Example 1: The first line would select out the 1st, 4th, 7th rows and the 2nd through 5th column of X.

The second line would select everything except the 6th, 7th, and 8th columns of X.

The third line would only select out the rows where the 7th column of that row is greater than 1 in absolute value.

Example 2: One way to do this would be

```
n <- 0
S <- 0
while( S < 50 )
{
  n <- n + 1
  S <- S + (n^(3/2))
}
print(n)
[1] 7
```

Example 3: This program investigates the sampling distribution of \bar{X} from a sample of size $n = 20$ from an exponential($1/3$) distribution. Since the sample mean has expected value equal to $1/\lambda$, we would expect that $\text{mean}(M)$ would be around 3. Also, $\text{var}(\bar{X}) = \text{var}(X)/20$ so we would expect $\text{var}(M)$ to be around $(1/\lambda^2)/20 = 9/20 = .45$.

So the second answer is correct.

Example 4: This program generates $N(0,1)$ random variables, then selects out those that are between 0 and 2, and then takes the sample mean of the remaining values. So, this estimates

$$E(X|0 \leq X \leq 2)$$

where $X \sim N(0,1)$.

Example 5: One way to do this is

```
X <- rnorm(10000)
w <- which(X < 0)
X[w] <- 0
X[-w] <- sqrt(X[-w])
```

Example 6: Rejection sampling accepts a candidate if

$$U \leq \frac{p(X)}{M \cdot g(X)}$$

Plugging in the provided values for X, and M, the right hand side of this inequality evaluates to
\[
\frac{p(1.36)}{1.52 \cdot g(1.36)} \approx 0.932
\]

which is indeed greater than \(U = 0.632 \), so we would accept this draw.

Example 7: The inversion method requires you to invert the CDF, so the first step is to calculate the CDF:

\[
F(x) = \int_{1}^{x} \lambda y^{-\lambda - 1} dy = \left. \frac{-1}{y^\lambda} \right|_{1}^{x} = 1 - \frac{1}{x^\lambda}
\]

It is straightforward to see that

\[
F^{-1}(u) = \left(\frac{1}{1 - u} \right)^{1/\lambda}
\]

The inversion method works by plugging Uniform(0, 1)'s into the inverse CDF, so a one line function to generate \(n \) samples from this distribution would be

\[
rF <- \text{function}(n, L) (1/(1 - \text{runif}(n)))^{(1/L)}
\]

To estimate \(E(X^{2.736}) \) when \(\lambda = 3 \) based on \(n = 1000 \) samples you could type

\[
\text{mean}(rF(1000, 3)^{2.736})
\]

Example 8: For the first part, this can be viewed as

\[
E(10 \cdot (U - 5)^2)
\]

where \(U \) is Uniform(-3,3), so the code using \(k \) monte carlo samples is

\[
f <- \text{function}(x) 6*\text{exp}(-\text{abs}(x))
X <- \text{runif}(k, -3, 3)
\text{mean}(f(X))
\]

using the \(N(0,1) \) distribution for rejection sampling, this is

\[
f <- \text{function}(x) 6*\text{exp}(-\text{abs}(x))
w <- \text{function}(x) \text{dunif}(x,-3,3)/\text{dnorm}(x)
X <- \text{rnorm}(k)
\text{mean}(w(X) * f(X))
\]

The importance sampling is expected to perform better since the integrand will match the shape of the density being integrated against more closely.

Example 9: The first step with Newton-Raphson is to calculate the derivatives of the objective function, \(f(x) = \exp(-x^2 + 3x - 4) \). These are

\[
f'(x) = (-2x + 3)f(x)
\]

and

\[
f''(x) = -2f(x) + (-2x + 3)f'(x)
\]
So, the first iteration will take you to

$$1 - \frac{f'(1)}{f''(1)}$$

Evaluating directly,

$$f'(1) = (-2 \cdot 1 + 3)f(1) = f(1)$$

and

$$f''(1) = -2 \cdot f(1) + (-2 \cdot 1 + 3)f'(1) = -2 \cdot f(1) + f(1) = -f(1)$$

so $f'(1)/f''(1) = -1$ and

$$x_1 = 1 - (-1) = 2$$

is where you will be after 1 iteration.