
Fitting Models in R Statistics 506

Statistical Models

One downside of R’s user-driven development via the package system is that there is no
enforced uniformity in terms of implementation. This is especially true of statistical models,
as different packages can implement different models (or even the same models) in different
ways. While the estimated parameters are usually the same (up to numerical precision),
implementation details can differ widely, including:

• How the model fitting code looks
• What the output of the model reports
• How the software returns the model fitting artifacts

That said, for a lot of the most common models, there is some uniformity across these, so we’ll
cover that here.

Formulas

A formula is an R object that stores an equation:

(a <- 3 ~ 5 - 2)

3 ~ 5 - 2

The ~ is used in place of an =.

class(a)

[1] "formula"

1

typeof(a)

[1] "language"

Often objects in R that aren’t lists or vectors have type language.

More commonly, formulas are used to store a equation involving variables.

form <- Fertility ~ Education + Catholic + Infant.Mortality
form

Fertility ~ Education + Catholic + Infant.Mortality

data(swiss)
names(swiss)

[1] "Fertility" "Agriculture" "Examination" "Education"
[5] "Catholic" "Infant.Mortality"

Note that I loaded swiss after defining the formulas - the “variables” in a formula need not
exist or be “real” until the point at which the formula evaluated to access the data. This is a
variation of lazy loading.

When used in this fashion, the left hand side of the formula indicates the response (out-
come/dependent) variable(s) in the model, whereas the right hand side of the formula indicates
the predictor (covariate/independent) variable(s) in the model. So in form above, “Fertility”
is the outcome and “Education”, “Catholic” and “Infant.Mortality” are the predictors.

Interactions can be included by separating variables by : or * instead of +. : includes only
the interaction, * also includes all lower-order terms. These two formulas would yield the same
model in most cases:

f1 <- a ~ b*c
f2 <- a ~ b + c + b:c

(We will discuss including polynomial terms after discussing fitting a model, below).

Terms can be removed with -

y ~ x*z - x
y ~ z + x:z # Equivalent formulas

Adding 0 or subtracting 1 suppresses an intercept:

2

y ~ x + 0
y ~ x - 1

Fitting a linear regression model.

The lm function takes in, at a minimum, a formula and a data set.

mod1 <- lm(form, data = swiss)
mod1

Call:
lm(formula = form, data = swiss)

Coefficients:
(Intercept) Education Catholic Infant.Mortality

48.67707 -0.75925 0.09607 1.29615

mod2 <- lm(Fertility ~ Education + Catholic*Infant.Mortality, data = swiss)
mod2

Call:
lm(formula = Fertility ~ Education + Catholic * Infant.Mortality,

data = swiss)

Coefficients:
(Intercept) Education
48.9995699 -0.7594599
Catholic Infant.Mortality
0.0890711 1.2797901

Catholic:Infant.Mortality
0.0003493

Passing a model output into the summary function typically produces far more useful informa-
tion.

summary(mod1)

3

Call:
lm(formula = form, data = swiss)

Residuals:
Min 1Q Median 3Q Max

-14.4781 -5.4403 -0.5143 4.1568 15.1187

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 48.67707 7.91908 6.147 2.24e-07 ***
Education -0.75925 0.11680 -6.501 6.83e-08 ***
Catholic 0.09607 0.02722 3.530 0.00101 **
Infant.Mortality 1.29615 0.38699 3.349 0.00169 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.505 on 43 degrees of freedom
Multiple R-squared: 0.6625, Adjusted R-squared: 0.639
F-statistic: 28.14 on 3 and 43 DF, p-value: 3.15e-10

summary(mod2)

Call:
lm(formula = Fertility ~ Education + Catholic * Infant.Mortality,

data = swiss)

Residuals:
Min 1Q Median 3Q Max

-14.464 -5.446 -0.467 4.152 15.193

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 48.9995699 11.4043460 4.297 0.000101 ***
Education -0.7594599 0.1183005 -6.420 9.88e-08 ***
Catholic 0.0890711 0.1781610 0.500 0.619722
Infant.Mortality 1.2797901 0.5681168 2.253 0.029563 *
Catholic:Infant.Mortality 0.0003493 0.0087891 0.040 0.968489

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

4

Residual standard error: 7.594 on 42 degrees of freedom
Multiple R-squared: 0.6626, Adjusted R-squared: 0.6304
F-statistic: 20.62 on 4 and 42 DF, p-value: 1.844e-09

Refer to any introductory modeling notes for a discussion of the interpretation of the various
parts of the output.

Models as R objects

We will dive much deeper into R’s class system (S3 and S4) at a later point, but for now it
is sufficient to understand that most model objects in R are lists with special print functions
that make the output clear. (I’m not going to demonstrate in this notes to save space, but
trying fitting a model (mod <- lm(...)), then changing the class to list (class(mod) <-
"list") before printing it (mod). We can look at the pieces of the list as well:

typeof(mod1)

[1] "list"

class(mod1)

[1] "lm"

names(mod1)

[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"

mod1$coefficients

(Intercept) Education Catholic Infant.Mortality
48.67707330 -0.75924577 0.09606607 1.29614813

head(mod1$residuals)

5

Courtelary Delemont Franches-Mnt Moutier Neuveville Porrentruy
10.902569 4.331405 12.464392 12.881689 12.415261 -10.440597

The object produced by summary is similar:

smod1 <- summary(mod1)
typeof(smod1)

[1] "list"

class(smod1)

[1] "summary.lm"

names(smod1)

[1] "call" "terms" "residuals" "coefficients"
[5] "aliased" "sigma" "df" "r.squared"
[9] "adj.r.squared" "fstatistic" "cov.unscaled"

smod1$r.squared

[1] 0.6625438

smod1$coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 48.67707330 7.91908348 6.146806 2.235983e-07
Education -0.75924577 0.11679763 -6.500524 6.833658e-08
Catholic 0.09606607 0.02721795 3.529511 1.006201e-03
Infant.Mortality 1.29614813 0.38698777 3.349326 1.693753e-03

smod1$cov.unscaled

(Intercept) Education Catholic Infant.Mortality
(Intercept) 1.113269e+00 -4.171717e-03 -1.974047e-05 -5.241958e-02
Education -4.171717e-03 2.421689e-04 7.859415e-06 5.965361e-05
Catholic -1.974047e-05 7.859415e-06 1.315107e-05 -3.046909e-05
Infant.Mortality -5.241958e-02 5.965361e-05 -3.046909e-05 2.658550e-03

6

Polynomial terms

Including polynomial terms in R models is slightly non-trivial (compared to how trivial it is in
Stata, which we’ll see in the future). There are (at least) 3 different ways to do it, each with
their own pros and cons.

Manually including polynomial terms

swiss$Infant.Mortality2 <- swiss$Infant.Mortality^2
mod3 <- lm(Fertility ~ Infant.Mortality + Infant.Mortality2, data = swiss)
summary(mod3)

Call:
lm(formula = Fertility ~ Infant.Mortality + Infant.Mortality2,

data = swiss)

Residuals:
Min 1Q Median 3Q Max

-31.245 -5.358 -0.030 7.120 28.474

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 59.00214 46.24197 1.276 0.209
Infant.Mortality -0.78971 4.74020 -0.167 0.868
Infant.Mortality2 0.06623 0.12093 0.548 0.587

Residual standard error: 11.57 on 44 degrees of freedom
Multiple R-squared: 0.1791, Adjusted R-squared: 0.1418
F-statistic: 4.8 on 2 and 44 DF, p-value: 0.01301

“Inhibit interpretation” of polynomial terms.

A polynomial term is nothing more than an interaction (multiplication) of a variable with
itself. What would happen if we just tried that?

mod4 <- lm(Fertility ~ Infant.Mortality*Infant.Mortality, data = swiss)
summary(mod4)

Call:

7

lm(formula = Fertility ~ Infant.Mortality * Infant.Mortality,
data = swiss)

Residuals:
Min 1Q Median 3Q Max

-31.672 -5.687 -0.381 7.239 28.565

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 34.5155 11.7113 2.947 0.00507 **
Infant.Mortality 1.7865 0.5812 3.074 0.00359 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 11.48 on 45 degrees of freedom
Multiple R-squared: 0.1735, Adjusted R-squared: 0.1552
F-statistic: 9.448 on 1 and 45 DF, p-value: 0.003585

R basically ignored it. We can use the I() function to prevent R from trying to over-interpret
the results:

mod5 <- lm(Fertility ~ Infant.Mortality + I(Infant.Mortality*Infant.Mortality),
data = swiss)

summary(mod5)

Call:
lm(formula = Fertility ~ Infant.Mortality + I(Infant.Mortality *

Infant.Mortality), data = swiss)

Residuals:
Min 1Q Median 3Q Max

-31.245 -5.358 -0.030 7.120 28.474

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 59.00214 46.24197 1.276 0.209
Infant.Mortality -0.78971 4.74020 -0.167 0.868
I(Infant.Mortality * Infant.Mortality) 0.06623 0.12093 0.548 0.587

Residual standard error: 11.57 on 44 degrees of freedom
Multiple R-squared: 0.1791, Adjusted R-squared: 0.1418

8

F-statistic: 4.8 on 2 and 44 DF, p-value: 0.01301

Formally what I() is doing is to tell R to not interpret any algebraic symbols (+, -, *, etc) as
formula operators, and to instead treat them purely as algebraic.

poly function

Finally, the most concise way to write a model with polynomial terms is the polyfunction:

mod6 <- lm(Fertility ~ poly(Infant.Mortality, 2), data = swiss)
summary(mod6)

Call:
lm(formula = Fertility ~ poly(Infant.Mortality, 2), data = swiss)

Residuals:
Min 1Q Median 3Q Max

-31.245 -5.358 -0.030 7.120 28.474

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 70.143 1.688 41.554 < 2e-16 ***
poly(Infant.Mortality, 2)1 35.292 11.572 3.050 0.00387 **
poly(Infant.Mortality, 2)2 6.338 11.572 0.548 0.58668

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 11.57 on 44 degrees of freedom
Multiple R-squared: 0.1791, Adjusted R-squared: 0.1418
F-statistic: 4.8 on 2 and 44 DF, p-value: 0.01301

By default, poly will produce orthogonal polynomial terms - these do not change the model
fit (note that the 𝑅2 is identical), but do change the interpretation of the coefficients. The
raw = TRUE option suppresses this:

mod7 <- lm(Fertility ~ poly(Infant.Mortality, 2, raw = TRUE), data = swiss)
summary(mod7)

9

Call:
lm(formula = Fertility ~ poly(Infant.Mortality, 2, raw = TRUE),

data = swiss)

Residuals:
Min 1Q Median 3Q Max

-31.245 -5.358 -0.030 7.120 28.474

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 59.00214 46.24197 1.276 0.209
poly(Infant.Mortality, 2, raw = TRUE)1 -0.78971 4.74020 -0.167 0.868
poly(Infant.Mortality, 2, raw = TRUE)2 0.06623 0.12093 0.548 0.587

Residual standard error: 11.57 on 44 degrees of freedom
Multiple R-squared: 0.1791, Adjusted R-squared: 0.1418
F-statistic: 4.8 on 2 and 44 DF, p-value: 0.01301

The reason to include the orthogonal polynomials is computation - non-linear models which
require convergence of an optimization problem can struggle when including very large or very
small numbers, or two variables on very different scales. Standardizing and orthogonalizing
can help address this.

Pros and cons of each approach

Manual pros:

• Easy to implement
• Easy to exclude lower order polynomials.
• Produces the nicest looking output

Manual cons:

• Need to remember to update if values change
• R doesn’t know the terms are related
• Clutters your data

I() Pros:

• Easy to exclude lower order polynomials
• Precise control over what you’re including in the models
• R will know terms are related

10

I() Cons:

• Longest syntax
• I(x) notation makes output less readable

poly() pros:

• Most concise syntax
• R will know terms are related

poly() cons:

• Hard to exclude lower order polynomials

Overall, I recommend using poly() in almost all situations (with or without raw = TRUE),
dropping down to I() only if more precise control is needed.

Model extractors

There are a few functions that most well-written model objects should support to extract
useful model artifacts.

head(predict(mod1)) # predicted values

Courtelary Delemont Franches-Mnt Moutier Neuveville Porrentruy
69.29743 78.76860 80.03561 72.91831 64.48474 86.54060

head(residuals(mod1)) # residual values

Courtelary Delemont Franches-Mnt Moutier Neuveville Porrentruy
10.902569 4.331405 12.464392 12.881689 12.415261 -10.440597

coefficients(mod1) # coefficients

(Intercept) Education Catholic Infant.Mortality
48.67707330 -0.75924577 0.09606607 1.29614813

While in the lm case, each of these could be extracted directly (mod1$fitted, mod1$residuals,
mod1$coefficients), in other models, it may not be as straightforward so these functions
come in handy.

Summary objects may not support all these functions:

11

head(predict(smod1)) # predicted values

Error in UseMethod("predict"): no applicable method for 'predict' applied to an object of class "summary.lm"

head(residuals(smod1)) # residual values

Courtelary Delemont Franches-Mnt Moutier Neuveville Porrentruy
10.902569 4.331405 12.464392 12.881689 12.415261 -10.440597

coefficients(smod1) # coefficients

Estimate Std. Error t value Pr(>|t|)
(Intercept) 48.67707330 7.91908348 6.146806 2.235983e-07
Education -0.75924577 0.11679763 -6.500524 6.833658e-08
Catholic 0.09606607 0.02721795 3.529511 1.006201e-03
Infant.Mortality 1.29614813 0.38698777 3.349326 1.693753e-03

Design matrices

Recall when fitting a linear regression model, the estimated coefficients can be calculated as

̂𝛽 = (𝑋′𝑋)−1𝑋′𝑦

where 𝑦 is the vector of outcomes, and 𝑋 is an 𝑛 × 𝑝 matrix of predictors, where there are 𝑛
observations and 𝑝 predictors. 𝑋 is often called the “design matrix” and includes one column
for every variable in the model, including the intercept.

The model.matrix functions can be used to automatically generate this matrix.

head(model.matrix(form, data = swiss))

(Intercept) Education Catholic Infant.Mortality
Courtelary 1 12 9.96 22.2
Delemont 1 9 84.84 22.2
Franches-Mnt 1 5 93.40 20.2
Moutier 1 7 33.77 20.3
Neuveville 1 15 5.16 20.6
Porrentruy 1 7 90.57 26.6

12

This call is agnostic of the model - it only required the formula. Passing a model instead often
is preferred because if the model drops any observations, they will be dropped from the output
as well.

head(model.matrix(mod1, data = swiss))

(Intercept) Education Catholic Infant.Mortality
Courtelary 1 12 9.96 22.2
Delemont 1 9 84.84 22.2
Franches-Mnt 1 5 93.40 20.2
Moutier 1 7 33.77 20.3
Neuveville 1 15 5.16 20.6
Porrentruy 1 7 90.57 26.6

In addition, in the presence of interactions or categorical variables, model.matrix will expand
these out as appropriate:

data(mtcars)
mtcars$gear <- as.factor(mtcars$gear)
head(model.matrix(mpg ~ gear + cyl*wt, data = mtcars))

(Intercept) gear4 gear5 cyl wt cyl:wt
Mazda RX4 1 1 0 6 2.620 15.72
Mazda RX4 Wag 1 1 0 6 2.875 17.25
Datsun 710 1 1 0 4 2.320 9.28
Hornet 4 Drive 1 0 0 6 3.215 19.29
Hornet Sportabout 1 0 0 8 3.440 27.52
Valiant 1 0 0 6 3.460 20.76

Note the use of as.factor to specify that “gear” should be treated as categorical.

Proving the equivalence of : and *, and demonstrating -:

head(model.matrix(mpg ~ cyl*wt, data = mtcars))

(Intercept) cyl wt cyl:wt
Mazda RX4 1 6 2.620 15.72
Mazda RX4 Wag 1 6 2.875 17.25
Datsun 710 1 4 2.320 9.28
Hornet 4 Drive 1 6 3.215 19.29

13

Hornet Sportabout 1 8 3.440 27.52
Valiant 1 6 3.460 20.76

head(model.matrix(mpg ~ cyl + wt + cyl:wt, data = mtcars))

(Intercept) cyl wt cyl:wt
Mazda RX4 1 6 2.620 15.72
Mazda RX4 Wag 1 6 2.875 17.25
Datsun 710 1 4 2.320 9.28
Hornet 4 Drive 1 6 3.215 19.29
Hornet Sportabout 1 8 3.440 27.52
Valiant 1 6 3.460 20.76

head(model.matrix(mpg ~ cyl*wt - wt, data = mtcars))

(Intercept) cyl cyl:wt
Mazda RX4 1 6 15.72
Mazda RX4 Wag 1 6 17.25
Datsun 710 1 4 9.28
Hornet 4 Drive 1 6 19.29
Hornet Sportabout 1 8 27.52
Valiant 1 6 20.76

There is a similar function, model.frame which does not do any expansion but merely includes
all variables involved in the model, including the outcome:

head(model.frame(mpg ~ cyl*wt + gear, data = mtcars))

mpg cyl wt gear
Mazda RX4 21.0 6 2.620 4
Mazda RX4 Wag 21.0 6 2.875 4
Datsun 710 22.8 4 2.320 4
Hornet 4 Drive 21.4 6 3.215 3
Hornet Sportabout 18.7 8 3.440 3
Valiant 18.1 6 3.460 3

14

Model post-estimation

After fitting a statistical model, you may want to test various hypotheses that involve linear
(or non-linear combinations of coefficients). There are a number of different R packages that
can do this, we’ll discuss a few here.

Hypotheses tests between estimated coefficients

The glht() function from the multcomp package directly tests hypotheses. Let’s load in a
data-set which records information on husband and wive pairs from Great Britain (downloaded
from https://www.openintro.org/data/index.php?data=husbands_wives).

hw <- read.csv("data/husbands_wives.csv")
head(hw)

age_husband age_wife ht_husband ht_wife age_husb_at_marriage
1 49 43 1809 1590 25
2 25 28 1841 1560 19
3 40 30 1659 1620 38
4 52 57 1779 1540 26
5 58 52 1616 1420 30
6 32 27 1695 1660 23
age_wife_at_marriage years_married

1 19 24
2 22 6
3 28 2
4 31 26
5 24 28
6 18 9

Let’s fit a model predicting number of years married by the heights of the partners, and see
whether there is a difference in the relationship between genders:

mod <- lm(years_married ~ ht_husband + ht_wife, data = hw)
library(multcomp)
glht(mod, "ht_husband - ht_wife = 0")

General Linear Hypotheses

15

https://www.openintro.org/data/index.php?data=husbands_wives

Linear Hypotheses:
Estimate

ht_husband - ht_wife == 0 -0.003919

summary(glht(mod, "ht_husband - ht_wife = 0"))

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = years_married ~ ht_husband + ht_wife, data = hw)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

ht_husband - ht_wife == 0 -0.003919 0.020623 -0.19 0.849
(Adjusted p values reported -- single-step method)

The right hand side of the “equation” must be numeric, so instead of ht_husband = ht_wife,
we move the variables to one side.

Another case where this would be useful is estimating the average value of a response across
groups. The mtcars data contains a categorical variable, gear, indicating the number of
forward gears (3, 4, or 5).

data(mtcars)
mtcars$gear <- as.factor(mtcars$gear)
(mod <- lm(mpg ~ gear, data = mtcars))

Call:
lm(formula = mpg ~ gear, data = mtcars)

Coefficients:
(Intercept) gear4 gear5

16.107 8.427 5.273

Recall from basic statistical modeling classes. We can estimate the average response within
each level of gear via linear combination of predictors.

𝐸(mpg|gear) = 𝛽0 + 𝛽1 ∗ 𝑔𝑒𝑎𝑟4 + 𝛽2 ∗ 𝑔𝑒𝑎𝑟5

16

gear level Equation Estimate
3 𝛽0 16.11
4 𝛽0 + 𝛽1 24.53
5 𝛽0 + 𝛽2 21.38

list(glht(mod, "(Intercept) = 0"),
glht(mod, "(Intercept) + gear4 = 0"),
glht(mod, "(Intercept) + gear5 = 0"))

[[1]]

General Linear Hypotheses

Linear Hypotheses:
Estimate

(Intercept) == 0 16.11

[[2]]

General Linear Hypotheses

Linear Hypotheses:
Estimate

(Intercept) + gear4 == 0 24.53

[[3]]

General Linear Hypotheses

Linear Hypotheses:
Estimate

(Intercept) + gear5 == 0 21.38

We can of course test for differences in these means. E.g., to test gear 4 vs gear 5:

17

𝛽0 + 𝛽1 = 𝛽0 + 𝛽2
𝛽1 = 𝛽2

𝛽1 − 𝛽2 = 0

summary(glht(mod, "gear4 - gear5 = 0"))

Simultaneous Tests for General Linear Hypotheses

Fit: lm(formula = mpg ~ gear, data = mtcars)

Linear Hypotheses:
Estimate Std. Error t value Pr(>|t|)

gear4 - gear5 == 0 3.153 2.506 1.258 0.218
(Adjusted p values reported -- single-step method)

Other packages

There are a number of packages which produce “marginal effects”. This term can mean two
things. The first is linear combinations of coefficients, just as we did above. The second is
more formally on the idea of “marginalizing” over some coefficients in the model. We’ll focus
on the first definition here and demonstrate the emmeans package.

library(emmeans)
emmeans(mod, "gear")

gear emmean SE df lower.CL upper.CL
3 16.1 1.22 29 13.6 18.6
4 24.5 1.36 29 21.8 27.3
5 21.4 2.11 29 17.1 25.7

Confidence level used: 0.95

test(emmeans(mod, "gear"))

18

gear emmean SE df t.ratio p.value
3 16.1 1.22 29 13.250 <.0001
4 24.5 1.36 29 18.051 <.0001
5 21.4 2.11 29 10.154 <.0001

pairs(emmeans(mod, "gear"))

contrast estimate SE df t.ratio p.value
gear3 - gear4 -8.43 1.82 29 -4.621 0.0002
gear3 - gear5 -5.27 2.43 29 -2.169 0.0937
gear4 - gear5 3.15 2.51 29 1.258 0.4296

P value adjustment: tukey method for comparing a family of 3 estimates

You can see we’ve replicated the results from above, but in much more precise code and without
worrying about deriving the equations ourselves.

Some other packages that do similar things:

• emmeans: One of the oldest of these packages, extremely powerful but can be complicated
to use for non-basic stuff.

• marginaleffects: A very new package that is quite slick, but is in early development and
changes the API frequently still.

• ggeffects: Has less functionality than the other packages, but makes it very easy to plot
results using GGplot2.

Interaction plots

Consider a model where we have a continuous variable, 𝑋, and a binary predictor, 𝑍:

𝐸(𝑌 |𝑋, 𝑍) = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑍 + 𝛽3𝑋𝑍

By including an interaction, we are allowing each group as defined by 𝑍 to have its own slope
on 𝑋. An interaction plot visualizes this relationship. We’ll return to the emmeans package:

mod <- lm(mpg ~ gear*wt, data = mtcars)
emmip(mod, gear ~ wt, at = list(wt = 1:5))

19

https://cran.r-project.org/package=emmeans
https://marginaleffects.com
https://strengejacke.github.io/ggeffects/

10

20

30

1 2 3 4 5
wt

Li
ne

ar
 p

re
di

ct
io

n

gear

3

4

5

The values for wt are chosen by examining the variable:

summary(mtcars$wt)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.513 2.581 3.325 3.217 3.610 5.424

Another package, interactions, can also easily produce these plots:

library(interactions)
interact_plot(mod, pred = wt, modx = gear)

20

https://interactions.jacob-long.com

0

10

20

30

2 3 4 5

wt

m
pg

gear

3

4

5

emmip is more flexible and offers more functionality, whereas interact_plot is generally more
straightforward for simple plots.

Generalized Linear Models

While lm fits linear models, glm fits generalized linear models:

glm(am ~ wt + disp, data = mtcars, family = binomial)

Call: glm(formula = am ~ wt + disp, family = binomial, data = mtcars)

Coefficients:
(Intercept) wt disp

15.59942 -5.95982 0.01124

Degrees of Freedom: 31 Total (i.e. Null); 29 Residual
Null Deviance: 43.23
Residual Deviance: 17.78 AIC: 23.78

21

See help(family) for details on the various distributions and link functions supported. Gener-
ally, things carry forward from the linear model: how to specify the formula, extracting model
artifacts, and various post-estimation functionality such as hypothesis tests and interaction
plots.

22

	Statistical Models
	Formulas
	Fitting a linear regression model.
	Model extractors
	Design matrices

	Model post-estimation
	Hypotheses tests between estimated coefficients
	Interaction plots

	Generalized Linear Models

