
Stata Statistics 506

Stata

Stata is statistical analysis software used commonly in social sciences. It is known for it’s ease of
use, robust support for complex survey design, and comprehensive and clear documentation.

Stata (pronounced either of stay-ta or stat-ta, the official FAQ supports both) has a robust
GUI similar to RStudio, or can be interacted with at the command line to run scripts similar
to R.

Once you have Stata up and running, the simplest form of use is as a calculator.

. display 2 + 4

The . is often used for documents like this to note a command; whenever you run a command
in Stata, the first thing it does is echo back the command you ran prefixed by the ..

The command name is “display” and it outputs the requested expression. This is a trivial
example, but display is much more flexible.

Terminology

Stata uses some programming terminology in unique ways. Specifically:

• “command” - the primary operation, for example regress or display. This is what R
(and most programming languages) call a “function”.

• “variable” - refers only to columns in the data set.
• “macro” - what most other languages would call “variables”. Can store numbers or

strings.
• “function” - An operation performed on a value or a variable. For example, log(salary)

applies the function log() to the variable “salary”.

1

One Data Set

One quirk of Stata is that until the most recent version of Stata, only a single data set could
be open at a time. Because of this, in earlier versions of Stata if you wanted to operate on
multiple data sets, you either need to be constantly switching between them, or merge them
into one file (for help with merging, look into the append and merge commands).

The benefit of having a single data set open is that you never need to refer to it - any command
you give must operate on the open data set. This greatly reduces the code complexity as
commands do not need the equivalent of R’s data = argument.

The most recent version of Stata introduced the concept of frames, – rectangular data sets
much like data.frames in R – that can be used to store multiple data sets in memory. I would
strongly recommend you do not start with them, instead operating as Stata prefers - a single
data set at a time.

Do-files

Stata scripts are called “Do-files”, named for their extensions (.do). In the GUI, you can open
a new Do-file for editing by typing doedit. You can also select a series of commands in the
history, right click, and choose the “Send selected to Do-file Editor”.

You can run Do-files interactively by highlighting the desired code and hitting the “Execute
(Do)” (Windows) or “Do” (Mac) buttons or using an associated shortcut key. Note that unlike
RStudio, you do not need to highlight the entire line of code, any lines of code which have any
highlighting will be run.

Do-files can also be run from start to finish by using the do command. Alternatively, if you
are accessing Stata at the command line via SSH, you can simply run stata mydofile.do to
launch Stata, run the Do-file, and exit.

Common Syntax

Most Stata commands follow the same basic format:

. command <variable(s)>, <options>

The command can have sub-commands. For example, the duplicates command has a drop
subcommand, so the full “command” would be duplicates drop.

The number of variables which needs to be/can be passed obviously varies by command. The
order of variables may matter (for example, any regression model treats the first listed variable
as the response.)

2

The options are space-separated words (e.g. robust) or words with options (e.g. level(.90)).
Almost all commands support some number of options, most commands do not require any
options.

For example, a regression would be as simple as

. regress y x1 x2, noconstant

This is defining a linear regression model predicting y based upon the continuous variables x1
and x2. The noconstant operation forces (𝛽0 = 0).

Stata supports abbreviations for most commands. For example, the regression command could
have been typed as:

. reg y x1 x2, nocons

I would not recommend using abbreviations in most cases (a lot aren’t as clear as reg - what
do you think the d command does?), but you may see others use them.

Most commands support an if or in option to operate on a subset of the data. For example,

. regress y x1 x2 if female == 1

performs linear regression only on the female subsample. The in option operates on specific
rows, and may be useful for testing slow running code:

. regress y x1 x2 in 1/100

The 1/100 syntax is equivalent to writing 1 2 3 4 99 100 - most lists in Stata are
space-separated, as opposed to R’s comma-separated, or +-separated in formulas.

Help Files

Stata has extremely well-written, comprehensive documentation. Use the help _____ syntax
to look up documentation on any command. Help files contain the syntax of the command, a
list of options allowed, a description of the command, and a number of examples. Additionally,
the very top of each help file contains a link to the appropriate location in the full Stata manual
which typically has further examples. Use these help files liberally.

Note that running help on an abbreviation (e.g. help reg) pulls up the help correctly. This
is useful when reading others code. Additionally, in the syntax and options listing, you’ll see
partial underlining. These indicate the required abbreviations.

3

I/O

You can access files with:

• use to load a local file, or when passed a URL, an online file.
• sysuse or webuse to access Stata example data sets (often used in Help examples)
• import excel and import delimited for importing Excel or CSV files.

For importation, it’s often easier to use the dialog box from File -> Import menu instead of
trying to type the command. The Import dialog box has a live preview as you change settings
which can be useful. After you run the import, the command it generated is echoed and you
can save it in your Do-file to run it again.

You can save a data set with the save command which works as

. save newfilename

Passing the replace option allows Stata to overwrite an existing file. Stata will throw an error
if you try to overwrite an existing data sets without specifying replace.

To make your analyses reproducible, I’d recommend always specifying replace for data sets
created by your scripts, and never saving to data files obtained from elsewhere.

If you try and open a new data set when there are un-saved changes in the existing data,
Stata will refuse with an error. The clear command will remove the existing data and al-
low you to load a new data set. You can also pass clear as an option to the commands
use/sysuse/webuse/import to save one step.

The preserve and restore commands can be very useful for switching between files or making
destructive modifications to an existing data set. The preserve command takes a snapshot of
the data as it currently is, and restore switches back to it. To see an example of it, consider
the collapse command. The collapse command generates a summary data set by collapsing
the existing data by a given variable and creating summary statistics. For example, if we have
some sort of census data,

. collapse (mean) bmi (percent) female, by(state)

This would replace the existing data set with a new one with one row per state, containing
a variable indicating which state, a variable indicating the average BMI in that state, and a
variable indicating the percent of the state which is female.

The command collapse is destructive; after running it the original data (and any unsaved
changes) is lost. We can wrap this in preserve and restore to save the descriptive data and
recover the original data.

4

. use data1

. preserve

. collapse (median) x1 x2 (min) x3 (sum) x4, by(group)

. save summarydata

. restore

After running the above five lines, “data1” will still be open, but we’ll have a new file “sum-
marydata”.

Data Inspection

The following commands may be useful for exploring the data:

• browse opens the data browser. browse <variable name(s)> restricts the window to
only the requested variables. if and in can reduce the rows displayed, and can be
combined: browse age weight if gender == "male".

– edit opens the data editor, which looks identical to the data browser, except it
allows you to edit the data like a spreadsheet. (Doing so produces code which you
can copy into your Do-file.

• describe displays some information about the variable, including it’s type (string or
numeric) and whether it has labels attached to it.

• summarize, codebook, tabulate, mean display some descriptive statistics.

Manipulating data

• drop/keep - Removing columns (using drop age gender) or rows (using keep if
gender == "female" or drop in 1/20).

• generate - Creating new variables using syntax generate <newvarname> =
<expression>. The expression can depend on other variables. If the expression
is logical (e.g. age > 40), this generates a 0/1 binary - logicals don’t exist as anything
but numeric 0/1.

– There’s a separate commend, egen (not egenerate, just egen) that supports group-
ing operations and a number of unique functions, such as rowmean. See help egen
for a full list.

• replace - Modify an existing variable. Commonly used with if.
• destring/tostring - Convert strings that are really numbers to strings, and vice-versa
• encode/decode - Convert strings with words to numbers with associated labels, and

vice-versa.

5

Estimation commands

In addition to the one data principal, Stata also operates on one estimation command at a
time. An estimation command is any command which produces some inference, for example
mean to obtain the mean and a confidence interval, or regress as we discussed above. All
models are estimation commands.

After running an estimation command, Stata provides access to post-estimation commands
and returned objects.

Post-estimation commands

Estimation commands support commands that follow them and use their results. For example,
after a regression command we can obtain the AIC and BIC by running

. estat ic

Note that we do not refer to a specific model. You can see a list of all post-estimation
commands supported by running help ____ postestimation. For example, help regress
postestimation.

Replaying estimation commands

If you run an estimation command, then want to display the results again before you’ve run
another estimation command, you can simply run the command again without any input. For
example,

regress y x1 x2
<a bunch of commands which are NOT estimation commands>
regress

That second call to regress will simply redisplay the results without re-running the whole
model - useful if your model is slow.

You can also sometimes pass additional options to change the display. For example, the logit
command runs logistic regression but produces estimates of log-odds. The or option produces
odds ratios instead - if you neglect to add or to the original logit call, you can just add it to
the replay:

logit z x1 x2
logit, or

6

Saving and restoring estimation results

You can store estimation models with estimates store and restore them with estimates
restore. Once you restore a model, its as if you just ran it - you can replay it or run post-
estimation commands against it. This can be very useful if you are jumping between several
models that are slow to run. There’s also estimates save and estimates use for writing
the models to a file.

Returned objects

The code run by issuing an estimation command, typically creates several objects which can
be examined. Estimation commands are either of R-class or E-class (the distinction is not very
important). What is important is that E-class commands store things in the ereturn while
R-class commands store in the return.

For example, after running regress, the object e(r2) contains the (R^2) for the model.

. regress y x

. display e(r2)

Matrices can also be returned, but cannot be accessed with display, instead we use matrix
list:

. matrix list e(V)

which will return the variance-covariance matrix of the estimators.

You can see a full list of the returned objects via return list or ereturn list. The help
file for each command will also describe what the command returns at the very bottom of the
help document.

We will see how these objects can be manipulated after we discuss macros.

Macros

Macros in Stata use a simple substitution evaluation system. We define a macro with the
local command.

. local myvars x1 x2 x3

. regress y `myvars'

The local command stores whatever is passed as the name of the macro. When it is referenced
via the backtick-single quote syntax, the stored value is substituted into the command before

7

the command is executed. For example, when you run the regress line above, Stata will
replace “‘myvars”’ with “x1 x2 x3” and then execute the regression model.

Macros can also store numeric values and can be operated on.

. local x 3

. display `x'

. local y = `x' + 2

. display `y'

You’ll notice the first local call contains no equal sign, whereas the second does. The equal
forces immediate evaluation. You can see the difference by running:

. display `y'

. display "`y'"

. local y2 `x' + 2

. display `y2'

. display "`y2'"

You can store returned objects and operate or display them.

. regress y x

. local r2 e(r2)

. display "The model R^2 is " `r2'

Global vs local macros

A downside to local macros is that they’re local - they are in a local scope. If you run a
chunk of code from a Do-file that defines a local, you’ll notice the local does not exist when
the code finishes. Try it - run this inside a Do-file:

local z 5

Then run this at the command window:

display `z'

Global macros are global - they exist in permanence across Stata.

global a 4
display $a + 2

Note the use of $ to access the global, as opposed to the backtick-quote for locals.

8

01-R-basics.html#scope

There’s a longer discussion on the technical details between locals and globals on the Stata
blog.

I would suggest using local macros whenever you can, falling back to globals only for debugging
or other limited scenarios. This is similar to R’s usage of = vs <- for arguments.

Matrices

Matrices can be stored as well

. regress y x

. matrix v = e(V)

. display "The variance/covariance matrix:"

. matrix list v

Note that when referring to matrices, no tick/quote is needed. However, matrices can be
referred to in more limited contexts than can macros.

You can subset matrices with [as in R. E.g. this would return the top 3x3 matrix:

matrix B = A[1..3, 1..3]

and this would return only the first column:

matrix C = A[1..., 1]

You can store a single entry from a matrix into a macro as well:

local m1 = A[3,5]

Loops

Loops are another place where macros are used often. The syntax is very similar to other
languages.

foreach <macro name> of <list of numbers/words/variables> {
..
}

The list can be:

• numbers: numlist 1/5 or numlist 1 4 29 192 or numlist 1/5 10 20
• variables: varlist x y z (x y and z must be variables in the current data)

9

https://blog.stata.com/2015/11/03/programming-an-estimation-command-in-stata-global-macros-versus-local-macros/
https://blog.stata.com/2015/11/03/programming-an-estimation-command-in-stata-global-macros-versus-local-macros/
01-R-basics.html#vs-for-arguments

• words: a b c (a b and c need not correspond to any existing variables/macros)

For example, to regress over a series of outcome variables:

foreach var of varlist y1 y2 y3 {
regress `var' x1 x2
estimates store reg_`var'

}

Alternatively, if the variables names are that clean, you could use the numerical suffix as the
iterator:

foreach i of numlist 1/3 {
regress y`i' x1 x2
estimates store reg_y`i'

}

Mata

Mata is a matrix programming language which is part of Stata. It has two primary uses:

• Perform matrix algebra more directly.
• Manipulate Stata results.

Matrices in Stata can be passed into Mata and vice-versa, but for the most part Mata is a
complete separate language to Stata.

Mata is entered by using the mata command.

. mata

When in Mata mode, the prompt changes from a . to :. Stata commands will not be accepted
inside Mata. To exit Mata, enter the end command.

: end

You can enter mathematical expressions directly into Mata:

: 5 - 4

When inside Mata, you can define and use “variables” in the same sense as R.

10

: x = 4
: x + 2

It also supports functions, e.g.

• sqrt(4)
• log(x)

Mata sessions have permanence. If you end a Mata session and then invoke a new session, it
retains the same variables.

You can also run a single line of Mata with the mata: preface. After running this command,
you will be in Stata, not Mata.

. mata: 2 + 2

To define a Mata matrix, we can combine the column-join operator , and the row-join operator
\. We can print a matrix by calling it alone.

: M = (1, 2\3, 4)
: M

To help keep track of object dimensions I’d recommend using lowercase letters for scalars and
upper case letters for matrices.

Matrix operations work as expected. We can:

• Matrix by scalar operations: mata: 4 * M, mata: M :+ 2
• Matrix by matrix operations: mata: A + B, mata: A * B (an error if dimensions are

not compatible)
• Matrix transposition: mata: A'
• Matrix concatenation: mata: A\B would stack A on top of B , mata: A,B would place

A next to B - both assuming dimension compatibility.
• Element-by-element matrix multiplication: mata: A :* B
• Quickly define an identify matrix: mata: C = I(5)
• Quickly define a matrix of a given size with a constant element in each entry: mata: D

= J(4, 2, 0)
• The diagonal function extracts only the diagonal of the matrix. Confusingly, as opposed

to the diag, which only sets off-diagonal elements to 0.

We can pass matrices between Stata and Mata using the st_matrix() function. This
functions works inside of Mata. st_matrix(<stata matrix name>) obtains a matrix in
Stata; st_matrix(<stata matrix name>, <mata matrix name>) places a mata matrix into
Stata.

11

Let’s say we run a regression in Stata:

. sysuse auto

. regress mpg headroom

We saw before that e(V) contains the variance/covariance matrix, but let’s obtain the standard
errors for the coefficients.

. matrix v = e(V)

. matrix list v

To manipulate these, we can pass them into Mata.

. mata:
: V = st_matrix("v")
: SE = diagonal(sqrt(V))
: st_matrix("se", SE)
: end
. matrix list se

Regression and margins

One of Stata’s most popular tools is the margins command. It is a very complex command
(the help manual for this one command is 58 pages long), but extremely powerful. We’ll
explore two common uses.

First, when running a regression with a categorical variable, one level of the categorical variable
is the reference, and all other groups are tested against it. If you wanted to test between
variables which weren’t the reference, you need to either change the reference category or
develop a contrast. margins does this second step automatically.

. regress y x i.z

. margins z

. margins z, pwcompare

First, note the i.z variable in the regress command. All Stata models assume by default that
variables are continuous. To treat a variable as categorical, preface it with i.: E.g. variable
race would be, in the model, i.race.

The first margins command will estimate the marginal mean for each level in z. This is done
by taking the original data, assuming in every row of data that z takes on it’s first group, and
then using the regression equation to estimate each response and generate the average. Then
it repeats this process for the second group of z and so on.

12

The second margins command adds the pwcompare option which will generate all contrasts
of comparison between each level of z. By default it produces a confidence interval for each
contrast; you can obtain a p-value by passing pwcompare(pv) instead.

The second use of margins is for the creation of interaction plots. Interactions are entered into
regressions via x##z; this includes the main effects of both x and z as well as their interaction.
(x#z includes only the interaction term; x z x#z is equivalent to x##z.) When a variable
is involved in an interaction, Stata assumes it is categorical; you can use c. to treat it as
continuous.

. regress y c.x##i.z

. margins z, at(x = (1 2 3 4 5))

. marginsplot

This margins call is obtaining the marginal mean of z at each of those 5 values of x.
marginsplot is a post-post-estimation command which can be run after margins to
produce a plot (another extremely powerful yet complex command, another 35 pages of
documentation).

We can test whether the slope is the same across several subgroups with margins as well:

. margins z, dydx(x)

. margins z, dydx(x) pwcompare(pv)

The dydx() option estimates the slope on a continuous variable by taking the slope of the
regression equation relative to the continuous variable. By passing the categorical variable z
we’re asking for the slope in each group, and then testing them against each other next.

13

	Stata
	Terminology
	One Data Set
	Do-files
	Common Syntax
	Help Files
	I/O
	Data Inspection
	Manipulating data
	Estimation commands
	Post-estimation commands
	Replaying estimation commands
	Saving and restoring estimation results
	Returned objects

	Macros
	Global vs local macros
	Matrices
	Loops

	Mata
	Regression and margins

