
SQL Statistics 506

SQL and Relational Databases

A relational database is a set of rectangular data frames called tables linked by keys
relating one table to another. Software implementations of such data structures are known
as relational database management systems (RDBMS). Most RDBMS use structured query
language or SQL (“sequel” or “S-Q-L”) to modify or search the relational database.

Here is an example of a relational database. “Primary” keys are ones which uniquely identify
rows of a particular table; “foreign” keys simply refer to “primary” keys in other tables. A key
can contain multiple variables.

SQL provides a syntax for interfacing with relational data. It is largely a declarative language
in that we use SQL to specify what we wish to accomplish, leaving the how to the RDBMS.
While there are standards for SQL implementations put out by the International Organization
for Standardization (ISO) and the American National Standards Institute (ANSI), there are
several open source and commercial implementations that each have unique features.

I will try to focus on the commonalities, but will be using an SQLite engine in R for providing
examples. One unique feature of SQLite is that it does not follow the client-server model. In

1

https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/SQLite

this model, a physical computer storing the data and executing queries within the RDMBS,
the server, is separate from the machine requesting the queries known as the client.

The client-server model is popular in business, health care, and other domains as it allows
security and monitoring of how the data is queried. It is also popular for many large open
data projects (i.e ensemble) where it is beneficial for data to be centrally maintained and
frequently accessed on the fly.

For the examples in class, we will use SQL to access smaller data-sets for which there are
more efficient approaches. In real world scenarios, databases can be extremely large (multiple
gigabytes or larger) that would be difficult to access directly in R.

There are a wild number of SQL-related packages in R - some for connecting to databases,
some for sending SQL queries. We will primarily use the “DBI” package. There may be others
which are better for interfacing with particular SQL databases, but generally the SQL syntax
should not differ across packages.

Lahman Example

For our examples, we will use the “Lahman” dataset which contains historical baseball data
from 1871-2022. It can be downloaded from https://github.com/jknecht/baseball-archive-
sqlite.

(Image from https://relational.fit.cvut.cz/dataset/Lahman.)

The RSQLite package contains the backend required to load up an SQLite database. The DBI
package interfaces with any database, in this case the SQLite data.

Packages
library(DBI) # For interfacing with a database

Import the SQLite database of the Lahman data
lahman <- dbConnect(RSQLite::SQLite(), "data/lahman_1871-2022.sqlite")
lahman

<SQLiteConnection>
Path: /Users/josh/repositories/_teaching/506-f23/data/lahman_1871-2022.sqlite
Extensions: TRUE

We now have an SQLite database we can work with. Let’s start by getting a list of all tables
contained within the database.

dbListTables(lahman)

2

https://www.ensembl.org/info/data/mysql.html
https://github.com/jknecht/baseball-archive-sqlite
https://github.com/jknecht/baseball-archive-sqlite
https://relational.fit.cvut.cz/dataset/Lahman

teams

yearID int

lgID varchar

teamID varchar

franchID varchar

divID varchar

Rank int

G int

Ghome int

W int

L int

DivWin varchar

WCWin varchar

LgWin varchar

WSWin varchar

R int

AB int

H int

2B int

3B int

HR int

BB int

SO int

SB int

CS int

HBP int

SF int

RA int

ER int

ERA int

CG int

SHO int

SV int

IPouts int

HA int

HRA int

BBA int

SOA int

E int

DP int

FP int

name varchar

park varchar

attendance int

BPF int

PPF int

teamIDBR varchar

teamIDlahman45 varchar

teamIDretro varchar

allstarfull

playerID varchar

yearID int

gameNum int

gameID varchar

teamID varchar

lgID varchar

GP int

startingPos int

players

lahmanID int

playerID varchar

managerID varchar

hofID varchar

birthYear int

birthMonth int

birthDay int

birthCountry varchar

birthState varchar

birthCity varchar

deathYear int

deathMonth int

deathDay int

deathCountry varchar

deathState varchar

deathCity varchar

nameFirst varchar

nameLast varchar

nameNote varchar

nameGiven varchar

nameNick varchar

weight int

height int

bats varchar

throws varchar

debut varchar

finalGame varchar

college varchar

lahman40ID varchar

lahman45ID varchar

retroID varchar

holtzID varchar

bbrefID varchar

halloffame

hofID varchar

yearID int

votedBy varchar

ballots int

needed int

votes int

inducted varchar

category varchar

appearances

yearID int

teamID varchar

lgID varchar

playerID varchar

G_all int

G_batting int

G_defense int

G_p int

G_c int

G_1b int

G_2b int

G_3b int

G_ss int

G_lf int

G_cf int

G_rf int

G_of int

G_dh int

G_ph int

G_pr int

managers

managerID varchar

yearID int

teamID varchar

lgID varchar

inseason int

G int

W int

L int

rank int

plyrMgr varchar

awardsmanagers

managerID varchar

awardID varchar

yearID int

lgID varchar

tie varchar

notes varchar

awardsplayers

playerID varchar

awardID varchar

yearID int

lgID varchar

tie varchar

notes varchar

awardssharemanagers

awardID varchar

yearID int

lgID varchar

managerID varchar

pointsWon int

pointsMax int

votesFirst int

awardsshareplayers

awardID varchar

yearID int

lgID varchar

playerID varchar

pointsWon int

pointsMax int

votesFirst int

batting

playerID varchar

yearID int

stint int

teamID varchar

lgID varchar

G int

G_batting int

AB int

R int

H int

2B int

3B int

HR int

RBI int

SB int

CS int

BB int

SO int

IBB int

HBP int

SH int

SF int

GIDP int

G_old int

battingpost

yearID int

round varchar

playerID varchar

teamID varchar

lgID varchar

G int

AB int

R int

H int

2B int

3B int

HR int

RBI int

SB int

CS int

BB int

SO int

IBB int

HBP int

SH int

SF int

GIDP int

els_teamnames

id int

lgid varchar

teamid varchar

franchid varchar

name varchar

park varchar

teamsfranchises

franchID varchar

franchName varchar

active varchar

NAassoc varchar

fielding

playerID varchar

yearID int

stint int

teamID varchar

lgID varchar

POS varchar

G int

GS int

InnOuts int

PO int

A int

E int

DP int

PB int

WP int

SB int

CS int

ZR int

fieldingof

playerID varchar

yearID int

stint int

Glf int

Gcf int

Grf int

fieldingpost

playerID varchar

yearID int

teamID varchar

lgID varchar

round varchar

POS varchar

G int

GS int

InnOuts int

PO int

A int

E int

DP int

TP int

PB int

SB int

CS int

managershalf

managerID varchar

yearID int

teamID varchar

lgID varchar

inseason int

half int

G int

W int

L int

rank int

pitching

playerID varchar

yearID int

stint int

teamID varchar

lgID varchar

W int

L int

G int

GS int

CG int

SHO int

SV int

IPouts int

H int

ER int

HR int

BB int

SO int

BAOpp int

ERA int

IBB int

WP int

HBP int

BK int

BFP int

GF int

R int

SH int

SF int

GIDP int

pitchingpost

playerID varchar

yearID int

round varchar

teamID varchar

lgID varchar

W int

L int

G int

GS int

CG int

SHO int

SV int

IPouts int

H int

ER int

HR int

BB int

SO int

BAOpp int

ERA int

IBB int

WP int

HBP int

BK int

BFP int

GF int

R int

SH int

SF int

GIDP int

salaries

yearID int

teamID varchar

lgID varchar

playerID varchar

salary int

schoolsplayers

playerID varchar

schoolID varchar

yearMin int

yearMax int

schools

schoolID varchar

schoolName varchar

schoolCity varchar

schoolState varchar

schoolNick varchar

seriespost

yearID int

round varchar

teamIDwinner varchar

lgIDwinner varchar

teamIDloser varchar

lgIDloser varchar

wins int

losses int

ties int

teamshalf

yearID int

lgID varchar

teamID varchar

Half varchar

divID varchar

DivWin varchar

Rank int

G int

W int

L int

3

images/lahman_2014.svg

[1] "AllstarFull" "Appearances" "AwardsManagers"
[4] "AwardsPlayers" "AwardsShareManagers" "AwardsSharePlayers"
[7] "Batting" "BattingPost" "CollegePlaying"
[10] "Fielding" "FieldingOF" "FieldingOFsplit"
[13] "FieldingPost" "HallOfFame" "HomeGames"
[16] "Managers" "ManagersHalf" "Parks"
[19] "People" "Pitching" "PitchingPost"
[22] "Salaries" "Schools" "SeriesPost"
[25] "Teams" "TeamsFranchises" "TeamsHalf"

We can also dive into a particular table and get a list of all columns.

dbListFields(lahman, "Batting")

[1] "playerID" "yearID" "stint" "teamID" "lgID" "G"
[7] "G_batting" "AB" "R" "H" "2B" "3B"
[13] "HR" "RBI" "SB" "CS" "BB" "SO"
[19] "IBB" "HBP" "SH" "SF" "GIDP" "G_old"

Working with tables

Search, subset, and limiting clauses

The basic structure of a SQL query contains a SELECT statement indicating which columns
are desired and a FROM clause explaining where to find them (as we saw above).

dbGetQuery(lahman, "SELECT playerID FROM Batting LIMIT 5")

playerID
1 aardsda01
2 aardsda01
3 aardsda01
4 aardsda01
5 aardsda01

The string, "SELECT playerID FROM Batting LIMIT 5" is an SQL query. SELECT is the
statement, and it has the basic syntax of

SELECT var1, var2 FROM table

4

We add an additional clause, LIMIT 5 to reduce the amount of output. This is good practice
when developing new queries as it prevents large wait times only to discover a bug.

You can use a wild card * to select all columns in a table:

dbGetQuery(lahman, "SELECT * FROM Batting LIMIT 5")

playerID yearID stint teamID lgID G G_batting AB R H 2B 3B HR RBI SB CS BB
1 aardsda01 2004 1 SFN NL 11 NA 0 0 0 0 0 0 0 0 0 0
2 aardsda01 2006 1 CHN NL 45 NA 2 0 0 0 0 0 0 0 0 0
3 aardsda01 2007 1 CHA AL 25 NA 0 0 0 0 0 0 0 0 0 0
4 aardsda01 2008 1 BOS AL 47 NA 1 0 0 0 0 0 0 0 0 0
5 aardsda01 2009 1 SEA AL 73 NA 0 0 0 0 0 0 0 0 0 0
SO IBB HBP SH SF GIDP G_old

1 0 0 0 0 0 0 NA
2 0 0 0 1 0 0 NA
3 0 0 0 0 0 0 NA
4 1 0 0 0 0 0 NA
5 0 0 0 0 0 0 NA

Note that by convention, the keywords in SQL queries are capitalized, but SQL is itself not
case sensitive, so this works as well:

dbGetQuery(lahman, "select * from batting limit 5")

playerID yearID stint teamID lgID G G_batting AB R H 2B 3B HR RBI SB CS BB
1 aardsda01 2004 1 SFN NL 11 NA 0 0 0 0 0 0 0 0 0 0
2 aardsda01 2006 1 CHN NL 45 NA 2 0 0 0 0 0 0 0 0 0
3 aardsda01 2007 1 CHA AL 25 NA 0 0 0 0 0 0 0 0 0 0
4 aardsda01 2008 1 BOS AL 47 NA 1 0 0 0 0 0 0 0 0 0
5 aardsda01 2009 1 SEA AL 73 NA 0 0 0 0 0 0 0 0 0 0
SO IBB HBP SH SF GIDP G_old

1 0 0 0 0 0 0 NA
2 0 0 0 1 0 0 NA
3 0 0 0 0 0 0 NA
4 1 0 0 0 0 0 NA
5 0 0 0 0 0 0 NA

To obtain the number of rows in a table, we can use the COUNT() function:

dbGetQuery(lahman, "SELECT COUNT(*) FROM Batting")

5

COUNT(*)
1 112184

A quick loop can tell us the size of all tables:

for (t in dbListTables(lahman)) {
rows <- dbGetQuery(lahman, paste("SELECT COUNT(*) FROM", t))
cols <- length(dbListFields(lahman, t))
print(paste(t, "-", rows, "x", cols))

}

[1] "AllstarFull - 5516 x 8"
[1] "Appearances - 112106 x 21"
[1] "AwardsManagers - 179 x 6"
[1] "AwardsPlayers - 6531 x 6"
[1] "AwardsShareManagers - 425 x 7"
[1] "AwardsSharePlayers - 6879 x 7"
[1] "Batting - 112184 x 24"
[1] "BattingPost - 16374 x 22"
[1] "CollegePlaying - 17350 x 3"
[1] "Fielding - 149365 x 18"
[1] "FieldingOF - 12028 x 6"
[1] "FieldingOFsplit - 35315 x 18"
[1] "FieldingPost - 15540 x 17"
[1] "HallOfFame - 4323 x 9"
[1] "HomeGames - 3200 x 9"
[1] "Managers - 3718 x 10"
[1] "ManagersHalf - 93 x 10"
[1] "Parks - 255 x 7"
[1] "People - 20676 x 25"
[1] "Pitching - 50402 x 30"
[1] "PitchingPost - 6538 x 30"
[1] "Salaries - 26428 x 5"
[1] "Schools - 1207 x 5"
[1] "SeriesPost - 378 x 9"
[1] "Teams - 3015 x 48"
[1] "TeamsFranchises - 120 x 4"
[1] "TeamsHalf - 52 x 10"

Limiting Clauses

Aside from LIMIT, there are more nuanced and powerful ways of extracting specific entries.

6

WHERE

We can use Boolean comparisons in a WHERE clause as shown in the example below. We find all
player-seasons since 2000 in which the player was credited with an RBI 100 or more times.

Here is our query:

SELECT playerID, yearID, RBI
FROM batting
WHERE RBI >= 100 AND yearID >= 2000

And here it is in R:

Get all 100+ RBI seasons since 2000
head(dbGetQuery(lahman, "
SELECT playerID, yearID, RBI
FROM batting
WHERE RBI >= 100 AND yearID >= 2000
"))

playerID yearID RBI
1 abreubo01 2001 110
2 abreubo01 2003 101
3 abreubo01 2004 105
4 abreubo01 2005 102
5 abreubo01 2007 101
6 abreubo01 2008 100

(Note that the spacing here is stylistic - in both SQL and dbGetQuery splitting onto multiple
lines and aligning on the first space do not affect the query, but do make it easier to read!)

We of course could use LIMIT instead of head() to keep it entirely inside the query. In addition,
LIMIT will be much faster than head():

library(microbenchmark)
microbenchmark(
head = head(dbGetQuery(lahman, "SELECT playerID FROM batting")),
limit = dbGetQuery(lahman, "SELECT playerID FROM batting LIMIT 6"))

Warning in microbenchmark(head = head(dbGetQuery(lahman, "SELECT playerID FROM
batting")), : less accurate nanosecond times to avoid potential integer
overflows

7

Unit: microseconds
expr min lq mean median uq max neval cld
head 13709.990 13784.385 14000.0289 13837.1925 13917.4295 16826.523 100 a
limit 101.106 102.664 106.5336 104.8985 107.5635 143.787 100 b

IN

To select on a column by testing against a set of fixed values use IN. We also rename the
columns as we gather them, leaving the original data alone

SELECT nameGiven AS given, nameLast AS last, birthYear
FROM master
WHERE nameLast IN ('Alou', 'Griffey')

Use single quotations (') instead of double (") - in some flavors of SQL, double quotes have
different meaning (if they’re used at all), whereas it is consistent that single quotes start and
end strings. In addition, this avoids conflict if you use double quotes to start the string in R,
and single quotes in the actual query.

dbGetQuery(lahman, "
SELECT nameGiven AS given, nameLast AS last, birthYear
FROM People
WHERE nameLast IN ('Alou', 'Griffey')
")

given last birthYear
1 Felipe Rojas Alou 1935
2 Jesus Maria Rojas Alou 1942
3 Mateo Rojas Alou 1938
4 Moises Rojas Alou 1966
5 George Kenneth Griffey 1950
6 George Kenneth Griffey 1969

LIKE

Use a LIKE predicate with a WHERE clause to get partial string matching. You can use % to
match any sub-string.

SELECT nameGiven AS given, nameLast AS last, birthYear
FROM People
WHERE nameLast LIKE '%riff%'

8

Find all players with last name containing a 'riff' sub-string
dbGetQuery(lahman, "
SELECT nameGiven AS given, nameLast AS last, birthYear
FROM People
WHERE nameLast LIKE '%riff%'
LIMIT 5
")

given last birthYear
1 Arthur Joseph Griffin 1988
2 Alfredo Claudino Griffin 1957
3 Bartholomew Joseph Griffith 1896
4 Clark Calvin Griffith 1869
5 Robert Derrell Griffith 1943

Most SQL implementations also have a REGEXP or REGEXLIKE function that works with regular
expressions, but SQLite requires a user defined regex() for its use so we skip it here.

Combining limiting clauses

Limiting WHERE clauses can be combined using AND and OR. Clauses can be negated using
NOT.

SELECT nameGiven AS given, nameLast AS last,
birthYear, birthCountry

FROM People
WHERE birthCountry == 'P.R.' AND birthYear LIKE '199%'

Find all players born in Puerto Rico during the 1990's
dbGetQuery(lahman, "
SELECT nameGiven AS given, nameLast AS last,

birthYear, birthCountry
FROM People
WHERE birthCountry == 'P.R.' AND birthYear LIKE '199%'
LIMIT 5
")

given last birthYear birthCountry
1 Ednel Javier Baez 1992 P.R.
2 Jose Orlando Berrios 1994 P.R.

9

https://stackoverflow.com/questions/5071601/how-do-i-use-regex-in-a-sqlite-query

3 Victor Manuel Caratini 1993 P.R.
4 Willi Rafael Castro 1997 P.R.
5 Alexander Claudio 1992 P.R.

Find all players from Hawaii or Alaska
dbGetQuery(lahman, "
SELECT nameGiven AS given, nameLast AS last,

birthYear, birthState
FROM People
WHERE birthState == 'HI' OR birthState == 'AK'
LIMIT 5
")

given last birthYear birthState
1 Benny Peter Agbayani 1971 HI
2 Dustin Kamakana Mai Ku'u Makualani Antolin 1989 HI
3 Anthony Lee Barnette 1983 AK
4 Chad Robert Bentz 1980 AK
5 Douglas Edmund Capilla 1952 HI

Find all players from Hawaii or Alaska that aren't born in 1971
dbGetQuery(lahman, "
SELECT nameGiven AS given, nameLast AS last,

birthYear, birthState
FROM People
WHERE (birthState == 'HI' OR birthState == 'AK') AND NOT birthyear == 1971
LIMIT 5
")

given last birthYear birthState
1 Dustin Kamakana Mai Ku'u Makualani Antolin 1989 HI
2 Anthony Lee Barnette 1983 AK
3 Chad Robert Bentz 1980 AK
4 Douglas Edmund Capilla 1952 HI
5 Shawn Anthony Chacon 1977 AK

ORDER BY

Use an ORDER BY clause with a comma separated list of columns to arrange the table.

10

SELECT playerID, yearID, RBI
FROM Batting
WHERE RBI >= 100 AND yearID >= 2010
ORDER BY yearID, RBI

Get all 100+ RBI seasons since 2010, ordered
rbi100 <- dbGetQuery(lahman, "
SELECT playerID, yearID, RBI
FROM batting
WHERE RBI >= 100 AND yearID >= 2010
ORDER BY yearID, -RBI
")
head(rbi100)

playerID yearID RBI
1 cabremi01 2010 126
2 rodrial01 2010 125
3 bautijo02 2010 124
4 pujolal01 2010 118
5 gonzaca01 2010 117
6 guerrvl01 2010 115

tail(rbi100)

playerID yearID RBI
201 olsonma02 2022 103
202 croncj01 2022 102
203 machama01 2022 102
204 garciad02 2022 101
205 freemfr01 2022 100
206 turnetr01 2022 100

Aggregations, Group By

We can perform aggregations such as sums, means, and counts by using a GROUP BY clause.

Here we find the players with the most total RBI since 2010.

11

SELECT playerID, SUM(RBI) AS rbi_total
FROM Batting
WHERE yearID >= 2010
GROUP BY playerID
ORDER BY -rbi_total

Count total RBIs since 2010 by player
dbGetQuery(lahman, "
SELECT playerID, SUM(RBI) AS rbi_total
FROM Batting
WHERE yearID >= 2010
GROUP BY playerID
ORDER BY -rbi_total
LIMIT 10
")

playerID rbi_total
1 cruzne02 1144
2 pujolal01 1106
3 cabremi01 1094
4 goldspa01 1042
5 freemfr01 1041
6 encared01 975
7 stantmi03 971
8 arenano01 968
9 mccutan01 948
10 longoev01 933

Having

The operator defining a limiting clause on an aggregate variable is HAVING. It is essentially
like WHERE except for operating on summary statistics rather than individual rows. In other
words, HAVING refers to the output table specified in SELECT rather than the input table(s)
specified using FROM.

In the query below, observe that the HAVING clause comes after the GROUP BY but before the
ORDER BY.

SELECT playerID, SUM(RBI) AS rbi_total
FROM Batting
WHERE yearID >= 2010

12

GROUP BY playerID
HAVING rbi_total >= 1000
ORDER BY -rbi_total

Players with 1000+ RBIs since 2010
dbGetQuery(lahman, "
SELECT playerID, SUM(RBI) AS rbi_total
FROM Batting
WHERE yearID >= 2010
GROUP BY playerID
HAVING rbi_total >= 1000
ORDER BY -rbi_total
")

playerID rbi_total
1 cruzne02 1144
2 pujolal01 1106
3 cabremi01 1094
4 goldspa01 1042
5 freemfr01 1041

Joins

So far we have discussed working with single tables only. The SQL term for merging data from
two or more tables is a ‘join’. All joins are based on the idea of equating rows that match on
one or more variables. Here’s a nice visualization of the different types of joins. In this image,
the A table is the primary table (e.g. FROM), and the B table is the table you are joining in.

13

We’ll demonstrate a few of these.

Inner Join

What if we wanted to supplement our earlier table showing players with 1000+ RBI since 2010
with information about those players? We could use an inner join of our RBI table with the
“People” table to accomplish this.

JOINs are clauses (similar to FROM, GROUP BY, etc) but typically considered as “part of” the
FROM. So in indentation here, I choose to indicate that relationship, though others may not.

SELECT p.nameFirst AS first, p.nameLast AS last, p.birthState AS state,
p.birthCountry AS country, SUM(b.RBI) AS rbi_total

FROM Batting AS b
INNER JOIN People AS p ON b.playerID = p.playerID

WHERE b.yearID >= 2010
GROUP BY b.playerID
HAVING rbi_total >= 1000

14

images/joins.png

ORDER BY -rbi_total

dbGetQuery(lahman, "
SELECT p.nameFirst AS first, p.nameLast AS last, p.birthState AS state,

p.birthCountry AS country, SUM(b.RBI) AS rbi_total
FROM Batting AS b

INNER JOIN People AS p ON b.playerID = p.playerID
WHERE b.yearID >= 2010
GROUP BY b.playerID
HAVING rbi_total >= 1000
ORDER BY -rbi_total
")

first last state country rbi_total
1 Nelson Cruz Monte Cristi D.R. 1144
2 Albert Pujols Distrito Nacional D.R. 1106
3 Miguel Cabrera Aragua Venezuela 1094
4 Paul Goldschmidt DE USA 1042
5 Freddie Freeman CA USA 1041

Note the renaming of the tables - FROM batting AS b and INNER JOIN People AS p. This
allows us to preface variables names, e.g. p.nameFirst, to indicate which table to look for the
variable. We could of course use People.nameFirst but it’s shorter to rename.

The ON clause determines the connecting variables between the two tables.

Left & Right (Outer) Joins

In a left join – sometimes called a left outer join – we add columns from the right table to
the left table when matching rows are found. Rows from the left table with no matches from
the right table are retained with columns from the right table filled in as NULL (i.e. NA). When
there are multiple matches of a row from the left table to rows in the right table, these each
become a row in the new table.

A right join is equivalent to a left join with the exception that the roles between right and left
are reversed.

Left joins are particularly useful when the information in the right table is only applicable to
a subset of the rows from the left table. As an example, suppose we would like to know which
US colleges and universities have produced the most “Rookie of the Year Awards” given to the
best debuting player(s) each season.

15

To get started, we first test a query to find the last college attended.

-- Last college attended
SELECT *
FROM CollegePlaying
GROUP BY playerID
HAVING yearID == max(YearID)

Query to find last college attended
dbGetQuery(lahman, "
SELECT *
FROM CollegePlaying
GROUP BY playerID
HAVING yearID == max(YearID)
LIMIT 5
")

playerID schoolID yearID
1 aardsda01 rice 2003
2 abadan01 gamiddl 1993
3 abbeybe01 vermont 1892
4 abbotje01 kentucky 1994
5 abbotji01 michigan 1988

Now, we find all distinct awards in the AwardPlayers table.

Distinct Player Awards
dbGetQuery(lahman, "
SELECT DISTINCT(awardID)
FROM AwardsPlayers
LIMIT 5
")

awardID
1 Baseball Magazine All-Star
2 Triple Crown
3 Pitching Triple Crown
4 Most Valuable Player
5 TSN All-Star

Next we test a query for finding all Rookie of the Year Awards.

16

SELECT *
FROM AwardsPlayers
WHERE awardID LIKE 'Rookie%'

Query to find Rookie of the Year Awards
dbGetQuery(lahman, "
SELECT *
FROM AwardsPlayers
WHERE awardID LIKE 'Rookie%'
LIMIT 5
")

playerID awardID yearID lgID tie notes
1 robinja02 Rookie of the Year 1947 ML <NA> <NA>
2 darkal01 Rookie of the Year 1948 ML <NA> <NA>
3 sievero01 Rookie of the Year 1949 AL <NA> <NA>
4 newcodo01 Rookie of the Year 1949 NL <NA> <NA>
5 dropowa01 Rookie of the Year 1950 AL <NA> <NA>

Finally, we use a left join of the tables for Rookie of the Year awards and last college attended
to match winners to their schools. We need a left join as many of the winners may never
have played collegiate baseball, and we want to keep them, but we don’t want to keep colleges
which never produced any winners.

SELECT roy.playerID AS playerID, roy.yearID AS year, lgID AS league, schoolID
FROM AwardsPlayers AS roy

LEFT JOIN
(SELECT * --Final College Attended

FROM CollegePlaying
GROUP BY playerID
HAVING yearID == MAX(YearID)

) AS c ON c.playerID = roy.playerID
WHERE awardID LIKE 'Rookie%'

Note the nested structure here - Inside the LEFT JOIN, we write a separate SELECT state-
ment. We could have done this in two steps: generate a new table (using CREATE TABLE
finalcollege AS followed by the SELECT statement) and then directly use it in the clause,
LEFT JOIN finalcollege AS c.

Query to find last college for ROY
dbGetQuery(lahman, "

17

SELECT roy.playerID AS playerID, roy.yearID AS year, lgID AS league, schoolID
FROM AwardsPlayers AS roy

LEFT JOIN
(SELECT * --Final College Attended

FROM CollegePlaying
GROUP BY playerID
HAVING yearID == MAX(YearID)

) AS c ON c.playerID = roy.playerID
WHERE awardID LIKE 'Rookie%'
LIMIT 5
")

playerID year league schoolID
1 robinja02 1947 ML ucla
2 darkal01 1948 ML ulala
3 sievero01 1949 AL <NA>
4 newcodo01 1949 NL <NA>
5 dropowa01 1950 AL uconn

To complete the example, we modify the query to display which schools have produced the
most ROY awards in total.

SELECT schoolID, COUNT(c.playerID) AS ROY_awards
FROM AwardsPlayers roy

LEFT JOIN
(SELECT * --Last College Attended

FROM CollegePlaying
GROUP BY playerID
HAVING yearID == MAX(YearID)

) c ON c.playerID = roy.playerID
WHERE awardID LIKE 'Rookie%'

AND schoolID IS NOT NULL
GROUP BY schoolID
HAVING ROY_awards > 1
ORDER BY -ROY_awards

Which schools have produced the most ROY?
dbGetQuery(lahman, "
SELECT schoolID, COUNT(c.playerID) AS ROY_awards
FROM AwardsPlayers roy

LEFT JOIN

18

(SELECT * --Last College Attended
FROM CollegePlaying
GROUP BY playerID
HAVING yearID == MAX(YearID)

) c ON c.playerID = roy.playerID
WHERE awardID LIKE 'Rookie%'

AND schoolID IS NOT NULL
GROUP BY schoolID
HAVING ROY_awards > 1
ORDER BY -ROY_awards
")

schoolID ROY_awards
1 arizonast 4
2 michigan 3
3 ucla 3
4 usc 3
5 floridaam 2
6 longbeach 2
7 oklahoma 2
8 texasam 2
9 wagner 2

Order of clauses

The previous example demonstrated the order of almost all clauses:

SELECT
FROM
JOIN
WHERE
GROUP BY
HAVING
ORDER BY
LIMIT

Another Example

The “sakila” database is a fake data set created by the MySQL team which simulates a very
rich database of many tables. A map of its contents is:

19

https://dev.mysql.com/doc/sakila/en/

It simulates the database of a Blockbuster-style rental store. It includes customer data, movie
data, and rental data linking the two. An SQLite database containing the data can be down-
loaded from https://github.com/bradleygrant/sakila-sqlite3.

sakila <- dbConnect(RSQLite::SQLite(), "~/Downloads/sakila_master.db")
dbListTables(sakila)

[1] "actor" "address" "category"
[4] "city" "country" "customer"
[7] "customer_list" "film" "film_actor"
[10] "film_category" "film_list" "film_text"
[13] "inventory" "language" "payment"
[16] "rental" "sales_by_film_category" "sales_by_store"
[19] "staff" "staff_list" "store"

Let’s use this data to examine which actor or actress it the most “rented”. Looking at the
tables, we have the “rental” table which contains records of every movie rented. From here,
we are connected to the “inventory” table, which records which movie was actually rented. So
first, let’s obtain a list of every movie ever rented.

20

https://github.com/bradleygrant/sakila-sqlite3

SELECT i.film_id
FROM rental AS r

LEFT JOIN inventory AS i ON i.inventory_id = r.inventory_id

We use a left join here because there may be movies in the inventory that were never rented.

dbGetQuery(sakila, "
SELECT i.film_id
FROM rental AS r

LEFT JOIN inventory AS i ON i.inventory_id = r.inventory_id
LIMIT 5
")

film_id
1 1
2 1
3 1
4 1
5 1

Now, we could join next to the “films” table, however, you may notice that both the “films”
and “film_actor” have a film_id key, so we can completely bypass “films”.

SELECT fa.actor_id
FROM film_actor AS fa

RIGHT JOIN
(SELECT i.film_id

FROM rental AS r
LEFT JOIN inventory AS i ON i.inventory_id = r.inventory_id

) AS rr ON fa.film_id = rr.film_id

This time we use a right join as we don’t want to list any actors which were in movies that
weren’t rented.

dbGetQuery(sakila, "
SELECT fa.actor_id
FROM film_actor AS fa

RIGHT JOIN
(SELECT i.film_id

FROM rental AS r
LEFT JOIN inventory AS i ON i.inventory_id = r.inventory_id

21

) AS rr ON fa.film_id = rr.film_id
LIMIT 5
")

actor_id
1 1
2 1
3 1
4 1
5 1

We now have a list of actor ID’s, next we just need to connect it to the actor names.

SELECT COUNT(a.actor_id) AS count, a.first_name, a.last_name
FROM actor AS a

RIGHT JOIN
(SELECT fa.actor_id

FROM film_actor AS fa
RIGHT JOIN
(SELECT i.film_id

FROM rental AS r
LEFT JOIN inventory AS i
ON i.inventory_id = r.inventory_id

) AS rr ON fa.film_id = rr.film_id
) AS ff ON ff.actor_id = a.actor_id

GROUP BY a.actor_id
ORDER by -count

dbGetQuery(sakila, "
SELECT COUNT(a.actor_id) AS count, a.first_name, a.last_name
FROM actor AS a

RIGHT JOIN
(SELECT fa.actor_id

FROM film_actor AS fa
RIGHT JOIN
(SELECT i.film_id

FROM rental AS r
LEFT JOIN inventory AS i
ON i.inventory_id = r.inventory_id

) AS rr ON fa.film_id = rr.film_id
) AS ff ON ff.actor_id = a.actor_id

22

GROUP BY a.actor_id
ORDER by -count
LIMIT 5
")

count first_name last_name
1 753 GINA DEGENERES
2 678 MATTHEW CARREY
3 674 MARY KEITEL
4 654 ANGELA WITHERSPOON
5 640 WALTER TORN

23

	SQL and Relational Databases
	Lahman Example

	Working with tables
	Search, subset, and limiting clauses
	Limiting Clauses
	Combining limiting clauses
	ORDER BY

	Aggregations, Group By
	Having

	Joins
	Inner Join
	Left & Right (Outer) Joins

	Order of clauses
	Another Example

