
Vectorization and Monte Carlo Estimation
Statistics 506

Vectorization

Vectorization is a programming technique used to avoid explicit loops in order to improve the
performance and readability of code.

In its simplest form, vectorization means using built in vectorized functions. That is, rather
than looping over a vector to compute its sum, we instead use the vectorized function sum():

Not vectorized
x <- 0:500

s0 <- 0
for (i in seq_along(x)) {
s0 <- s0 + x[i]

}

Vectorized
s1 <- sum(x)

Do we get the same sum?
s0 == s1

[1] TRUE

The vectorized code is not only easier to type and read but is also faster.

Library for timing comparison
library(microbenchmark)

x <- 1:10000

1

microbenchmark(a = sum(x),
b = {
s0 <- 0
for (i in seq_along(x)) {

s0 <- s0 + x[i]
}

})

Unit: nanoseconds
expr min lq mean median uq max neval

a 41 41 558.83 82 123 10127 100
b 779697 795687 850271.12 810324 887978 1721385 100

The reason vectorization is faster has to do with the fact that R is an interpreted language
and not a compiled one. The difference in time seen here is primarily due to two factors:

1. R needs to repeatedly interpret what your code means for each iteration of the loop;

2. each iteration of the for loop requires indexing into x using the subset function [.

The vectorized sum() function also loops over and repeatedly indexes x but it does so in the
compiled language C and has been optimized to take advantage of the fact that the elements
of a vector are contiguous in memory.

Writing efficient R code requires an understanding of these factors and how vectorization helps
to overcome them.

The apply family of functions

Before we get any deeper into vectorization, there’s a family of functions - apply, lapply,
sapply, vapply, tapply, mapply - which commonly get referred to as vectorized. Let’s explore
what they do, then we’ll discuss how they aren’t actually vectorized.

apply

apply operates on matrices. It performs a function on each row or column of the matrix. The
second argument, MARGIN, defines what dimension it operates on.

2

mat <- matrix(sample(1:100, 24), ncol = 6)
apply(mat, 1, max)

[1] 89 100 93 98

apply(mat, 2, min)

[1] 9 44 14 1 3 10

You can also define your own anonymous function.

Obtain the second lowest value in each column
apply(mat, 2, function(x) {
z <- sort(x)
return(z[2])

})

[1] 48 57 29 19 28 27

It also works for higher dimensional arrays.

dim(mat) <- c(2, 4, 3)
mat

, , 1

[,1] [,2] [,3] [,4]
[1,] 9 52 57 82
[2,] 48 98 44 92

, , 2

[,1] [,2] [,3] [,4]
[1,] 89 29 1 19
[2,] 34 14 100 31

, , 3

3

[,1] [,2] [,3] [,4]
[1,] 62 3 27 93
[2,] 74 28 10 70

apply(mat, 1, max) # row

[1] 93 100

apply(mat, 2, max) # column

[1] 89 98 100 93

apply(mat, 3, max) # 3rd dimension

[1] 98 100 93

apply(mat, c(1, 2), max) # row and column

[,1] [,2] [,3] [,4]
[1,] 89 52 57 93
[2,] 74 98 100 92

Finally, you can pass additional arguments into the function.

mat <- matrix(c(5, 2, 3, NA), nrow = 2)
apply(mat, 1, sum)

[1] 8 NA

apply(mat, 1, sum, na.rm = TRUE)

[1] 8 2

Technically these are placed inside the ... argument of apply (see help(apply)).

4

lapply, sapply, and vapply

These three functions operate the same, they differ only on how they return their result. Each
operates on a list, applying a function to each element.

li <- list(5, letters[1:4], head(mtcars))
length(li)

[1] 3

lapply(li, length)

[[1]]
[1] 1

[[2]]
[1] 4

[[3]]
[1] 11

Again, we can use anonymous functions.

lapply(li, function(x) {
if (is.numeric(x)) {

return(mean(x))
} else {

return("Not numeric")
}

})

[[1]]
[1] 5

[[2]]
[1] "Not numeric"

[[3]]
[1] "Not numeric"

5

sapply attempts to simplify the result.

lapply(li, length)

[[1]]
[1] 1

[[2]]
[1] 4

[[3]]
[1] 11

sapply(li, length)

[1] 1 4 11

Since the list returned from lapply are all scalars, it placed them in a single vector.

lapply(list(mtcars, quakes), dim)

[[1]]
[1] 32 11

[[2]]
[1] 1000 5

sapply(list(mtcars, quakes), dim)

[,1] [,2]
[1,] 32 1000
[2,] 11 5

vapply again operates the same, but requires you to define what the output will be. It does
so by taking in an “example” of the output.

vapply(li, is.numeric, logical(1))

[1] TRUE FALSE FALSE

6

vapply(li, is.numeric, TRUE)

[1] TRUE FALSE FALSE

vapply(list(mtcars, quakes), nrow, integer(1))

[1] 32 1000

vapply(list(mtcars, quakes), nrow, 458392)

[1] 32 1000

Each of these has their own benefits:

• vapply is the fastest.
• sapply is the easiest to write and handle.
• lapply is the most flexible in terms of the results of the function.

mapply

A limitation of apply and lapply/sapply/vapply is that the funtions passed into them can
only take in a single argument - a single row/column, or a single element of a list. mapply
allows the function passed to take any number of entries.

x <- c(6, 2, 1, 4)
y <- c(9, 6, 0, -2)
z <- c(7, 4, 9, 1)
mapply(max, x, y, z)

[1] 9 6 9 4

Note that the FUN argument of mapply is the first argument, unlike previous functions.

tapply

tapply is used to execute a function to the value belonging to the similar group.

7

head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

tapply(iris$Sepal.Length, iris$Species, mean)

setosa versicolor virginica
5.006 5.936 6.588

Are the apply family of functions vectorized?

The R Inferno refers to the apply family of functions as “loop-hiding” - they contain implicit
loops. apply actually has a loop in its R code. The others do drop down to C for their loops,
however, at each step in the C loop, they evaluate the R function passed in. This is what
makes them not vectorized, as a true vectorized function performs its loop in C and uses C
compiled functions inside that loop.

Instead their main benefit is making code easier to write. They are shorter, more read-able,
and less error-prone than loops. But they are not vectorized.

Writing vectorized functions

Consider the following small function: Given a number, it returns the negative version of it
(e.g. the negative absolute value):

#' Generate the negative absolute value of an input
#' @param x a numeric value
#' @return the negative absolute value
negabs <- function(x) {
if (x > 0) {

return(-x)
} else {

return(x)

8

http://www.burns-stat.com/pages/Tutor/R_inferno.pdf

}
}

Putting aside the obvious inefficiency of such code, it also is not vectorized:

negabs(3)

[1] -3

negabs(-2)

[1] -2

negabs(c(5, 2, -1, 7))

Error in if (x > 0) {: the condition has length > 1

A naive way to “vectorize” would be

#' Generate the negative absolute value of an input
#'
#' This version is naively vectorized
#' @param x a numeric value
#' @return the negative absolute value
negabs2 <- function(x) {
for (i in seq_along(x)) {

if (x[i] > 0) {
x[i] <- -x[i]

}
}
return(x)

}

negabs2(3)

[1] -3

9

negabs2(-2)

[1] -2

negabs2(c(5, 2, -1, 7))

[1] -5 -2 -1 -7

While this is now “vectorized” in the sense that it takes in a vector and operates on each
element, it is in no way efficient. Typically the best way to vectorize your custom functions is
to in turn use existing vectorized functions.

#' A fully vectorized function to generate the negative absolute
#' value of an input.
#'
#' @param x a numeric value
#' @return the negative absolute value
negabs3 <- function(x) {
return(-abs(x))

}
negabs2(3)

[1] -3

negabs2(-2)

[1] -2

negabs2(c(5, 2, -1, 7))

[1] -5 -2 -1 -7

x <- -5000:5000
microbenchmark(negabs2(x), negabs3(x))

10

Unit: microseconds
expr min lq mean median uq max neval

negabs2(x) 286.631 292.1045 301.9293 300.653 309.3040 340.874 100
negabs3(x) 8.405 10.7625 18.0318 11.644 12.5665 582.692 100

If there are no existing vectorized functions to do what you need to do and a loop is the only
thing feasible, you could consider writing your loop in C. The Rcpp package enables you to
do this fairly easily, and there are other similar packages out there.

Monte Carlo Estimation

Vectorization can be particularly useful in Monte Carlo studies where we might otherwise be
inclined to use explicit loops. We will look at some examples after an introduction to Monte
Carlo estimates.

In statistics and data science we are often interested in computing expectations (means) of
random outcomes of various types. When analytic expectations are unavailable or cumbersome
to compute, it can be useful to obtain Monte Carlo approximations by simulating a random
process and then directly averaging the values of interest.

This works because the sample average is generally a good estimate of the corresponding
expectation:

𝜃𝑛 ∶=
𝑛

∑
𝑖=1

𝑋𝑖
𝑛 →𝑝 𝜃 ∶= 𝐸[𝑋].

𝜃𝑛 →𝑝 𝜃

In fact, assuming our data are independent and identically distributed (iid) from a distribution
with finite variance, we can characterize the rate of convergence of a sample average to its
population counterpart using the central limit theorem (CLT),

√𝑛(𝜃𝑛 − 𝜃) →𝑑 𝑁(0, 𝜎2)

where 𝜎2 = 𝐸[𝑋2] − 𝐸[𝑋]2 is the variance of the underlying distribution from which 𝑋 is
drawn. This can be useful for constructing approximate confidence intervals for the Monte
Carlo error.

11

https://www.rcpp.org

Distribution functions

There are vectorized functions in R for simulating from many common distributions. Here are
a few:

• rnorm() - Normal
• runif() - Uniform
• rt() - the t-distribution
• rexp() - Exponential
• rpois() - Poisson

A few list of built-in distributions are https://stat.ethz.ch/R-manual/R-devel/library/stats/
html/Distributions.html. There are likely packages for any other distributions you may need.

Another useful function in R is sample() for sampling from a finite set of values, i.e. the
discrete uniform distribution or any finite probability mass function.

As an aside, you should be aware that each of the distribution families above have correspond-
ing d*, p*, and q* functions for computing densities, percentiles (CDF), or quantiles (inverse
CDF) for each distribution.

Random Seeds

When we call one of the r* functions to generate random draws from a distribution, R relies
on a pseudo-random number generate to generate from 𝑈(0, 1) and produce the results. Thus
the outcome of these calls depends on the current state of the generator. It is sometimes
desirable to reproduce exactly the same pseudo-random sequence. You can do this by fixing
the random seed using set.seed() which takes an integer argument.

a = runif(1)
b = runif(1)
a == b

[1] FALSE

set.seed(42)
a = runif(1)

set.seed(42)
b = runif(1)

a == b

12

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Distributions.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/Distributions.html

[1] TRUE

While set.seed() is useful in developing code, and when releasing final analyses, do not use it
during your analysis - if your analysis relies on a stochastic process, removing the randomness
removes the benefit of that tool.

Basic Example 1 - Estimating 𝜋

Let’s estimate the value of 𝜋. Consider inscribing the largest possible circle inside a square:

plot(NULL, xlim = c(-1,1), ylim = c(-1,1), asp = 1, xlab = "",
ylab = "")

rect(-1, -1, 1, 1)
plotrix::draw.circle(0, 0, 1)

−2 −1 0 1 2

−
1.

0
0.

0
0.

5
1.

0

The area of the square is 2 ∗ 2 = 4. The area of the circle is 𝜋12 = 𝜋. This means that the
ratio of the area of the circle to the area of the circle is 𝜋

4 . We can therefore draw points from
within the square, and use the ratio found within the circle to estimate 𝜋.

13

#' Estimtes the value of pi by the proportion of points inside a square falling
#' inside a circle inscribed in that square.
#' @param n number of iterations
#' @return estimate of pi
estimate_pi <- function(n) {
xcoord <- runif(n, -1, 1)
ycoord <- runif(n, -1, 1)
in_circle <- sqrt(xcoord^2 + ycoord^2) <= 1
return(4 * sum(in_circle)/n) # estimate of pi

}

estimate_pi(100) # estimate of pi

[1] 3.16

Let’s re-run it with a larger n to see the convergence.

estimate_pi(10000)

[1] 3.1312

We can re-run it several times to look at the distribution of estimates to see the uncertainty
in the Monte Carlo methods:

reps <- 100
n2 <- vector(length = reps)
for (i in seq_len(reps)) {
n2[i] <- estimate_pi(100)

}
n4 <- vector(length = reps)
for (i in seq_len(reps)) {
n4[i] <- estimate_pi(10000)

}
n6 <- vector(length = reps)
for (i in seq_len(reps)) {
n6[i] <- estimate_pi(1000000)

}

14

boxplot(data.frame(n2, n4, n6))
abline(h = pi, col = "red")

n2 n4 n6

2.
8

3.
0

3.
2

3.
4

Basic Example 2 - Estimating percentiles

Let’s estimate percentiles for t-distributions with various degrees of freedom. Mathemati-
cally,

𝜃𝑞 ∶= 𝐹(𝑞) = ℙ(𝑋 ≤ 𝑞) = ∫
𝑞

−∞
𝑓(𝑥)𝑑𝑥 = ∫

∞

−∞
𝕀[𝑥≤𝑞]𝑓(𝑥)𝑑𝑥

where 𝐹(⋅) is the CDF and 𝑓(⋅) the PDF of a given t-distribution.

First, let’s draw a random sample from the 𝑡3 distribution

set.seed(100)
n <- 10000 # Number of samples
df <- 3 # Degrees of freedom
sim <- rt(n, df) # Draw distribution

We’ll look specifically at the critical values for 𝑧, to see what happens if we use a
𝑧-approximation for 𝑡3:

15

quantiles <- c(-1.96, 1.96)

Let’s plot the results, including the empirical distribution and true curve, to make sure things
look OK.

hist(sim, breaks = 200, probability = TRUE, xlim = c(-20, 20))
distribution we drew from
curve(dt(x, df = df), -10, 10, add = TRUE, col = "red")
abline(v = quantiles, col = "red")

Histogram of sim

sim

D
en

si
ty

−20 −10 0 10 20

0.
00

0.
15

0.
30

Finally, we can estimate (𝜃−1.96, 𝜃1.96):

theta_hat = c(sum(sim <= quantiles[1]), sum(sim <= quantiles[2]))/n

In this case, our Monte Carlo estimate of (𝜃−1.96, 𝜃1.96) is (̂𝜃−1.96, ̂𝜃1.96) = (0.0738, 0.9263).
The actual values are (𝜃−1.96, 𝜃1.96) = (0.0724261, 0.9275739).

Advanced Example - Simulation Study for Nominal Confidence Intervals

Let’s investigate the coverage probability of nominal 95% confidence intervals when the data
does not come from a Normal (Gaussian) distribution.

16

We will assume the data come from an exponential distribution with mean one. The strategy
here is to generate many (mcrep) data sets of size n.

For each data vector, we then calculate a nominal 95% confidence interval for the mean and
check whether this interval contains the true value of one.

mcrep <- 10000 # Simulation replications
n <- 30 # Sample size we are studying
sim <- rexp(n * mcrep, # Simulate standard exponential data

rate = 1) # mean = 1/rate
xmat <- matrix(sim, # Reshape to matrix

ncol = mcrep)
mn <- apply(xmat, 2, mean) # Sample mean of each column (replicate)
std <- apply(xmat, 2, sd) # Sample SD of each column (replicate)
se <- std / sqrt(n) # Standard errors of the mean
m <- qt(1 - (1 - .95) / 2,

df = n - 1) # Multiplier for confidence level
lcb <- mn - m * se # lower confidence bounds
ucb <- mn + m * se # upper confidence bounds

Coverage probability is then the proportion of confidence intervals which cover the mean of
1.

cvrg <- sum(lcb < 1 & ucb > 1)/mcrep
cvrg

[1] 0.9271

What should be 95% coverage yields only 92.7%.

Broadcasting

We have previously discussed the need to be careful about R recycling values when performing
arithmetic on arrays with differing dimensions. The formal name for this is broadcasting and
it can be quite useful for vectorization.

Generally, when you perform a simple arithmetic operation (e.g. * or +) on arrays with the
same dimensions the operation is applied point-wise so that (A * B)[i, j] = A[i, j] *
B[i, j]. However, if the objects A and B have different dimensions, then the values can be
broadcast like this:

c(1, 10) + c(2, 2, 6, 6)

17

[1] 3 12 7 16

Note how the value of 1 is added to the first and third entries of the larger vector, and the
value of 10 is added to the second and fourth entry.

If the length of the arrays (“flattened” length, e.g. for a matrix, the total number of entries,
or rows*columns) are not mulitples of each other, broadcasting still works, but the results can
be unexpected, so a warning is given:

c(1, 10) + c(2, 2, 2)

Warning in c(1, 10) + c(2, 2, 2): longer object length is not a multiple of
shorter object length

[1] 3 12 3

The 1 is used for entries 1 and 3, the 10 only for entry 2.

We can take this to higher dimensions for some useful shortcuts. For example:

x <- matrix(c(1, 2, 3, 4, 5, 6), nrow = 2)
x

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

x - c(1, 2)

[,1] [,2] [,3]
[1,] 0 2 4
[2,] 0 2 4

x - c(1, 2, 3)

[,1] [,2] [,3]
[1,] 0 0 3
[2,] 0 3 3

18

Matrices in R (and more generally, arrays) are column-dominant. That is, as the matrix
gets “filled in”, entries go down each column, as opposed to across each row. The broadcasting
operates in the same fashion, down each column. In the second example, broadcasting the
length 2 vector essentially subtracted 1 from the first row, and 2 from the second.

Broadcasting the length 3 vector, while not an error, did not necessarily produce anything
useful.

This is useful for centering each row of a matrix or computing row-wise variances.

y <- matrix(c(4, 1, 6, 2, 9, 4), ncol = 3)
y

[,1] [,2] [,3]
[1,] 4 6 9
[2,] 1 2 4

y - rowMeans(y)

[,1] [,2] [,3]
[1,] -2.333333 -0.3333333 2.666667
[2,] -1.333333 -0.3333333 1.666667

rowSums((y - rowMeans(y))^2) / (dim(y)[2] - 1)

[1] 6.333333 2.333333

We can compare this to direct computation using an implicit loop via the apply function:

apply(y, 1, var)

[1] 6.333333 2.333333

Let’s compare the timing of these two approaches:

reps <- 1000
n <- 30
xmat <- matrix(rnorm(reps * n), nrow = reps)

19

microbenchmark(
apply = apply(xmat, 1, var),
vectorized = rowSums((xmat - rowMeans(xmat))^2) / (dim(xmat)[2] - 1))

Unit: microseconds
expr min lq mean median uq max neval
apply 3742.152 3796.149 4058.73391 3851.3555 3916.812 7415.096 100

vectorized 69.413 70.602 74.21246 71.5245 76.670 90.938 100

Ensure methods are equivalent:
all.equal(apply(xmat, 1, var),

rowSums((xmat - rowMeans(xmat))^2) / (dim(xmat)[2] - 1))

[1] TRUE

Example: Correlation Coefficients

In the next example, we consider the problem of computing the correlation coefficient between
many vectors 𝑥 and a single outcome 𝑦. This can be useful when screening a large set of
potential predictors for a relationship with an outcome of interest 𝑦.
First, we generate data that has n observations, m predictors, and expected correlation r
between each predictor and 𝑦.

n <- 30
m <- 1000
r <- 0.4
y <- rnorm(n)
xmat <- matrix(rep(y, times = m), ncol = m)
Reduce the variance in X by the amount added from correlation with y
xmat <- r * xmat + rnorm(n * m, sd = sqrt(1 - r^2))

Now, we can compute the correlations between each row of xmat and y and compare ap-
proaches.

First, a simple loop, as a baseline speed

First approach, calculate as a loop
mb1 <- microbenchmark(loop = {

20

r1 <- vector(length = m)
for (i in seq_len(m)) {

r1[i] <- cor(xmat[, i], y)
}

})

Next, using apply

mb2 <- microbenchmark(apply = {
r2 <- apply(xmat, 2, function(v) cor(v, y))

})

all.equal(r1, r2)

[1] TRUE

Third, use linear algebra.

mb3 <- microbenchmark(linalg = {
rmn <- colMeans(xmat)
xmat_c <- xmat - matrix(rep(rmn, each = n), ncol = m)
rsd <- apply(xmat, 2, sd)
xmat_s <- xmat_c / matrix(rep(rsd, each = n), ncol = m)
y_s <- (y - mean(y)) / sd(y)
r3 <- y_s %*% xmat_s / (n - 1)
r3 <- as.vector(r3)

})

all.equal(r1, r3)

[1] TRUE

Finally, repeat the linear algebra approach, while utilizing broadcasting

mb4 <- microbenchmark(linalg_b = {
rmn <- colMeans(xmat)
xmat_c <- t(t(xmat) - rmn)
rvar <- colSums(xmat_c^2) / (dim(xmat)[1] - 1)
rsd <- sqrt(rvar)
xmat_s <- t(t(xmat_c) / rsd)

21

y_s <- (y - mean(y)) / sd(y)
r4 <- y_s %*% xmat_s / (n - 1)
r4 <- as.vector(r4)

})

all.equal(r1, r4)

[1] TRUE

Comparing the results:

rbind(mb1, mb2, mb3, mb4)

Unit: microseconds
expr min lq mean median uq max neval
loop 7134.410 7287.7500 7823.2420 7385.4120 8074.8065 28051.708 100
apply 6789.190 6907.5160 7262.6871 6981.1520 7773.8870 9000.074 100

linalg 4306.189 4394.7695 4649.3619 4447.1675 4577.6705 5543.815 100
linalg_b 332.018 374.9655 415.2837 390.4635 409.5285 2625.845 100

The fourth approach using linear algebra and broadcasting is by far the most efficient here. All
approaches are much more efficient than computing (10,001

2) correlations (by simply running
cor against the entire matrix) when we only need 10,000.

While we should keep in mind that this was a single trial and not a formal comparison with
replicates, a difference of this size is still meaningful. We should also be aware that one of
the reasons the other approaches are slower is the time needed to allocate memory for (larger)
intermediate objects.

Functional programming in Monte Carlo Studies

Recall our original example of computing coverage probabilities of nominal confidence intervals
for non-Gaussian data.

If we wanted to carry out similar studies for many distributions, we may wish to write a
function whose body carries out the simulation study using configurable parameters.

Here is the original example with a few changes.

22

mcrep <- 10000 # Simulation replications
n <- 30 # Sample size we are studying
sim <- rexp(n * mcrep, # Simulate standard exponential data

rate = 1) # mean = 1/rate
xmat <- matrix(sim, # Reshape to matrix

ncol = mcrep)
mn <- apply(xmat, 2, mean) # Sample mean of each column (replicate)
std <- apply(xmat, 2, sd) # Sample SD of each column (replicate)
se <- std / sqrt(n) # Standard errors of the mean
m <- qt(1 - (1 - .95) / 2,

df = n - 1) # Multiplier for confidence level
lcb <- mn - m * se # lower confidence bounds
ucb <- mn + m * se # upper confidence bounds

cvrg <- sum(lcb < 1 & ucb > 1)/mcrep

Below we incorporate the simulation into a function with parameters for simulation settings.
Here we use the special argument ... to pass additional parameters to rgen by name. Note
that rgen is expected to be a function - recall that in R, everything is an object.

#' Estimate nominal CI coverage for data generated by `rgen`
#' @param rgen a function generating a vector of simulated data, i.e `rexp`,
#' with length equal to its first argument.
#' @param target the actual expectation of `rgen`
#' @param mcrep the number of Monte Carlo replications and sample size.
#' @param n Sample size
#' @param conf_level the nominal coverage probability
#' @param ... additional parameters to pass to rgen
#' @return A length 1 numeric vector with the estimated coverage probability.
estimate_nominal_coverage <- function(rgen,

target,
mcrep = 10000,
n = 30,
conf_level = .95,
...) {

sim <- rgen(n * mcrep, ...) # Simulate data
xmat <- matrix(sim,

ncol = mcrep) # Each column is a replicate
mn <- apply(xmat, 2, mean) # Sample mean of each column
std <- apply(xmat, 2, sd) # Sample SD of each column
se <- std / sqrt(n) # Standard errors of the mean

23

m <- qt(1 - (1 - conf_level) / 2,
df = n - 1) # Multiplier for confidence level

lcb <- mn - m * se # lower confidence bounds
ucb <- mn + m * se # upper confidence bounds

coverage probability
return(sum((lcb < target) & (ucb > target))/mcrep)

}

Now we can use estimate_nominal_coverage for multiple simulations.

Geometric(p) with mean (1 - p) / p
estimate_nominal_coverage(rgeom, target = 3, p = .25)

[1] 0.9278

Poisson(lambda) with mean lambda
estimate_nominal_coverage(rpois, target = 4, lambda = 4)

[1] 0.9446

t(df) with mean 0
estimate_nominal_coverage(rt, target=0, df=2)

[1] 0.9589

This could be useful, say, for exploring how the mean or another parameter impacts the
coverage probability for a particular distribution.

Exponential Example

Here we use our function from above to explore how the nominal coverage for the exponential
distribution changes over a range of mean parameters.

rate parameters to explore
lambdas <- exp(-seq(1, 10, 1))

store the results

24

coverage_probs = vector(length = length(lambdas))
for (i in seq_along(lambdas)) {
coverage_probs[i] <- estimate_nominal_coverage(rexp,

target = 1 / lambdas[i],
rate = lambdas[i])

}

plot(-seq(1, 10, 1), coverage_probs,
ylab = "estimated coverage probability",
xlab = expression("log"[10]*"(rate)"),
las = 1, pch = 15, cex = 1.2, ylim = c(.9, .95),
main = "Nominal Coverage Probabilities for the Exponential Distribution"

)

Add Monte Carlo confidence bounds
for (i in seq_along(lambdas)) {
x <- rep(-seq(1, 10, 1)[i], 2)
y <- coverage_probs[i] + qnorm(.975) * c(-1, 1) * .25 / sqrt(10000)
lines(x, y)

}

add a reference line for the global mean
abline(h = mean(coverage_probs), lty = "dashed", col = "grey")

25

−10 −8 −6 −4 −2

0.90

0.91

0.92

0.93

0.94

0.95

Nominal Coverage Probabilities for the Exponential Distribution

log10(rate)

es
tim

at
ed

 c
ov

er
ag

e
pr

ob
ab

ili
ty

t distribution example

Here we examine how the coverage probability depends on the degrees of freedom if the data
come from a 𝑡𝑑𝑓 distribution.

df <- c(1, seq(2, 30, 2)) # df parameters to explore
coverage_probs <- vector(length = length(df)) # store the results
for (i in seq_along(df)) {
coverage_probs[i] <- estimate_nominal_coverage(rt,

target = 0,
df = df[i])

}

plot(df, coverage_probs,
ylab = "estimated coverage probability",
xlab = "degrees of freedom for t",
las = 1, pch = 15, cex = 1.2,
ylim = c(0.93, 1),
main = "Nominal Coverage Probabilities for the t Distribution")

Add Monte Carlo confidence bounds

26

for (i in seq_along(df)) {
x <- rep(df[i], 2)
y <- coverage_probs[i] + qnorm(.975) * c(-1, 1) * .25 / sqrt(10000)
lines(x, y)

}

add a reference line for the nominal coverage value
abline(h = 0.95, lty = "dashed", col = "grey")

0 5 10 15 20 25 30

0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

Nominal Coverage Probabilities for the t Distribution

degrees of freedom for t

es
tim

at
ed

 c
ov

er
ag

e
pr

ob
ab

ili
ty

27

	Vectorization
	The apply family of functions
	apply
	lapply, sapply, and vapply
	mapply
	tapply
	Are the apply family of functions vectorized?

	Writing vectorized functions
	Monte Carlo Estimation
	Distribution functions
	Random Seeds
	Basic Example 1 - Estimating \pi
	Basic Example 2 - Estimating percentiles
	Advanced Example - Simulation Study for Nominal Confidence Intervals

	Broadcasting
	Example: Correlation Coefficients

	Functional programming in Monte Carlo Studies
	Exponential Example
	t distribution example

