly the same argument can be applied to give a cutoff for a
smoothed Monte Carlo profile based on a quadratic approximation:

δ = ă∗ ×
(
zα × SE total

)2
= z2α

(
ă∗ × SE2

mc +
1

2

)
,

where zα is the 1− α2 normal quantile.

if SEmc = 0, the cutoff for α = 0.05 reduces to δ = 1.962/2 = 1.92.

We apply this cutoff after estimating the profile via a locally weighted
quadratic smoother. SEmc can be computed using the local weights
at the maximum.

We call this procedure a Monte Carlo adjusted profile (MCAP).
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A toy: importance sampling for a log normal model
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Points show Monte Carlo profile evaluations. Black dashed lines: exact
profile and 95% confidence interval. Solid red lines: MCAP confidence
interval. Dotted blue line: quadratic approximation.

Exact profile MCAP profile Bootstrap Quadratic

Coverage % 94.3 93.4 93.3 93.3
Mean width 0.78 0.88 0.94 0.92



Inferring population dynamics from genetic sequence data

Genetic sequence data on a sample of individuals in an ecological
system has potential to reveal population dynamics.

Extraction information on population dynamics from genetic data has
been termed phylodynamics (Grenfell et al., 2004).

Inference via the full likelihood stretches modern computational
capabilities, but can be done using the genPomp algorithm of Smith
et al. (2017).

The genPomp algorithm is an application of iterated filtering
methodology (Ionides et al., 2015) to phylodynamic models and data.

However, the genPomp algorithm leads to estimators with high Monte
Carlo variance, indeed, too high for reasonable amounts of
computation resources to reduce Monte Carlo variability to
negligibility.

This situation provides a useful scenario to demonstrate our
methodology.



Monte Carlo profile for genetic data on HIV dynamics

●
●

●

●

●

●

●

●

●

●

●

●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●
●●

●

●
●
●
●

●

●
●
●

●●

●

●

●

●

●

●

●
●
●●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●
●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●●

●

●

●●

●

●

●

●
●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●
●

●
●
●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●●●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8

−
60

0
−

50
0

−
40

0

pr
of

ile
 lo

g 
lik

el
ih

oo
d

φ

Figure 2: Profile likelihood for an infectious disease transmission parameter inferred from
genetic data on pathogens. The smoothed profile likelihood and corresponding MCAP 95%
confidence interval are shown as solid red lines. The quadratic approximation in a neighbor-
hood of the maximum is shown as a blue dotted line.

the capabilities of our methodology, we present three high-dimensional POMP inference chal-
lenges that become computationally tractable using MCAP.

4.1 Inferring population dynamics from genetic sequence data

Genetic sequence data on a sample of individuals in an ecological system has potential to
reveal population dynamics. Extraction of this information has been termed phylodynamics
(Grenfell et al., 2004). Likelihood-based inference for joint models of the molecular evolu-
tion process, population dynamics, and measurement process is a challenging computational
problem. The bulk of extant phylodynamic methodology has therefore focused on inference
for population dynamics conditional on an estimated phylogeny and replacing the popula-
tion dynamic model with an approximation, called a coalescent model that is convenient for
calculations backwards in time (Karcher et al., 2016). Working with the full joint likelihood
is not entirely beyond modern computational capabilities; in particular it can be done using
the genPomp algorithm of Smith et al. (2016). The genPomp algorithm is an application
of iterated filtering methodology (Ionides et al., 2015) to phylodynamic models and data.
To the best of our knowledge, genPomp is the first algorithm capable of carrying out full
joint likelihood-based inference for population-level phylodynamic inference. However, the
genPomp algorithm leads to estimators with high Monte Carlo variance, indeed, too high for
reasonable amounts of computation resources to reduce Monte Carlo variability to negligi-
bility. This, therefore, provides a useful scenario to demonstrate our methodology.

Figure 2 presents a Monte Carlo profile computed by Smith et al. (2016), with confidence

10

φ models HIV transmitted by recently infected, diagnosed individuals.

The MCAP cutoff is 2.35, compared to the unadjusted cutoff of 1.92.

The computation of this figure took approximately 10 days using 500
cores on a Linux cluster.

The standard error of the profile evaluations is around 25 log units.



Comparison with methods based on summary statistics

We have focused on likelihood-based confidence intervals.

An alternative to likelihood-based inference is to compare the data
with simulations using some summary statistic.

Various plug-and-play methodologies of this kind have been proposed,
such as synthetic likelihood (Wood, 2010) and nonlinear forecasting
(Ellner et al., 1998).

For large nonlinear systems, it can be hard to find low-dimensional
summary statistics that capture a good fraction of the information in
the data.

Even summary statistics derived by careful scientific or statistical
reasoning have been found surprisingly uninformative compared to the
whole data likelihood in both scientific investigations (Shrestha et al.,
2011) and simulation experiments (Fasiolo et al., 2016).



Comparison with Bayesian computation

Much attention has been given to scaling Bayesian computation to
complex models and large data. Latent process models are closely
related computationally to Bayesian inference: Bayesian parameters
are latent random variables.
Bayesian Numerical methods such as expectation propagation (EP),
variational Bayes, and posterior interval estimation (PIE) are effective
for some model classes. They emphasize hierarchical models, where
the joint density of the data and latent variables can be conveniently
factorized. The genPomp example doesn’t have this structure; and the
MCAP methodology has no such requirement.
Some simulation-based Bayesian methods use unbiased Monte Carlo
likelihood evaluations inside an MCMC algorithm (Andrieu and
Roberts, 2009). Error in likelihood evaluation slows MCMC
convergence. Optimal trade-off between number of MCMC iterations
and time spent on each likelihood evaluation occurs at a Monte Carlo
likelihood std. deviation of one log unit (Doucet et al., 2015). For the
genPomp example, Monte Carlo errors that small are infeasible.



Conclusions

MCAP provides a simple and general approach to inference when the
signal-to-noise ratio in the Monte Carlo profile log likelihood is
sufficient to uncover the main features of this function, up to an
unimportant vertical shift.

For large datasets in which the signal (quantified as the curvature of
the log likelihood) is large, the methodology can be effective even
when the Monte Carlo noise is far too big to carry out standard
Bayesian MCMC techniques.

Although the frequentist motivation for likelihood-based inference
differs from the goal of Bayesian posterior inference, both approaches
can be used for deductive scientific reasoning (Gelman and Shalizi,
2013; Ionides et al., 2017).
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