
R’s tidyverseStatistics 506

The Tidyverse

The “Tidyverse” is a series of R packages developed primarily by Hadley Wickham and his
team at Posit (formerly RStudio). In its own words, it is an “opinionated collection of R
packages designed for data science”.

Proponents of the tidyverse (so-named because one of the original packages was tidyr) argue
that it provides a consistent “grammar” of statistics that is easier for new users to understand.
Whether this is true or not remains to be seen.

The primary package in the tidyverse is dplyr which we will be going over. Additionally the
tibble package introduces the tibble, which is an extension of a data.frame. There are a
number of other packages which are more niche:

• tidyr: Reshaping data (wide to long)
• readr: Reading in CSV data
• purrr: Functional programming
• stringr: String manipulation
• forcats: factor manipulation

Finally, the ggplot2 predates anything about the tidyverse, but none-the-less is now consid-
ered part of the tidyverse. We will be covering ggplot2 in a separate set of notes.

In addition to these formal tidyverse packages, you will find many packages written by other
authors which interact with the tidyverse. These typically aren’t as “opinionated” and can be
used with or without the rest of the tidyverse. For example,

• haven: Reading and writing data from Stata, SAS and SPSS
• lubridate: Working with datetime variables
• rvest: Web-scraping

library(tidyverse)

1

https://www.tidyverse.org/

-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
v dplyr 1.1.3 v readr 2.1.4
v forcats 1.0.0 v stringr 1.5.0
v ggplot2 3.4.3 v tibble 3.2.1
v lubridate 1.9.3 v tidyr 1.3.0
v purrr 1.0.2
-- Conflicts -- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag() masks stats::lag()
i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors

When loading the meta-library tidyverse, the main above packages also get loaded, as seen
in that note.

Piping

The tidyverse is heavily invested in the idea of “piping”. The “pipe” operator is formally
defined in the magittr package.

x <- rnorm(10)
mean(x)

[1] -0.007047451

x %>% mean

[1] -0.007047451

x %>% mean()

[1] -0.007047451

The left side of the pipe gets included as the first argument of the right side function. Addi-
tional arguments can be passed as needed.

x[1] <- NA
x %>% mean(na.rm = TRUE)

2

[1] -0.01171557

The object can be passed into different slots with the .:

data(mtcars)
lm(mpg ~ wt, data = mtcars)

Call:
lm(formula = mpg ~ wt, data = mtcars)

Coefficients:
(Intercept) wt

37.285 -5.344

mtcars %>% lm(mpg ~ wt)

Error in as.data.frame.default(data): cannot coerce class '"formula"' to a data.frame

mtcars %>% lm(mpg ~ wt, data = .)

Call:
lm(formula = mpg ~ wt, data = .)

Coefficients:
(Intercept) wt

37.285 -5.344

Note that as of R 4.1, R has it’s own base pipe, |>:

x |> mean(na.rm = TRUE)

[1] -0.01171557

mtcars |> lm(mpg ~ wt, data = _)

3

Call:
lm(formula = mpg ~ wt, data = mtcars)

Coefficients:
(Intercept) wt

37.285 -5.344

There are a lot of differences between %>% and |>, which this stackoverflow answer goes into
great detail about, but in most situations, they will function identically.

Of note is that |> is substantially faster, primarily because it does simple substitution: x |>
mean() simply processes mean(x) without any additional processing. %>% does a lot of addi-
tional processing, which does enable some other features, but those features are not commonly
used.

Should you use pipes?

There is nothing pipes can do that cannot be accomplished without their use. The
choice between using pipes is (speed-considerations of %>% vs |> aside) entirely a personal code
style choice.

dplyr

We will be using the 2009 RECS data to demonstrate the functionality of dplyr. We’ll
approach this as a case study in which we set out to answer the question:

Which state has the highest proportion of single-family attached homes?

There are five main functions that dplyr uses. There are, of course, many more, but these
are the most common ones.

• select() picks variables based on their names.
• filter() picks cases based on their values.
• arrange() changes the ordering of the rows.
• mutate() adds new variables that are functions of existing variables
• summarize() reduces multiple values down to a single summary.

4

https://stackoverflow.com/questions/67633022/what-are-the-differences-between-rs-native-pipe-and-the-magrittr-pipe/72086492#72086492
https://www.eia.gov/consumption/residential/data/2009/index.php?view=microdata

Data cleaning

Let’s begin by creating a clean and tidy data frame with the necessary variables. We’ll need
to keep the two variables of interest and the sample weight. Later we will also make use of the
replicate weights to compute standard errors.

Here we read in the data, either from a local file or directly from the web.

recs_tib <- readr::read_delim("data/recs2009_public.csv")

Note the use of readr rather than read.csv to stick within the tidyverse. recs_tib is now
a tibble. We will go into more detail later about tibbles, for now they are mostly just
data.frames.

Next, we’ll use select() to drop all but a subset of variables. We’ll need to keep “RE-
PORTABLE_DOMAIN” which records the State, “TYPEHUQ” which records the type of
houses, and “NWEIGHT” which records the weight for the record which we’ll need to use
later. (Sampling weights is a massive topic outside of scope for this class; for now just un-
derstand that by using these weights in our analysis [e.g. weighted means or weighted least
squares], we can obtain estimates which are appropriate for the entire US population.)

recs_homes <- recs_tib %>%
select(REPORTABLE_DOMAIN,

TYPEHUQ,
NWEIGHT) %>%

rename(state = REPORTABLE_DOMAIN,
type = TYPEHUQ,
weight = NWEIGHT)

recs_homes

A tibble: 12,083 x 3
state type weight
<dbl> <dbl> <dbl>

1 12 2 2472.
2 26 2 8599.
3 1 5 8970.
4 7 2 18004.
5 1 3 6000.
6 10 2 4232.
7 3 2 7862.
8 17 2 6297.
9 5 3 12157.
10 12 2 3242.

5

i 12,073 more rows

Stylistically, note the convention of ending each line on the pipe.

Next, we clean up the values to something more easily interpreted. The values used here come
from the code book available here.

recs_homes <- recs_homes %>%
mutate(state = sapply(state, function(x) {

switch(x,
"CT, ME, NH, RI, VT", "MA", "NY", "NJ", "PA",
"IL", "IN, OH", "MI", "WI", "IA, MN, ND, SD",
"KS, NE", "MO", "VA", "DE, DC, MD, WV", "GA",
"NC, SC" , "FL", "AL, KY, MS", "TN",
"AR, LA, OK", "TX", "CO", "ID, MT, UT, WY", "AZ",
"NV, NM", "CA", "AK, HI, OR, WA")

}), type = sapply(type, function(x) {
switch(x,

"MobileHome",
"SingleFamilyDetached",
"SingleFamilyAttached",
"ApartmentFew",
"ApartmentMany")

}))
recs_homes

A tibble: 12,083 x 3
state type weight
<chr> <chr> <dbl>

1 MO SingleFamilyDetached 2472.
2 CA SingleFamilyDetached 8599.
3 CT, ME, NH, RI, VT ApartmentMany 8970.
4 IN, OH SingleFamilyDetached 18004.
5 CT, ME, NH, RI, VT SingleFamilyAttached 6000.
6 IA, MN, ND, SD SingleFamilyDetached 4232.
7 NY SingleFamilyDetached 7862.
8 FL SingleFamilyDetached 6297.
9 PA SingleFamilyAttached 12157.
10 MO SingleFamilyDetached 3242.
i 12,073 more rows

It probably would have been cleaner to write those functions externally. They certainly would
be easier to test.

6

https://www.eia.gov/consumption/residential/data/2009/xls/recs2009_public_codebook.xlsx

Aggregating by group

Recall that we are interested in computing the proportion of each housing type by state. We
can do this using a split-apply-combine paradigm. We split the data by a grouping variable,
apply a function to each split of the data, then combine the results back into a single dataset.

In dplyr the group_by function handles the split step, typically summarize handles the apply
step, and ungroup (optionally) handles the combine step.

recs_homes_group_states <- recs_homes %>%
group_by(state, type)

recs_homes_group_states

A tibble: 12,083 x 3
Groups: state, type [134]

state type weight
<chr> <chr> <dbl>

1 MO SingleFamilyDetached 2472.
2 CA SingleFamilyDetached 8599.
3 CT, ME, NH, RI, VT ApartmentMany 8970.
4 IN, OH SingleFamilyDetached 18004.
5 CT, ME, NH, RI, VT SingleFamilyAttached 6000.
6 IA, MN, ND, SD SingleFamilyDetached 4232.
7 NY SingleFamilyDetached 7862.
8 FL SingleFamilyDetached 6297.
9 PA SingleFamilyAttached 12157.
10 MO SingleFamilyDetached 3242.
i 12,073 more rows

Note the tibble keeping track of the grouping. Next, the aggregation:

recs_type_state_sum <- recs_homes_group_states %>%
summarize(homes = sum(weight))

`summarise()` has grouped output by 'state'. You can override using the
`.groups` argument.

recs_type_state_sum

7

A tibble: 134 x 3
Groups: state [27]

state type homes
<chr> <chr> <dbl>

1 AK, HI, OR, WA ApartmentFew 374743.
2 AK, HI, OR, WA ApartmentMany 946196.
3 AK, HI, OR, WA MobileHome 384298.
4 AK, HI, OR, WA SingleFamilyAttached 189645.
5 AK, HI, OR, WA SingleFamilyDetached 2833057.
6 AL, KY, MS ApartmentFew 183983.
7 AL, KY, MS ApartmentMany 201344.
8 AL, KY, MS MobileHome 422086.
9 AL, KY, MS SingleFamilyAttached 192720.
10 AL, KY, MS SingleFamilyDetached 3637141.
i 124 more rows

Pay close attention to the change in grouping. When summarize() is called we lose the most
nested group.

Finally we can optionally ungroup. The reason it is optional is that a lot of functions are
not aware of the grouping, so it rarely is wrong to simply leave it grouped. However, there
are issues that can occur when leaving something grouped, so for safety I recommend always
ungrouping.

recs_types_state_sum <- recs_type_state_sum %>%
ungroup()

recs_types_state_sum

A tibble: 134 x 3
state type homes
<chr> <chr> <dbl>

1 AK, HI, OR, WA ApartmentFew 374743.
2 AK, HI, OR, WA ApartmentMany 946196.
3 AK, HI, OR, WA MobileHome 384298.
4 AK, HI, OR, WA SingleFamilyAttached 189645.
5 AK, HI, OR, WA SingleFamilyDetached 2833057.
6 AL, KY, MS ApartmentFew 183983.
7 AL, KY, MS ApartmentMany 201344.
8 AL, KY, MS MobileHome 422086.
9 AL, KY, MS SingleFamilyAttached 192720.
10 AL, KY, MS SingleFamilyDetached 3637141.
i 124 more rows

8

Note that we could have done this in one step:

recs_types_state_sum <- recs_homes %>%
group_by(state, type) %>%
summarize(homes = sum(weight)) %>%
ungroup()

`summarise()` has grouped output by 'state'. You can override using the
`.groups` argument.

recs_types_state_sum

A tibble: 134 x 3
state type homes
<chr> <chr> <dbl>

1 AK, HI, OR, WA ApartmentFew 374743.
2 AK, HI, OR, WA ApartmentMany 946196.
3 AK, HI, OR, WA MobileHome 384298.
4 AK, HI, OR, WA SingleFamilyAttached 189645.
5 AK, HI, OR, WA SingleFamilyDetached 2833057.
6 AL, KY, MS ApartmentFew 183983.
7 AL, KY, MS ApartmentMany 201344.
8 AL, KY, MS MobileHome 422086.
9 AL, KY, MS SingleFamilyAttached 192720.
10 AL, KY, MS SingleFamilyDetached 3637141.
i 124 more rows

Reshaping and formatting results for presentation

To proceed, let’s reshape the data to have one row per state. We can do this using the
tidyr::pivot_wider() function. The tidyr package is designed for

recs_type_state <- recs_type_state_sum %>%
tidyr::pivot_wider(names_from = type,

values_from = homes)
recs_type_state

A tibble: 27 x 6
Groups: state [27]

9

state ApartmentFew ApartmentMany MobileHome SingleFamilyAttached
<chr> <dbl> <dbl> <dbl> <dbl>

1 AK, HI, OR, WA 374743. 946196. 384298. 189645.
2 AL, KY, MS 183983. 201344. 422086. 192720.
3 AR, LA, OK 322290. 605024. 239154. 214708.
4 AZ 24143. 380745. 336741. 77391.
5 CA 1034231. 2871668. 394079. 856699.
6 CO 147208. 260461. 97400. 203527.
7 CT, ME, NH, RI, VT 422981. 501581. 45209. 144269.
8 DE, DC, MD, WV 109699. 634137. 253861. 590254.
9 FL 414436. 1143320. 974800. 261688.
10 GA 124408. 463603. 127089. 101213.
i 17 more rows
i 1 more variable: SingleFamilyDetached <dbl>

Next, compute all proportions

recs_type_state <- recs_type_state %>%
mutate(Total = sum(ApartmentFew, ApartmentMany, MobileHome,

SingleFamilyAttached, SingleFamilyDetached,
na.rm = TRUE),

ApartmentFew = 100 * ApartmentFew / Total,
ApartmentMany = 100 * ApartmentMany / Total,
MobileHome = 100 * MobileHome / Total,
SingleFamilyAttached = 100 * SingleFamilyAttached / Total,
SingleFamilyDetached = 100 * SingleFamilyDetached / Total) %>%

select(-Total) %>% # Drop total
arrange(SingleFamilyAttached)

recs_type_state

A tibble: 27 x 6
Groups: state [27]

state ApartmentFew ApartmentMany MobileHome SingleFamilyAttached
<chr> <dbl> <dbl> <dbl> <dbl>

1 TN 4.52 18.4 9.66 1.91
2 MI 5.26 15.3 7.27 2.78
3 GA 3.59 13.4 3.66 2.92
4 IL 11.5 19.9 NA 3.03
5 NC, SC 6.40 15.3 13.6 3.24
6 AZ 1.06 16.7 14.8 3.40
7 FL 5.93 16.4 14.0 3.75
8 AK, HI, OR, WA 7.93 20.0 8.13 4.01

10

9 TX 5.39 16.8 7.20 4.11
10 AL, KY, MS 3.97 4.34 9.10 4.16
i 17 more rows
i 1 more variable: SingleFamilyDetached <dbl>

A comment about arrange: Pass the variable into desc() to reverse the order. E.g.
arrange(desc(SingleFamilyAttached)).

Subsetting rows

Next we take a quick look at just Michigan to demonstrate the use of filter().

recs_type_state %>% filter(state == 'MI')

A tibble: 1 x 6
Groups: state [1]
state ApartmentFew ApartmentMany MobileHome SingleFamilyAttached
<chr> <dbl> <dbl> <dbl> <dbl>

1 MI 5.26 15.3 7.27 2.78
i 1 more variable: SingleFamilyDetached <dbl>

We might also want to find all states with at least 25% of people living in apartments,

recs_type_state %>% filter(ApartmentFew + ApartmentMany >= 25)

A tibble: 7 x 6
Groups: state [7]
state ApartmentFew ApartmentMany MobileHome SingleFamilyAttached
<chr> <dbl> <dbl> <dbl> <dbl>

1 IL 11.5 19.9 NA 3.03
2 AK, HI, OR, WA 7.93 20.0 8.13 4.01
3 CT, ME, NH, RI, VT 13.9 16.5 1.49 4.75
4 NY 16.9 33.4 1.61 5.29
5 MA 24.4 21.1 1.58 5.70
6 NJ 11.3 14.5 1.88 5.93
7 CA 8.47 23.5 3.23 7.01
i 1 more variable: SingleFamilyDetached <dbl>

11

tibble

Tibbles are defined by the tibble package.

tb <- tibble(a = 1:3, b = letters[10:12])
tb

A tibble: 3 x 2
a b

<int> <chr>
1 1 j
2 2 k
3 3 l

class(tb)

[1] "tbl_df" "tbl" "data.frame"

typeof(tb)

[1] "list"

As you can see, tibbles extend data.frame and by extension, extends list. So at its core, a
tibble is again just a list of equally-lengthed vectors.

Differences from data.frame

Non-syntactically valid names

Tibbles do not enforce names to be syntactically valid.

df <- data.frame(a = 1:3,
"123" = 4:6,
"my data" = 7:9)

df

a X123 my.data
1 1 4 7
2 2 5 8
3 3 6 9

12

tb <- tibble(a = 1:3,
"123" = 4:6,
"my data" = 7:9)

tb

A tibble: 3 x 3
a `123` `my data`

<int> <int> <int>
1 1 4 7
2 2 5 8
3 3 6 9

However, to refer to these non-syntactically valid names, you need to use the backticks.

tb$`123`

[1] 4 5 6

select(tb, `my data`)

A tibble: 3 x 1
`my data`

<int>
1 7
2 8
3 9

Lazy evaluation

Tibbles are created sequentially rather than in parallel:

df <- data.frame(a = 1:3)
df$b <- df$a + 2
df

a b
1 1 3
2 2 4
3 3 5

13

tb <- tibble(a = 1:3,
b = a + 2)

tb

A tibble: 3 x 2
a b

<int> <dbl>
1 1 3
2 2 4
3 3 5

row.names

Tibbles do not support row names.

df

a b
1 1 3
2 2 4
3 3 5

tb

A tibble: 3 x 2
a b

<int> <dbl>
1 1 3
2 2 4
3 3 5

row.names(df)

[1] "1" "2" "3"

row.names(tb)

[1] "1" "2" "3"

14

row.names(df) <- letters[21:23]

row.names(tb) <- letters[21:23]

Warning: Setting row names on a tibble is deprecated.

df

a b
u 1 3
v 2 4
w 3 5

tb

A tibble: 3 x 2
a b

* <int> <dbl>
1 1 3
2 2 4
3 3 5

Watch out for this - it can lead to weird bugs if you try and use row names.

Recycling vectors

data.frames can recycle vectors as normal. Tibbles only recycle length-1 vectors. Imagine
we’re trying to create a data set containing each pairwise combination of “temperature” and
“direction”

temperature <- c("low", "medium", "high")
setting <- c("forward", "backwards")
results <- rnorm(6)
df <- data.frame(temperature, setting, results)
df

15

temperature setting results
1 low forward -1.644495975
2 medium backwards 1.063998152
3 high forward -0.007910344
4 low backwards -1.717917447
5 medium forward -0.170544568
6 high backwards 0.274487266

tibble(temperature, setting, results)

Error in `tibble()`:
! Tibble columns must have compatible sizes.
* Size 3: Existing data.
* Size 2: Column at position 2.
i Only values of size one are recycled.

tb <- as_tibble(df)
tb

A tibble: 6 x 3
temperature setting results
<chr> <chr> <dbl>

1 low forward -1.64
2 medium backwards 1.06
3 high forward -0.00791
4 low backwards -1.72
5 medium forward -0.171
6 high backwards 0.274

Subsetting

Subsetting a data.frame with [] can yield a vector or a data.frame, where-as a tibble always
subsets to a tibble.

df[, 2:3]

setting results
1 forward -1.644495975
2 backwards 1.063998152

16

3 forward -0.007910344
4 backwards -1.717917447
5 forward -0.170544568
6 backwards 0.274487266

tb[, 2:3]

A tibble: 6 x 2
setting results
<chr> <dbl>

1 forward -1.64
2 backwards 1.06
3 forward -0.00791
4 backwards -1.72
5 forward -0.171
6 backwards 0.274

df[, 3]

[1] -1.644495975 1.063998152 -0.007910344 -1.717917447 -0.170544568
[6] 0.274487266

tb[, 3]

A tibble: 6 x 1
results

<dbl>
1 -1.64
2 1.06
3 -0.00791
4 -1.72
5 -0.171
6 0.274

If you do want a single-column data.frame, you can pass the drop option into the subset:

df[, 3, drop = FALSE]

17

results
1 -1.644495975
2 1.063998152
3 -0.007910344
4 -1.717917447
5 -0.170544568
6 0.274487266

(Tibbles support drop = TRUE if you do want it to return a vector.)

Additionally, tibbles do not support partial-matching with $

names(df)

[1] "temperature" "setting" "results"

df$temp

[1] "low" "medium" "high" "low" "medium" "high"

names(tb)

[1] "temperature" "setting" "results"

tb$temp

Warning: Unknown or uninitialised column: `temp`.

NULL

Printing tibbles

The most visually distinguishing difference between tibbles and data.frames is how much it
prints by default.

18

data(starwars)
starwars

A tibble: 87 x 14
name height mass hair_color skin_color eye_color birth_year sex gender
<chr> <int> <dbl> <chr> <chr> <chr> <dbl> <chr> <chr>

1 Luke Sk~ 172 77 blond fair blue 19 male mascu~
2 C-3PO 167 75 <NA> gold yellow 112 none mascu~
3 R2-D2 96 32 <NA> white, bl~ red 33 none mascu~
4 Darth V~ 202 136 none white yellow 41.9 male mascu~
5 Leia Or~ 150 49 brown light brown 19 fema~ femin~
6 Owen La~ 178 120 brown, gr~ light blue 52 male mascu~
7 Beru Wh~ 165 75 brown light blue 47 fema~ femin~
8 R5-D4 97 32 <NA> white, red red NA none mascu~
9 Biggs D~ 183 84 black light brown 24 male mascu~
10 Obi-Wan~ 182 77 auburn, w~ fair blue-gray 57 male mascu~
i 77 more rows
i 5 more variables: homeworld <chr>, species <chr>, films <list>,
vehicles <list>, starships <list>

As you can see, a large number of columns and rows were suppressed from the output. If we
were to convert this to a data.frame and print, it would display the entire results

not evaluated!
as.data.frame(starwars)

The print function can control tibbles performance:

print(starwars, n = 3, width = 50)

A tibble: 87 x 14
name height mass hair_color skin_color
<chr> <int> <dbl> <chr> <chr>

1 Luke Skywalk~ 172 77 blond fair
2 C-3PO 167 75 <NA> gold
3 R2-D2 96 32 <NA> white, bl~
i 84 more rows
i 9 more variables: eye_color <chr>,
birth_year <dbl>, sex <chr>, gender <chr>,
homeworld <chr>, species <chr>, films <list>,
vehicles <list>, starships <list>

19

Note that width controls the actual width of the output, not the number of columns.

Tidyverse vs base R

I personally restrict use of the tidyverse as much as possible. There are a number of reasons
for this, a few include:

1. Tidyverse changes its API and deprecates functions very rapidly.
2. Tidyverse uses nonstandard evaluation frequently.
3. Tidyverse packages have no issue overloading function names which can lead to confusing

results depending on the order in which packages are loaded.
4. It is often more complex to do basic operations in tidyverse than base R.
5. Debugging long piped operations is challenging (a pipe problem rather than a specific

tidyverse problem).
6. Using the tidyverse adds a massive set of requirements to your analysis.

Here are two useful links. The first is tidyverse’s own document showing the equivalency of
dplyr and base R commands: https://dplyr.tidyverse.org/articles/base.html

This second is a document which explains a lot of the issues with the tidyverse and why it
isn’t necessarily the best way to learn R or move R forward: https://github.com/matloff/
TidyverseSkeptic

20

https://dplyr.tidyverse.org/articles/base.html
https://github.com/matloff/TidyverseSkeptic
https://github.com/matloff/TidyverseSkeptic

	The Tidyverse
	Piping
	Should you use pipes?

	dplyr
	Data cleaning
	Aggregating by group
	Reshaping and formatting results for presentation
	Subsetting rows

	tibble
	Differences from data.frame
	Printing tibbles

	Tidyverse vs base R

