
Introduction to R Statistics 506

About R

As described by The R Foundation, “R is a language and environment for statistical computing
and graphics.” Importantly, R is open-source, free software distributed under a GNU GPL-3
license.

It is also easily extensible through contributed packages that cover much of modern statistics
and data science.

RStudio

RStudio is an “integrated development environment” (IDE) for working with R that simplifies
many tasks and makes for a friendlier introduction to R. It provides a nice interface via
Quarto or RMarkdown for integrating R code with text for creating documents. RStudio is
distributed by Posit that also offers a number of related products for working with data: Shiny
for interactive graphics along with enterprise and server editions. I suggest you use RStudio
when feasible to streamline your workflow.

R Basics

Objects

Nearly everything in R is an object that can be referred to by name.

Assignment

We generally create objects by assigning values to them:

This is a comment ignored by R
username <- "William"
x <- 10

1

https://www.r-project.org/about.html
https://posit.co/products/open-source/rstudio/
https://quarto.org/
http://rmarkdown.rstudio.com/

y <- 32
z <- c(x, y) # Form vectors by combining or concatenating elements.

9 -> w # This works, but is bad style.
theAnswer = 42 # Most other languages use = for assignment.

While both <- and = can be used exchangeable when assigning values to objects (in almost
all situations), it is recommended to use <-. = is used when passing arguments to functions,
and the distinction between <- assigning objects and = passing arguments makes code easier
to read.

The values can be referred to by the object name:

theAnswer

[1] 42

Naming Objects

Object names can be any syntactically valid name. You should, however, avoid clobbering
built in R names such as pi, mean, sum, etc.

You also should not use reserved words when naming objects.

You should generally use meaningful, descriptive names for objects you create. There are
various styles for creating multi-word object names:

• snake_case : separate words with an underscore
• camelCase : capitalize subsequent words
• dot.case : separate words with a period

Object names are case sensitive:

q <- 3
Q <- 4
c(q, Q)

[1] 3 4

Style notes

Generally speaking, you do not need to adopt my coding style. However, you should develop
and use a consistent style of your own. See the document on Developing R style for more
discussion.

2

https://stat.ethz.ch/R-manual/R-devel/library/base/html/make.names.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/Reserved.html
R-style.html

Value vs Reference

It is important to remember that in R objects are typically stored by value and not by
reference:

x <- 10
y <- 32
z <- c(x, y)
c(x, y, z)

[1] 10 32 10 32

y <- theAnswer
c(x, y, z)

[1] 10 42 10 32

In contrast, if z <- c(x,y) were a reference to the contents of x and y then changing y would
change z and the value referred to by z as well. At a more technical level, R has copy on
modify semantics and uses lazy evaluation meaning objects at times are stored by reference.
We will learn about these later in the course, but for reasoning about R programs it is generally
sufficient to think of objects holding values rather than references.

Later in this lesson we will learn how to create objects without assigning values to them.

Global Environment

An environment is a context in which the names we use to refer to R objects have meaning.
For now, it is sufficient to know that the default environment where objects are assigned is
a workspace called the global environment. You can view objects in the global environment
using the function ls() and remove objects using rm().

ls()

[1] "has_annotations" "q" "Q" "theAnswer"
[5] "username" "w" "x" "y"
[9] "z"

rm(theAnswer)
ls()

3

[1] "has_annotations" "q" "Q" "username"
[5] "w" "x" "y" "z"

We can remove multiple objects as well:

rm(username, w)
ls()

[1] "has_annotations" "q" "Q" "x"
[5] "y" "z"

To clear the entire workspace use rm(list=ls()).

There are three reasons you might want to remove objects from your environment:

1. Space considerations. Obviously the memory required to store the value 4 is trivial, but
as we get into loading large data sets, if you create multiple distinct versions of the data,
you may run into memory limits.

2. Clear environment, clear mind. If you’re proactive in removing objects you don’t need,
those you do need are easily to locate.

3. Avoiding unintended effects. If you have objects hanging around that are old, you may
miss errors that occur and not understand why your code is performing a certain way.
Consider the following

y <- 4
x < -7

[1] FALSE

z <- x + y

What value will z take on?

z

[1] 14

You’d expect z to be 11. If you noticed the error in the line x < -7 (which is comparing x
and -7, not assigning a value), you’d expect an error there, and perhaps on the line creating
z. However, since we created x much earlier in the notes and never removed it, the value of x
from then is used unexpectedly!

4

Programmatic assignment

Occasionally, you may write a program where you need to access or assign an object whose
name you do not know ahead of time. In these cases you may wish to use the get() or
assign() functions.

Ex 1
rm(list = ls())
ls()

character(0)

assign("new_int", 9) # i.e. new_int = 9
ls()

[1] "new_int"

get("new_int")

[1] 9

new_int

[1] 9

Ex 2
rm(list = ls())
obj <- "obj_name"
val <- 42
assign(obj, value = val) # assign the value in 'val' to the value in 'obj'
ls()

[1] "obj" "obj_name" "val"

obj

[1] "obj_name"

5

obj_name

[1] 42

Arithmetic operations

R can do arithmetic with objects that contain numeric types.

x <- 10
y <- 32
z <- x + y
x + y

[1] 42

z / x

[1] 4.2

z^2

[1] 1764

11 %% 2 # Modular arithmetic (i.e. what is the remainder)

[1] 1

11 %/% 2 # Integer division discards the remainder

[1] 5

R also supports vectorized arithmetic.

z + 2 * c(y, x)

6

[1] 106 62

Since c(y, x) is a vector of length two, the operations z + 2 * is performed separately on
each element of the vector and a vector of the same length is returned.

If you operate on two vectors, you get an element-wise result:

a <- c(1, 5)
b <- c(2, -3)
a * b

[1] 2 -15

Be careful about mixing vectors of different lengths as R will generally recycle values:

x <- 4:6
y <- c(0, 1)
x * y

Warning in x * y: longer object length is not a multiple of shorter object
length

[1] 0 5 0

There are a number of common mathematical functions already in R:

mean(x) # average

[1] 5

sum(x) # summation

[1] 15

sd(x) # Standard deviation

[1] 1

7

var(x) # Variance

[1] 1

exp(x) # Exponential

[1] 54.59815 148.41316 403.42879

sqrt(x) # Square root

[1] 2.000000 2.236068 2.449490

log(x) # Natural log

[1] 1.386294 1.609438 1.791759

sin(x) # Trigonometric functions

[1] -0.7568025 -0.9589243 -0.2794155

cos(pi + 1) # R even contains pi, but only does finite arithmetic

[1] -0.5403023

floor(x/2) #The nearest integer below

[1] 2 2 3

ceiling(x/2) #The nearest integer above

[1] 2 3 3

Notice that some of these functions take in a vector as an input and return a scalar, whereas
others are vectorized - they take in a vector and return a vector of the same length. Read the
documentation (help(mean)) or test the function before assuming which way it works.

We can also nest functions.

8

mean(log(floor(x)))

[1] 1.595831

When doing math in R or another computing language, be cognizant of the fact that numeric
doubles have finite precision - also known as the floating point problem. This can sometimes
lead to unexpected results as seen here:

sqrt(2)^2 - 2

[1] 4.440892e-16

sqrt(2)^2 == 2

[1] FALSE

all.equal(sqrt(2)^2, 2)

[1] TRUE

The all.equal function attempts to workaround this precision so use it if you’re concerned
about running into this issue. Note that all.equal does not return logical if it fails:

all.equal(sqrt(2)^3, 2)

[1] "Mean relative difference: 0.2928932"

Instead, you should always check if the output of all.equal is TRUE directly:

all.equal(sqrt(2)^2, 2) == TRUE

[1] TRUE

all.equal(sqrt(2)^3, 2) == TRUE

[1] FALSE

9

The R package system

Much of the utility of R is derived from an extensive collection of user and domain-expert
contributed packages. Packages are simply a standardized way for people to share documented
code and data. There are nearly 20,000 officially distributed through the CRAN alone!

Packages are primarily distributed through three sources:

• CRAN
• Github
• Bioconductor

Installing packages

The primary way to install a package is using install.packages("pkg").

install.packages("lme4") # the package name should be passed as a character string

You can find the default location for your R packages using the .libPaths() function. If
you don’t have write permission to this folder, you can set this directory to a personal library
instead.

.libPaths() ## The default library location

.libPaths("/Users/myname/Rlib") #Create the directory first!

To install a package to a personal library use the ‘lib’ option.

install.packages("haven", lib = "/Users/myname/Rlib")

Use the above with caution and only when necessary.

If your computer has the necessary tools, packages can also be installed from source by down-
loading the package file and pointing directly to the source tar ball (‘.tgz’) or Windows bi-
nary.

Using packages in R

Installing a package does not make it available to R. There are two ways to use things from
a package:

• calling library("pkg") to add it to the search path,
• using the pkg::obj construction to access a package’s exported objects,
• using the pkg:::obj to access non-exported objects - use with caution!

10

https://cran.r-project.org/
https://remotes.r-lib.org/reference/install_github.html
https://www.bioconductor.org/

These methods are illustrated below using the data set InstEval distributed with the ‘lme4’
package.

install.packages("lme4")
head(InstEval)

Error in eval(expr, envir, enclos): object 'InstEval' not found

Using the pkg::function construction
head(lme4::InstEval)

s d studage lectage service dept y
1 1 1002 2 2 0 2 5
2 1 1050 2 1 1 6 2
3 1 1582 2 2 0 2 5
4 1 2050 2 2 1 3 3
5 2 115 2 1 0 5 2
6 2 756 2 1 0 5 4

library(lme4)

Loading required package: Matrix

head(InstEval)

s d studage lectage service dept y
1 1 1002 2 2 0 2 5
2 1 1050 2 1 1 6 2
3 1 1582 2 2 0 2 5
4 1 2050 2 2 1 3 3
5 2 115 2 1 0 5 2
6 2 756 2 1 0 5 4

The library("pkg") command adds a package to the search path.

search()

11

[1] ".GlobalEnv" "package:lme4" "package:Matrix"
[4] "package:stats" "package:graphics" "package:grDevices"
[7] "package:utils" "package:datasets" "MyFunctions"
[10] "package:methods" "Autoloads" "package:base"

library(foreign)
search()

[1] ".GlobalEnv" "package:foreign" "package:lme4"
[4] "package:Matrix" "package:stats" "package:graphics"
[7] "package:grDevices" "package:utils" "package:datasets"
[10] "MyFunctions" "package:methods" "Autoloads"
[13] "package:base"

head(InstEval)

s d studage lectage service dept y
1 1 1002 2 2 0 2 5
2 1 1050 2 1 1 6 2
3 1 1582 2 2 0 2 5
4 1 2050 2 2 1 3 3
5 2 115 2 1 0 5 2
6 2 756 2 1 0 5 4

To remove a library from the search path use detach("package:pkg", unload = TRUE).

detach(package:foreign, unload = TRUE)
search()

[1] ".GlobalEnv" "package:lme4" "package:Matrix"
[4] "package:stats" "package:graphics" "package:grDevices"
[7] "package:utils" "package:datasets" "MyFunctions"
[10] "package:methods" "Autoloads" "package:base"

Input and output

R is primarily an in-memory language, meaning it is designed to work with objects stored in
working memory (i.e. RAM) rather than on disk. Therefore, it is essential to know how to
read and write data from disk.

12

Native R Binaries

There are two common formats for writing binaries containing native R objects: .RData and
.rds.

To save one or more R objects to a file, use save().

df_desc <- "The lme4::InstEval data."
save(InstEval, df_desc, file = "data/InstEval.RData")

To restore these objects to the global environment use load().

rm(list = ls())
ls()

character(0)

load("data/InstEval.RData")
ls()

[1] "df_desc" "InstEval"

Serialized R Data

Generally, it is best to use save() and load() for R objects. However, there are times when
it can be helpful to save the data an R object contains without also saving its name. In these
cases, you can use saveRDS() and readRDS().

saveRDS(InstEval, file = "data/InstEval.rds")
df <- readRDS("data/InstEval.rds")

Style note

You may come across the extensions .Rdata or .rda from time to time. These are generally
synonyms for .RData and can usually be loaded using load(). However, the standard is to
use .RData and this should be considered course style.

13

Delimited Data

Data is commonly shared as flat (maybe compressed) text files often delimited by commas
(e.g. .csv), tab or '\t' (e.g. .tsv, .tab, .txt), or one or more white-space characters
(e.g. .data, .txt).

In the base R packages, these can be read using read.table and its wrappers like read.csv. To
read the file at ../data/recs2015_public_v4.csv, use read.table() and assign the input
to an object.

recs <- read.table("data/recs2015_public_v4.csv", sep = ",", header = TRUE)
dim(recs)
class(recs)

These functions return data.frames which are special lists whose members all have the same
length (i.e. the number of rows.)

Likewise, you can write delimited files using write.table or write.csv.

write.csv(InstEval, file = "../../data/InstEval.txt",
row.names = FALSE)

Other formats

You may find the following packages useful for reading and writing data from other formats:

• readxl for reading Excel files
• haven for reading other common data formats
• foreign an alternative to haven that supports additional formats.

Vectors

Vectors are the basic building blocks of many R data structures including rectangular data
structures or data.frames most commonly used for analysis.

There are two kinds of vectors: atomic vectors and lists. Every vector has two defining
properties aside from the values it holds:

• A type (or mode) referring to what type of data it holds, and
• A length referring to the number of elements it points to.

Use typeof() to determine a vector’s type and length() to determine its length.

In R, scalars are just vectors with length one.

14

Atomic Vectors

The elements in atomic vectors must all be of the same type. Here are the most important
types:

• Logical: TRUE, FALSE
• Integer: 1L
• Double: 2.4
• Character: "some words"

Two less commonly used types are raw and complex. The mode of a vector of integers or
doubles is numeric, the mode of other types is the same as the type. In most cases, double is
the default and easier type to use.

There are three special scalars: NA, NaN, and Inf.

NaN represents 0/0 and Inf represents infinity (for example, c/0).

0/0

[1] NaN

3/0

[1] Inf

typeof(NaN)

[1] "double"

typeof(Inf)

[1] "double"

Both are doubles, so can be included in a numeric vector:

x <- c(3, Inf, NaN, 4)
x

15

[1] 3 Inf NaN 4

The third special scalar, NA, represents missing data and is logical, not a numeric - but can
still be stored in a numeric vector:

typeof(NA)

[1] "logical"

x <- c(NA, 2)
x

[1] NA 2

Other logical are converted to numeric:

x <- c(TRUE, FALSE, 3)
x

[1] 1 0 3

Empty vectors

To create new vectors without assigning values to them use c() or vector(mode, length).

cvec <- c()
cvec

NULL

length(cvec)

[1] 0

typeof(cvec)

[1] "NULL"

16

vvec <- vector("character", length = 4)
length(vvec)

[1] 4

typeof(vvec)

[1] "character"

vvec

[1] "" "" "" ""

Subsetting

Access elements of a vector x using x[]. You can put numeric values into the square brackets
to extract the requested positions. A negative (-) can eliminate the requested positions. Note
that R vectors start at position 1.

x <- c(6, 2, 1, 0, NA)
x[3]

[1] 1

x[3:5]

[1] 1 0 NA

x[c(1, 3, 5)]

[1] 6 1 NA

x[-4]

[1] 6 2 1 NA

17

x[-(2:4)]

[1] 6 NA

x[x > 1]

[1] 6 2 NA

The last uses a logical statement that generates a series of logical values and drops any FALSE
entries.

x > 1

[1] TRUE TRUE FALSE FALSE NA

Lists

Lists provide a more flexible data structure which can hold elements of multiple types, including
other vectors. This can be useful for bringing together multiple object types into a single
place.

Lists are R’s most flexible object structure.

x <- list(c(3, 4, 5), c("a", "b"), head(lme4::InstEval))
x

[[1]]
[1] 3 4 5

[[2]]
[1] "a" "b"

[[3]]
s d studage lectage service dept y

1 1 1002 2 2 0 2 5
2 1 1050 2 1 1 6 2
3 1 1582 2 2 0 2 5
4 1 2050 2 2 1 3 3
5 2 115 2 1 0 5 2
6 2 756 2 1 0 5 4

18

The length of a list is the number of elements inside a list, not the length of the elements
themselves.

length(x)

[1] 3

You can obtain information about the elements within the list via the sapply function:

sapply(x, typeof)

[1] "double" "character" "list"

We will talk more about the “apply” family of functions at a later point.

Subsetting lists

Lists can be subset via [] as with vectors, or with the double brackets, [[]].

A single bracket returns another list:

x[1]

[[1]]
[1] 3 4 5

length(x[1])

[1] 1

A double bracket returns the object inside the list

x[[1]]

[1] 3 4 5

19

length(x[[1]])

[1] 3

You can stack the subsetting brackets to pull individual items out of an object inside a list:

x[[1]][3:4]

[1] 5 NA

Attributes

Attributes are metadata associated with a vector.

Some of the most important and commonly used attributes we will learn about are:

• names
• class
• dim

Each of these can be accessed and set using functions of the same name.

Names

There are a few ways to create a vector with names.

assign with names()
x <- 1:3
names(x) <- c("Uno", "Dos", "Tres")
x

Uno Dos Tres
1 2 3

quoted names
x <- c("Uno" = 1, "Dos" = 2, "Tres" = 3)
x

Uno Dos Tres
1 2 3

20

bare names - names cannot contain spaces or most special characters
x <- c(Uno = 1, Dos = 2, Tres = 3)
x

Uno Dos Tres
1 2 3

names(x)

[1] "Uno" "Dos" "Tres"

class

The class of an object plays an important role in R’s S3 object oriented system and determines
how an object is treated by various functions.

The class of a vector is generally the same as its mode or type.

class(FALSE)

[1] "logical"

class(0L)

[1] "integer"

class(1)

[1] "numeric"

class("Two")

[1] "character"

class(list())

21

[1] "list"

Note the difference after we change the class of x.

x

Uno Dos Tres
1 2 3

class(x) <- "character"
x

Uno Dos Tres
"1" "2" "3"

It’s generally better to use explicit conversion functions such as as.character() to change
an object’s class as simplifying modifying the attribute will not guarantee the object is a valid
member of that class.

dim

We use dim() to access or set the dimensions of an object. Three special classes where
dimensions matter are matrix, array, and data.frame. We will examine just the first two
here.

Both matrices and arrays are really just long vectors with this additional dim attribute.

Matrix class
x <- matrix(1:10, nrow = 5, ncol = 2)
dim(x)

[1] 5 2

class(x)

[1] "matrix" "array"

22

dim(x) = c(2, 5)
x

[,1] [,2] [,3] [,4] [,5]
[1,] 1 3 5 7 9
[2,] 2 4 6 8 10

The above demonstrates that R matrices are stored in column-major order. The matrix class
is the two-dimensional special cases of the array class.

dim(x) <- c(5, 1, 2)
class(x)

[1] "array"

x

, , 1

[,1]
[1,] 1
[2,] 2
[3,] 3
[4,] 4
[5,] 5

, , 2

[,1]
[1,] 6
[2,] 7
[3,] 8
[4,] 9
[5,] 10

dim(x) <- c(5, 2, 1)
x

23

, , 1

[,1] [,2]
[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10

class(x)

[1] "array"

Arbitrary attributes

See a list of all attributes associated with a vector using attributes(). Access and assign
specific attributes using attr().

Assign an a new attribute color
attr(x, "color") <- "green"
attributes(x)

$dim
[1] 5 2 1

$color
[1] "green"

class(attributes(x))

[1] "list"

Access or assign specific attributes
attr(x, "dim")

[1] 5 2 1

24

attr(x, "dim") <- c(5, 2)
class(x)

[1] "matrix" "array"

x

[,1] [,2]
[1,] 1 6
[2,] 2 7
[3,] 3 8
[4,] 4 9
[5,] 5 10
attr(,"color")
[1] "green"

Assign NULL to remove attributes
attr(x, "color") <- NULL
attributes(x)

$dim
[1] 5 2

The data.frame class

The data.frame class in R is a list whose elements (columns) all have the same length. This
provide a major benefit over a matrix, as each object in the list can have it’s own type. In
other words, while a matrix must have all entries as numeric, a data.frame can have a numeric
column next to a character column.

A data.frame has attributes names with elements of the list constituting its columns, row.names
with values uniquely identifying each row, and also has class data.frame.

Construct a new data.frame using data.frame(). Here is an example.

df = data.frame(id = 1:10,
group = sample(0:1, 10, replace = TRUE),
var1 = rnorm(10),
var2 = seq(0, 1, length.out = 10),

25

var3 = rep(c("a", "b"), each = 5))

names(df)

[1] "id" "group" "var1" "var2" "var3"

dim(df)

[1] 10 5

length(df)

[1] 5

nrow(df)

[1] 10

We can access the values of a data frame both like a list:

df$id # This is the most common way of accessing columns in a data.frame

[1] 1 2 3 4 5 6 7 8 9 10

df[["var3"]]

[1] "a" "a" "a" "a" "a" "b" "b" "b" "b" "b"

or like a matrix:

df[1:5,]

id group var1 var2 var3
1 1 0 -0.8204684 0.0000000 a
2 2 1 0.4874291 0.1111111 a
3 3 0 0.7383247 0.2222222 a
4 4 0 0.5757814 0.3333333 a
5 5 1 -0.3053884 0.4444444 a

26

df[, "var2"]

[1] 0.0000000 0.1111111 0.2222222 0.3333333 0.4444444 0.5555556 0.6666667
[8] 0.7777778 0.8888889 1.0000000

This works because the subset operator [has behavior that depends on the class of the object
being subset.

Logicals

R has three reserved words of type ‘logical’:

typeof(TRUE)

[1] "logical"

typeof(FALSE)

[1] "logical"

typeof(NA)

[1] "logical"

TRUE == T

[1] TRUE

FALSE == F

[1] TRUE

While T and F are equivalent to TRUE and FALSE, you should never use T or F. The primary
reason being that you can name variables T or F, but not TRUE or FALSE:

27

T <- 2
x <- 14:17
x[c(T, T, T, F)]

[1] 15 15 15

x[c(TRUE, TRUE, TRUE, FALSE)]

[1] 14 15 16

TRUE <- 3

Error in TRUE <- 3: invalid (do_set) left-hand side to assignment

Boolean comparisons

Boolean operators are useful for generating values conditionally on other values. Here are the
basics:

Operator Meaning
== equal
!= not equal
>, >= greater than (or equal to)
<, <= less than (or equal to)
& vectorized AND
| vectorized OR
&& scalar AND
|| scalar OR
! negation (!TRUE == FALSE and !FALSE == TRUE)
any() are ANY of the elements true
all() are ALL of the elements true

Logicals are created by Boolean comparisons:

2*3 == 6 # test equality with ==

[1] TRUE

28

2+2 != 5 # use != for 'not equal'

[1] TRUE

sqrt(70) > 8 # comparison operators: >, >=, <, <=

[1] TRUE

sqrt(64) >= 8

[1] TRUE

!(2 == 3) # Use not to negate or 'flip' a logical - don't forget PEMBAS

[1] TRUE

Comparison operators are vectorized:

1:10 > 5

[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

You can combine operators using “and” (&) or “or” (|):

2 + 2 == 4 | 2 + 2 == 5 # An or statement asks if either statement is true

[1] TRUE

2 + 2 == 4 & 2 + 2 == 5 # And requires both to be true

[1] FALSE

“and” and “or” are vectorized:

29

c(TRUE, FALSE) | c(FALSE, FALSE)

[1] TRUE FALSE

The double version of and (&&) and (||) will throw an error if you attempt to use it with a
vector:

c(TRUE, FALSE) || c(FALSE, FALSE)

Error in c(TRUE, FALSE) || c(FALSE, FALSE): 'length = 2' in coercion to 'logical(1)'

If both sides of the statement have length 1, & and && (and | and ||) function identically.

It is recommended to use && and || when you want to ensure that the objects passed into the
conditional are length 1. (Note that earlier versions of R did not produce errors in this case,
yielding undesired results. Older documents you may find may discuss the distinction between
the single and double versions differently.)

Use any or all to efficiently check for the presence of any TRUE or FALSE.

any(c(TRUE, FALSE, FALSE))

[1] TRUE

all(c(TRUE, FALSE, FALSE))

[1] FALSE

na.rm argument

Many functions take an optional na.rm argument which determines whether NA is ignored
during the functions execution.

all(c(TRUE, NA))

[1] NA

30

all(c(TRUE, NA), na.rm = TRUE)

[1] TRUE

This also applies to NAs in numerical objects:

mean(c(2, 5, 7, NA, 4))

[1] NA

mean(c(2, 5, 7, NA, 4), na.rm = TRUE)

[1] 4.5

While na.rm is the most common version of this, sometimes you’ll see a different argument
with a similar functionality, for example:

table(c(2, 4, 5, NA, 6))

2 4 5 6
1 1 1 1

table(c(2, 4, 5, NA, 6), useNA = "always")

2 4 5 6 <NA>
1 1 1 1 1

table(c(2, 4, 5, NA, 6), useNA = "ifany")

2 4 5 6 <NA>
1 1 1 1 1

31

table(c(2, 4, 5, 6), useNA = "always")

2 4 5 6 <NA>
1 1 1 1 0

table(c(2, 4, 5, 6), useNA = "ifany")

2 4 5 6
1 1 1 1

Finally, modeling commands (such as lm for linear regression models) often take an na.action
argument, which takes in one of:

• na.omit, the default, drop any observations with NA
• na.fail, if there’s an NA in the data passed into the model, produce an error
• na.pass, do nothing special to the data, which may or may not lead to an error or

unexpected results from the model.

Using which

The which() function returns the elements of a logical vector that return true:

which((1:5)^2 > 10)

[1] 4 5

A combination of which and logicals can be used to subset data frames:

head(mtcars)

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

32

mtcars[which(mtcars$mpg>30),]

mpg cyl disp hp drat wt qsec vs am gear carb
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2

Functions

Functions in R operate as name(arguments) - a name of a function, and a comma-separated
list of arguments. Functions are simply collections of commands that do something. Functions
arguments can be used to specify which objects to operate on and what values of parameters
are used. You can use help(func) to see what a function is used for and what arguments it
expects, i.e. help(mean).

Arguments

Functions will often have multiple arguments. Some arguments have default values, others do
not. All arguments without default values must be passed to a function. Arguments can be
passed by name or position. For instance,

x <- runif(n = 5, min = 0, max = 1)
y <- runif(5, 0, 1)
z <- runif(5)
round(cbind(x, y, z), 1)

x y z
[1,] 0.5 0.7 0.8
[2,] 0.6 0.8 0.6
[3,] 0.5 0.1 0.8
[4,] 0.2 0.7 0.6
[5,] 0.8 0.4 0.5

all generate 5 numbers from a Uniform(0,1) distribution.

Arguments passed by name need not be in order:

w <- runif(min = 0, max = 1, n = 5)

33

round(rbind(x, y, z, w = w), 1)

[,1] [,2] [,3] [,4] [,5]
x 0.5 0.6 0.5 0.2 0.8
y 0.7 0.8 0.1 0.7 0.4
z 0.8 0.6 0.8 0.6 0.5
w 0.8 0.0 0.5 0.7 0.7

General style advice is to: 1. Pass “common” arguments (no more than 2-3) by position and
do not re-order them. 2. Once you pass an argument by name, all further arguments to the
right should also be by name

Good style
runif(5, 0, 1)

[1] 0.47761962 0.86120948 0.43809711 0.24479728 0.07067905

runif(5, min = 0, max = 1)

[1] 0.09946616 0.31627171 0.51863426 0.66200508 0.40683019

Bad style
runif(n = 5, min = 0, 1)

[1] 0.9128759 0.2936034 0.4590657 0.3323947 0.6508705

runif(min = 0, max = 1, n = 5) # despite it's use above

[1] 0.25801678 0.47854525 0.76631067 0.08424691 0.87532133

This becomes more important with commands such as lm for linear regression fits which take
in 13 arguments, of which arguably 2 are common.

34

The ... argument

Some functions include an optional ... argument. This is a special argument that accepts
any number of arguments with any names (not conflicting with established names). This is
used for two purposes:

• A function that takes in an arbitary number of objects, e.g. sum (see help(sum)).
• To pass additional arguments to a lower-level function. We’ll see examples of this usage

with the apply family of functions in a future set of notes.

In the first case, objects passed into ... may be named. In the second case, objects must be
named for the lower-level functions to identify them.

Writing Functions

You can create your own functions in R. Use functions for tasks that you repeat often in order
to make your scripts more easily readable and modifiable. A good rule of thumb is never to
copy and paste more than twice; use a function instead. It can also be a good practice to use
functions to break complex processes into parts, especially if these parts are used with control
flow statements such as loops or conditionals.

function to compute z-scores
zScore1 <- function(x) {
#inputs: x - a numeric vector
#outputs: the z-scores for x
xbar <- mean(x)
s <- sd(x)
z <- (x - xbar) / s
return(z)

}

The return statement is not strictly necessary, but can make complex functions more readable.
If excluded, the result of the last line is returned.

x = rnorm(10, 3, 1) ## generate some normally distributed values
round(cbind(x = x, z = zScore1(x)), 1)

x z
[1,] 2.6 -0.9
[2,] 2.6 -0.8
[3,] 2.9 -0.3
[4,] 4.1 1.6
[5,] 3.8 1.1

35

[6,] 2.8 -0.5
[7,] 2.7 -0.6
[8,] 3.7 1.0
[9,] 3.6 0.7
[10,] 2.3 -1.3

Default parameters

We can set default values for parameters using the construction parameter = xx in the func-
tion definition.

function to compute z-scores
zScore2 = function(x, na.rm = TRUE){
xbar <- mean(x, na.rm = na.rm)
s <- sd(x, na.rm = na.rm)
(x - xbar) / s

}

x = c(NA, x, NA)
round(cbind(x,

z1 = zScore1(x),
z2 = zScore2(x)

, z2FALSE = zScore2(x, FALSE)), 1)

x z1 z2 z2FALSE
[1,] NA NA NA NA
[2,] 2.6 NA -0.9 NA
[3,] 2.6 NA -0.8 NA
[4,] 2.9 NA -0.3 NA
[5,] 4.1 NA 1.6 NA
[6,] 3.8 NA 1.1 NA
[7,] 2.8 NA -0.5 NA
[8,] 2.7 NA -0.6 NA
[9,] 3.7 NA 1.0 NA
[10,] 3.6 NA 0.7 NA
[11,] 2.3 NA -1.3 NA
[12,] NA NA NA NA

Documenting functions

36

You’ll see above in zScore that we introduced two comments: #inputs and #outputs. These
are not anything formal, but they do represent good practice - document what goes into a
function, and document what comes out of a function.

For more formal documentation, the roxygen2 package comes in handy. It is primarily used
during the creation of custom R packages (which we will cover later) but provides a good
framework for documenting any function.

You can manually write roxygen documentation (any comments starting with #' immedi-
ately preceeding a function defintion) or use the Code -> Insert Roxygen Skeleton option in
RStudio.

#' Function to create z-scores
#'
#' @param x a numeric vector
#' @return The z-score for `x`
zScore1 <- function(x) {
xbar <- mean(x)
s <- sd(x)
z <- (x - xbar) / s
return(z)

}

The @keywords are called “tags”. Each argument should have a corresponding @param tag and
there should be a @return tag.Any lines above these can be used to further describe what’s
going on in the function.

The skeleton created by RStudio has an @export; this is only relevant during package creation
and can be ignored (or deleted) when working interactively. It also has an @examples which
you can use if needed.

Formally, during package creation, these roxygen comments are used to generate the docu-
mentation found when using help(). You can see a full list of tags here but almost all the
rest are only relevant during package creation.

Sanitizing input

It’s usually helpful to make sure the input to R functions are what you expect.

#' Function to create z-scores
#'
#' @param x a numeric vector
#' @return The z-score for `x`
zScore2 <- function(x) {

37

https://roxygen2.r-lib.org/reference/index.html

if (!is.numeric(x)) {
stop("x must be numeric")

}

xbar <- mean(x)
s <- sd(x)
z <- (x - xbar) / s
return(z)

}

zScore1(c("a", "b"))

Warning in mean.default(x): argument is not numeric or logical: returning NA

Warning in var(if (is.vector(x) || is.factor(x)) x else as.double(x), na.rm =
na.rm): NAs introduced by coercion

Error in x - xbar: non-numeric argument to binary operator

zScore2(c("a", "b"))

Error in zScore2(c("a", "b")): x must be numeric

While both error appropriarely, the second provides a much more useful output. You could of
course do something more useful than creating an error.

#' Function to create z-scores
#'
#' @param x a numeric vector
#' @return The z-score for `x`
zScore3 <- function(x) {
if (!is.numeric(x)) {

warning("Input must be numeric. Attempting to convert to numeric...")
x <- as.numeric(x)
if (all(is.na(x))) {
stop("Conversion to numeric failed")

}
}

38

xbar <- mean(x)
s <- sd(x)
z <- (x - xbar) / s
return(z)

}

zScore3(c("1", "2"))

Warning in zScore3(c("1", "2")): Input must be numeric. Attempting to convert
to numeric...

[1] -0.7071068 0.7071068

zScore3(c("a", "b"))

Warning in zScore3(c("a", "b")): Input must be numeric. Attempting to convert
to numeric...

Warning in zScore3(c("a", "b")): NAs introduced by coercion

Error in zScore3(c("a", "b")): Conversion to numeric failed

Scope

Scoping refers to how R looks up the value associated with an object referred to by name.
There are two types of scoping – lexical and dynamic – but we will concern ourselves only
with lexical scoping here. There are four keys to understanding scoping:

• environments
• name masking
• variables vs functions
• dynamic lookup and lazy evaluation.

An environment can be thought of as context in which a name for an object makes sense. Each
time a function is called, it generates a new environment for the computation.

Consider the following examples:

rm(list = ls())
x <- 3

39

f1 <- function(){
print(paste("First call to x:", x))
x <- 5
print(paste("Second call to x:", x))

}
f1()

[1] "First call to x: 3"
[1] "Second call to x: 5"

x

[1] 3

Name masking refers to where and in what order R looks for object names. When we call f1
above, R first looks in the current environment which happens to be the global environment.
The first printfinds the x in the Global Environment and prints it. Next, we redefine x and
when it looks for it in the second print, finds that x as it exists within the local environment.

However, despite us changing x inside f1, after we execute the function, x in the Global
Environment remains unchanged.

When an environment is created, it gets nested within the current environment referred to as
the “parent environment”. When an object is referenced we first look in the current environ-
ment and move recursively up through parent environments until we find a value bound to
that name.

R also uses dynamic lookup, meaning values are searched for when a function is called, not
when it is created.

Finally, lazy evaluation means R only evaluates function arguments if and when they are
actually used.

f2 = function(x){
#x
45

}

f2(x=stop("Let's pass an error."))

[1] 45

Uncomment x to see what happens if we evaluate it.

40

<- vs = for arguments

Consider the following:

rm(list = ls())
mean(x = c(5, 2))

[1] 3.5

x

Error in eval(expr, envir, enclos): object 'x' not found

Now, look at the version where we use <- instead:

rm(list = ls())
mean(x <- c(5, 2))

[1] 3.5

x

[1] 5 2

Unlike assigning values to objects, where in almost all situations = and <- are equivalent, when
it comes to arguments, = assigns the values to the object in the function’s scope whereas <-
assigns it in the calling environment.

Creating side effects

In general, functions should take in any objects they need as arguments, and return any objects
that the need to (whether they are newly created or modified versions). Lists can be handy
here to return several different types of objects.

There may be extremely limited situations in which you do want a side effect - usually I use
this only when debugging an issue. The double arrow, <<-, may be used in this case. Let’s
replicate f1 from above, but use the double arrow.

41

rm(list = ls())
x <- 3
f1b <- function(){
print(paste("First call to x:", x))
x <<- 5
print(paste("Second call to x:", x))

}
f1b()

[1] "First call to x: 3"
[1] "Second call to x: 5"

x

[1] 5

Note that x now has the value of 5 outside of the function. The double arrow assigns in the
so-called “parent environment”, the one that contains the current environment. So when we
call x <<- 5 inside the function, the x outside the function gets changed.

Resources

Read more about functions here

You can also read much more about functions in Chapter 7 of “The Art of R Programming.”

Control Statements

for loops

Here is the syntax for a basic for loop in R

for (i in 1:10) {
cat(i, "\n")

}

1
2
3
4

42

https://adv-r.hadley.nz/functions.html

5
6
7
8
9
10

Note that the loop and the iterator are evaluated within the global environment.

for (var in names(mtcars)) {
cat(sprintf("average %s = %4.3f", var, mean(mtcars[, var])), "\n")

}

average mpg = 20.091
average cyl = 6.188
average disp = 230.722
average hp = 146.688
average drat = 3.597
average wt = 3.217
average qsec = 17.849
average vs = 0.438
average am = 0.406
average gear = 3.688
average carb = 2.812

var

[1] "carb"

while

A while statement can be useful when you aren’t sure how many iterations are needed. Here
is an example that takes a random walk and terminates if the value is more than 10 units from
0.

max_iter <- 1e3 # always limit the total iterations allowed
val <- vector(mode = "numeric", length = max_iter)
val[1] <- rnorm(1) ## initialize

k <- 1

43

while (abs(val[k]) < 10 && k <= max_iter) {
val[k+1] <- val[k] + rnorm(1)
k <- k + 1

}
val <- val[1:(k-1)]

plot(val, type="l")

0 10 20 30 40 50

0
2

4
6

8

Index

va
l

Note the generation of an empty val vector of appropriate length, instead of starting with a
scalar and using c(val, val[k] + rnorm(1)). It is very inefficient due to copy on modify to
expand the length of a vector (or the rows/columns of a matrix/data.frame) in a loop. Instead,
as here, generate a complete blank object first, and fill it in as you go.

key words

The following key words are useful within loops:

• break - break out of the currently executing loop
• next - move to the next iteration immediately, without executing the rest of this iteration

(continue in other languages such as C++)

Here is an example using next:

44

for (i in 1:10) {
if (i %% 2 == 0) {

next
}
cat(i, "\n")

}

1
3
5
7
9

Here is an example using break:

x <- vector(mode = "numeric", length = 1e1)
for (i in 1:1e1) {
if (i %% 3 == 0) {

break
}
x[i] <- i

}
print(x[1:10])

[1] 1 2 0 0 0 0 0 0 0 0

Conditionals

In programming, we often need to execute a piece of code only if some condition is true. Here
are some of the R tools for doing this.

if statements

The workhorse for conditional execution in R is the if statement.

if (TRUE) {
print("do something if true")

}

45

[1] "do something if true"

Occasionally, with short statements it can be idiomatic to include the condition on the same
line without the braces:

if (TRUE) print("do something if true")

[1] "do something if true"

It is not recommended to use this as it can be harder to understand while reading the code.

Use an else to control the flow without separately checking the condition’s negation:

if (2 + 2 == 5) {
print("the statement is true")

} else {
print("the statement is false")

}

[1] "the statement is false"

result <- c(4, 5)
report <- ifelse(2 + 2 == result, "true", "false")
report

[1] "true" "false"

As you can see above, there is also a vectorized ifelse() function that can be useful.

For more complex cases, you may want to check multiple conditions:

a <- -1
b <- 1

if (a * b > 0) {
print("Zero is not between a and b")

} else if (a < b) {
smaller <- a
larger <- b

} else {

46

smaller <- b
larger <- a

}

c(smaller, larger)

[1] -1 1

47

	About R
	RStudio

	R Basics
	Objects
	Arithmetic operations
	The R package system
	Input and output
	Vectors
	The data.frame class
	Logicals
	Functions
	Control Statements
	Conditionals

