The exam problems will test your ability in two main areas:

1. Constructing simple code or describing what a bit of code is doing
 - manipulation of data frames
 - control structures: for, while, if-else
 - using vectorization instead of loops

2. Being able to understand and apply the algorithms taught in class
 - Inversion method for random number generation
 - Rejection sampling for random number generation
 - Importance sampling
 - Newton-Raphson

Example 1: Suppose \(X \) contains a 10-by-10 data frame. Describe what each of the following lines of code does:

\[
X[c(1,4,7),c(2:5)]
\]

\[
X[,-c(6:8)]
\]

\[
X[abs(X[,7]) < 1,]
\]

Example 2: Write a short program to calculate the smallest \(K \) such that

\[
\sum_{n=1}^{K} n^{3/2} \leq 50
\]

Example 3: Choose which of the responses is approximately what this program print at the end and explain why:

\[
X <- \text{matrix}(\text{rexp}(20000, \text{rate}=1/3), 1000, 20)
\]

\[
M <- \text{apply}(X, 1, \text{mean})
\]

\[
\text{print(mean(M), var(M))}
\]

The options are

[1] 3 9

[1] 3 0.45

[1] 0.333 0.111

[1] 0.15 0.45

Example 4: Describe in terms of a conditional expectation what the following program estimates:
X <- rnorm(10000)
X <- X[which((X > 0) & (X < 2))]
mean(X)

Example 5: Write a program which does the same as the following without using a loop

X <- rnorm(10000)
for(j in 1:10000) if(X[j] < 0) X[j] <- 0 else X[j] <- sqrt(X[j])

Example 6: Consider rejection sampling from the standard normal density,

\[p(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \]

using the Cauchy distribution

\[g(x) = \frac{1}{\pi(1 + x^2)} \]

as the trial distribution. If the first uniform generated was \(U = 0.632 \) and the first candidate draw generated was \(X = 1.36 \), would you accept or reject this candidate? Justify your answer.

Note: You may take it for granted that \(M = \sup_x p(x)/g(x) \approx 1.52 \).

Example 7: Suppose you have a distribution with density

\[p(x) = \lambda x^{-\lambda-1} \]

where \(x \geq 1 \) and \(\lambda \geq 2 \). Write a one line function based on the inversion method to generate \(n \) samples from the distribution where \(\lambda \) is an input the the function.

What line could you type to estimate \(E(X^{2.736}) \) if \(X \) has the distribution described above with \(\lambda = 3 \)?

Example 8: Suppose you wanted to estimate the integral

\[\int_{-3}^{3} e^{-|x|} dx \]

by monte carlo. Write two short programs to do this by

1. viewing this as an expectation against the Uniform\((-3,3)\) density
2. importance sampling with \(N(0,1) \) as your trial density

Which of these do you expect to provide a smaller standard error for the integral approximation?

Example 9: Consider optimization of the function \(f(x) = \exp(-x^2 + 3x + 4) \). Suppose your start value is \(x_0 = 1 \). Where would you be after a single Newton-Raphson update?