
Version Control and Git Statistics 506

Version Control

Version control is a structured way of managing changes to files (whether they be written
documents, code, images, or anything else). We’ve all used the most basic form of version
control - when you make a change to a document, you save it. This has an obvious limitation -
if you want to undo a change (not including just hitting “Undo” for the most recent change(s)
while modifying the file), you’re out of luck.

Some of you may have developed your own structure for a more rigid version control: either
manually or automatically creating backups of files, capturing a snapshot of the current state of
the file. This is a massive improvement over no older versions, but still has serious limitations,
such as the need to keep many versions of a file around and hope you don’t accidentally open
an older one.

When people refer to Version Control, they usually mean a more deliberate variation with a
more rigorous systems for storing these file changes. These days, the most common tool for
Version Control is git.

Other Version Control tools

There are many other version controls tools, but most are extremely niche. The only other
two worth mentioning are subversion, usually called “svn”, and mercurial. These were the
dominant Version Control tools prior to git. Some open-source software still relies on them,
but it’s getting more and more rare. There are plenty of resources online explaining the pros
and cons to each system if you’re interested.

git vs GitHub

When most people hear of “git”, they probably think of “GitHub” (if anything). GitHub is
a website that hosts git repositories, but git is agnostic to GitHub - you could host your
repositories on any server. You can also use git entirely locally without any online component,
though that loses one of the primary benefits of a version control system, off-site backups.

1



We will be using GitHub in this class, and will discuss the GitHub client below. This first
section is about git more generally.

git

A git repository holds the files for a given project. In addition, it contains a list of all changes
to the files. Whenever you’re happy with the changes you’ve made to your files, you make
a commit which updates the files in the repository to the version you’re currently working
with, as well as saving the commit as a diff, that is, a list of the changes.

For example, imagine you had this shopping list in your repository:

- apples
- ketchup
- white bread
- eggs

You need to modify this list, so you update it to the following:

- apples
- ketchup
- whole wheat bread
- eggs
- lemons

You now commit this change to the repository. The following two things happen:

1. The repository now stores the updated lists.
2. The repository stores a diff tracking that - lemons was added at the end of the file, and

that white was removed and whole wheat added on line 4.

This diff is called a “commit”.

Note that the previous version of the file is not saved. This makes git much more efficient -
if you had a 10,000 line file and change one word, you don’t need to save two copies of that
10,000 files, you save one copy and a 1-line diff. You can restore any previous versions of the
file by asking git to replay the changes up to that point.

Commit messages

When making a commit, you must provide a message describing the changes you’ve made.
These messages should be concise but descriptive. Poorly written messages make it very
difficult to browse the history of the commits.

2



Local versus remote repositories

Git is a decentralized system. There can be many copies of a repository and they can pass
commits amongst themselves such that none is the canonical source. Users often declare a
single repository (most commonly, the one hosted on GitHub) as the canonical version, but
the git software does not enforce this.

The typical workflow with an existing repository that you’ve not interacted with would look
like:

1. Clone a remote repository to your local machine so that you can work on it.
2. Modify the files as desired.
3. Add changes to staging - often you may want to commit all changes, but a lot of the

time you only want to commit some changes right now and keep working on other.
4. Commit the changes to your local repository.
5. Push the new changes from your local repository to the remote repository.

This workflow would like very slightly different if you are returning to work on a repository
you’ve worked on in the past:

1. Pull from the remote repository to your local repository to make sure your local repos-
itory is up-to-date.

2. Modify
3. Add
4. Commit
5. Push

Here is a visualization of moving between the various states:

3



(Source: https://sselab.de/lab2/public/wiki/sselab/index.php?title=Git but there are many
other similar images online).

This includes several moves which are not discussed.

Some people recommend using Fetch and Merge instead of Pull, e.g. https://longair.net/
blog/2009/04/16/git-fetch-and-merge/comment-page-2/

Managing conflicts

The real magic in git comes when a file gets modified differently on two different copies of
the repository. Imagine you have some remote repository, and you create a local clone. You
commit some changes, but do not push it back to the remote.

Next, you go to another computer, clone the remote repository (which doesn’t include the
commits you made locally on the first computer), make different changes, commit and push.

Finally, you return to the first computer and push the changes you’d committed a while ago.

What’s going to happen? The remote repository now differs from your local repository. Git
will first try and handle this automatically - if the changes on the two computers are on
different files, or at least different locations of the same file, it will just automatically merge
these two commits and the remote repository will contain all the changes.

4

https://sselab.de/lab2/public/wiki/sselab/index.php?title=Git
https://longair.net/blog/2009/04/16/git-fetch-and-merge/comment-page-2/
https://longair.net/blog/2009/04/16/git-fetch-and-merge/comment-page-2/


On the other hand, if you are changing the same part of the same file, it will stop the merge,
and require you to fix it.

This comes in extremely handy when collaborating with other people. If you’re all working
on the same file, you can make your changes without worrying if others are making changes
at the same time.

git software: GUI vs command line

Git is a command line tool - it does not require using a graphical user interface. However,
many new users will feel more comfortable using a GUI. GitHub Desktop (discussed below) is
popular, and there are third-party clients like GitKraken.

In this class, we will primarily be interacting with git through RStudio’s interface.

Advanced topics

Git can do many more complex things. Here’s a non-exhaustive list of a few things that you
can look up online if you want to look into.

Branches

If you think of the list of all your commits as series of nodes with arrows between them
(a DAG), you could imagine the commits splitting into two paths. These paths are called
branches and they allow you to modify your files and commit them without disturbing the
primary code. Each branch has a name; the primary code is called the “main” branch. It was
previously called the “master” branch, so you may see either if you look at online resources or
at older git repositories.

Rebasing

Say you want to remove a commit you made a while ago, without removing all the commits
between then and now. Rebasing is a way of removing a single commit and then re-applying
all other commits in order.

Blame

In git parlance, “blame” for a line of code refers to the last commit which modified it. This
can be useful for seeing the context in which the code as modified.

5

https://desktop.github.com
https://www.gitkraken.com


Additional resources

Read more about version control and git here. In particular, you could read:

• What is version control?
• What is git?
• All the material under Getting Started.

6

https://atlassian.com/git/tutorials
https://atlassian.com/git/tutorials/what-is-version-control
https://atlassian.com/git/tutorials/what-is-git/
https://atlassian.com/git/tutorials/setting-up-a-repository

	Version Control
	Other Version Control tools

	git vs GitHub
	git
	Commit messages
	Local versus remote repositories
	Managing conflicts

	git software: GUI vs command line
	Advanced topics
	Branches
	Rebasing
	Blame

	Additional resources

