
R Visualizations - Base and ggplot2Statistics
506

Note: Do to the heavy reliance on images in this document, I suggest toggling to light mode
via the button in the top-right corner of the document.

R Graphical Systems

In these notes we’ll discuss three graphical systems in R.

1. Base R plotting
2. ggplot2, nominally part of the tidyverse
3. plotly for generating interactive plots

There are a number of less commonly used graphical systems, the most important of which
is lattice. It was a failed attempt to standardize and improve base R’s plotting capabilities,
and while it still exists in R and remains under development, it is rarely used.

Base R plotting

Plotting with base R usually consists of a single high-level plot function, followed optionally by
lower-level functions. We’ll use the NMMAPS data for our examples. THe National Morbidity
and Mortality Air Pollution Study is a time-series collected to look at the relationship between
pollutants and mortality. A subset of the data (Chicago for 1997-2000) can be found here.
Let’s plot the ozone (o3) level over time.

nnmaps <- read.csv("data/chicago-nmmaps.csv")
nnmaps$date <- as.Date(nnmaps$date)
plot(nnmaps$temp ~ nnmaps$date)
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The with function can make the plot call more readable.

with(nnmaps, plot(o3 ~ date))
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Do not use attach and detach. These can have unintended side-effects and it is easy to lose
track of what has been attached.

Let’s color the plot by season. type = "n" tells R not to draw the plot just the plotting area,
and is a quick way to define the ranges of the axes

nnmaps$season <- factor(nnmaps$season,
levels = c("Winter", "Spring",

"Summer", "Autumn"))
with(nnmaps,

plot(o3 ~ date, col = season))
with(nnmaps,

legend("topright", levels(season), col = unique(season), pch = 1))
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col can optionally take in any length vector and use recycling.

The plot is very messy. We can take the average by month and plot that. The aggregate
call will produce a lot of warnings due nnamps having non-numeric variables; we could subset
nnmaps before passing it into aggregate, but the warnings are ignorable, so we’ll do that.

suppressWarnings(nnmaps_month <-
aggregate(nnmaps, by = list(nnmaps$month_numeric,

nnmaps$year),
FUN = mean, na.rm = TRUE))

nnmaps_month <- nnmaps_month[order(nnmaps_month$year,
nnmaps_month$month_numeric), ]

nnmaps_month$time <- seq_len(nrow(nnmaps_month))
with(nnmaps_month,

plot(o3 ~ time, type = "l"))
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Let’s plot the average over the raw values.

with(nnmaps, plot(o3 ~ date, col = "lightgrey"))
with(nnmaps_month, lines(o3 ~ date))
with(nnmaps_month, lines(o3 ~ date, lwd = 4, col = "red"))
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The lwd and col arguments don’t appear in the help for plot, lines, etc. Instead, they get
passed through ... into par().

head(par())

$xlog
[1] FALSE

$ylog
[1] FALSE

$adj
[1] 0.5

$ann
[1] TRUE

$ask
[1] FALSE

$bg
[1] "transparent"
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length(par)

[1] 1

These graphical parameters are generic and can be passed to (almost) all base R plotting
functions. It may be easier to define the parameters prior to plotting. Be sure to save these
existing parameters for later restoration.

par()$bg

[1] "transparent"

oldpar <- par(no.readonly = TRUE) # no.readonly avoids warnings later
par(bg = "darkgrey",

fg = "lightblue",
col.axis = "lightgreen",
col.lab = "purple")

with(nnmaps, plot(o3 ~ date, pch = "*", bg = "red", col.lab = "red"))
with(nnmaps_month, lines(o3 ~ date))
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par(oldpar)
with(nnmaps, plot(o3 ~ date))
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Finally, let’s add a smooth curve over these points. It looks sinusoidal, so we can fit a sinusoidal
model.

# First, make sure *date* has only unique values
length(nnmaps$date) == length(unique(nnmaps$date))

[1] TRUE

# Sort by date
nnmaps <- nnmaps[order(nnmaps$date), ]
# Generate a numeric time variable
nnmaps$day <- seq_len(nrow(nnmaps))/365
nnmaps$daycos <- cos(2 * pi * nnmaps$day)
nnmaps$daysin <- sin(2 * pi * nnmaps$day)
mod <- lm(o3 ~ daycos + daysin, data = nnmaps)
pred <- data.frame(predict(mod, interval = "prediction"))
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Warning in predict.lm(mod, interval = "prediction"): predictions on current data refer to _future_ responses

Note that interval = "confidence" would be the more common choice here, but the bounds
would be very tight and barely visible, so I include the prediction intervals to make the results
more visually interesting.

with(nnmaps, plot(o3 ~ day, col = "darkgrey"))
lines(pred$fit ~ nnmaps$day, col = "red", lwd = 4)
lines(pred$lwr ~ nnmaps$day, lty = "dashed")
lines(pred$upr ~ nnmaps$day, lty = "dashed")
polygon(c(rev(nnmaps$day), nnmaps$day), c(rev(pred$upr), pred$lwr),

col = rgb(.5, .5, .5, .2), border = NA)
legend("topright", legend = c("Observed", "Fitted"),

lty = c(NA, 1), lwd = c(NA, 4),
pch = c(1, NA),
col = c("darkgrey", "red"))
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Other secondary plot functions

We saw above the lines() function. There are a number of other functions we can use to add
to an existing plot. For example,
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• points() - add a scatterplot
• abline() - draws an infinite-length straight line, either with intercept and slope (a= and

b= argument) or horizontal (h=) or vertical (v=).
• segments() - draws a line segment between two points
• rect() and polygon() - Draw a rectangle or an arbitrary polygon
• text() - add text to a plot (can be used for either a single entry, or to “plot” text, e.g. a

scatterplot where the points are labels)
• title() or mtext() - adding a title or other arbitary text in the margins (outside the

plottable area)

Plot spacing and arrangement

par can be used to control the margin spacing of plot, and to arrange multiple plot on one
image.

#oldpar <- par(no.readonly = TRUE)
#par(mfrow = c(2, 1))
#with(nnmaps, {
# plot(o3 ~ date)
# plot(temp ~ date)
#})

The margins around the plots are too large. The oma (outer margin), mar (inner margins) and
mgp (placement of axis attributes in margins) can be tweaked.

par(mfrow = c(2, 1),
oma = c(1, 1, 0, 0) + .1,
mar = c(0, 3, 1, 1) + .1,
mgp = c(2, 1, 0))

with(nnmaps,
plot(o3 ~ date, xaxt = "n"))

par(mar = c(1, 3, 0, 1) + .1,
mgp = c(2, 1, 0))

with(nnmaps,
plot(temp ~ date))
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The addition of the .1 is by convention; it helps avoids some rough looking results where things
are drawn on top of each other. They can be excluded if desired.

There are various references online to help understand this a bit better, and to try and help
you avoid randomly choosing values and hoping for the best. For example,

• https://r-graph-gallery.com/74-margin-and-oma-cheatsheet.html
• https://web.archive.org/web/20150623062735/https://research.stowers-institute.org/

efg/R/Graphics/Basics/mar-oma/index.htm

Be sure to always reset your par.

par(oldpar)

Graphical devices

Behind the scenes, when producing a plot, R needs a Device to draw it to. The Device can
be a new plotting window, or it can be an image file. When you first load R and call plot(),
it automatically creates a new Device as a plotting window for R to draw to.

The exact details of how all this work used to be much more important, but with the advent
of RStudio where there is only a single plot open at a time, most of this functionality is only
relevant for developers of graphical packages.
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A few things that are useful to know. First, in addition to the default Device of drawing a
plot to the screen, you can can instead draw to a file on disk.

# This code is NOT evaluated
png("myplot.png")
plot(....)
dev.off()

By calling png(), we are telling R to send all plotting to that Device (specifically that file).
So if you were to run that code (with a valid plot()), no plot would pop up, but that image
would be created.

dev.off() “closes” the current Device; when the Device is an output file, it stops writing to
it, if the Device is a window inside R, it just removes the window.

Since par() settings are specific to a Device, dev.off() also has the side-effect of essentially
resetting your par().

ggplot2

ggplot2 is a package created by Hadley Wickham which defines a “grammar” for graphics
based upon the work of Leland Wilkerson in The Grammer of Graphics. It is now part of the
tidyverse, though predates the tidyverse by a large number of years, and does not completely
conform to tidyverse standards. The most obvious example of its deviation is that instead of
using %>% for piping, you “pipe” with addition.

The basic idea is that while base R’s plotting mechanics are pretty robust, knowledge in one
does not necessarily transfer to another. For example, while plot can create scatter plots and
line plots easily, the arguments that pass to it don’t also pass to histogram. Some do (see
?par), but those aren’t always supported.

ggplot2 takes the emphasis away from understanding the specific quirks of each desired plot,
and instead attempts to create a unified language of plots, such that the difference between a
histogram and a scatter plot call is simply geom_point vs geom_histogram.

Graphic grammar template

The basic template of any ggplot2 plot is:

ggplot(data = <DATA>,
mapping = aes(<MAPPING>)) +

<GEOM_FUNCTION>(
stat = <STAT>,

12
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position = <POSITION>
) +
<COORDINATE_FUNCTION> +
<FACET_FUNCTION> +
<SCALE_FUNCTION> +
<THEME_FUNCTION>

There are 9 arguments, wrapped in brackets, which can be defined. Rarely will all 9 be
defined; sometimes you will define multiple versions of arguments. Only the first three, <DATA>,
<MAPPING> and <GEOM_FUNCTION>, are required to produce a meaningful plot.

Example

Let’s reproduce the plot from above.

library(ggplot2)
ggplot(nnmaps, aes(x = date, y = o3, color = season)) +
geom_point()
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The aesthetic mapping defines how variables in the dataset are connected to visual properties or
outputs. The terms “aesthetic” and “mapping” are often used interchangeably with the more
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formal “aesthetic mapping”. Just think of a mapping as defining properties of the output
that depend upon variables. For example, coloring the points of a scatter plot based upon a
categorical variable is a mapping, whereas coloring all points red is not:

ggplot(nnmaps, aes(x = date, y = o3)) +
geom_point(color = "red")
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The geom_point() function defines the type of plot being generated. In this case, a “point”
corresponds to a scatterplot. You can see a full list of geoms on the ggplot2 website.

The objects created by ggplot are gg, you can use them to build up plots.

myplot <- ggplot(nnmaps, aes(x = date, y = o3))
is(myplot)

[1] "gg"

myplot + geom_point()
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There is inheritance going on here. We could have instead generated the plot with:

ggplot() +
geom_point(nnmaps, mapping = aes(x = date, y = o3))
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The downside being if we want to stack multiple geoms, they will not inherit from other geoms,
only from the main function.

nnmaps_small <- nnmaps[sample(1:nrow(nnmaps), 100), ]
ggplot(nnmaps_small, aes(x = date, y = o3)) +
geom_point() +
geom_text(aes(label = month), nudge_y = -.75)

16



May

May

Jun Aug

Feb

Nov

May
May

Jan

Oct

Mar NovApr
Aug

Jan

May

Jul

Sep

Aug

Mar

May
May

Dec

Jun

Feb

Jun

JulApr

Mar

Apr

Jul

Dec

Jun

Dec

Jun

Aug

Dec

Aug

Aug

Jun

Apr

Sep

Nov Nov
Jan

MarJan

Dec

May

Dec

Sep

Jun

Oct

Nov

Sep

Jul

Feb Oct Nov

Feb

Oct
Dec

Feb

Aug

Mar

Jul

Mar

Jan
Oct

Nov
Jan

Feb

Jun

JanFeb
Feb

Jan

Sep

FebMay Apr

Oct

Jan

Jul
Mar

Apr

May

Oct

Dec

Aug

Jan

Aug

May

Oct Dec

Jun

Sep

Jul

Feb

Dec

0

10

20

30

40

50

1997 1998 1999 2000 2001
date

o3

Both geoms inherit the data and the mapping from ggplot.

ggplot() +
geom_point(nnmaps_small, aes(x = date, y = o3)) +
geom_text(aes(label = month), nudge_y = -.5)

Error in `geom_point()`:
! `mapping` must be created by `aes()`

We can replicate the averaged line by breaking inheritance of only the data.

ggplot(nnmaps, aes(x = date, y = o3)) +
geom_point() +
geom_line(data = nnmaps_month, color = "red", linewidth = 3)
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1. geom_point inherited both data and mapping. geom_line inherited only mapping -
which worked fine because the same variables are being used in both data. If the names
of variables changed, we’d need to pass a new mapping.

2. The order of arguments swaps - ggplot has first argument data= and second mapping=,
whereas geoms have first argument mapping= and second argument data=. What out
for bugs related to passing arguments by position.

Finally, let’s add the smoothed regression line on top. Here we inherit the original data and
some of the original mapping.

nnmaps_pred <- dplyr::bind_cols(nnmaps, pred)
ggplot(nnmaps_pred, aes(x = date, y = o3)) +
geom_point() +
geom_line(data = nnmaps_month, color = "red", linewidth = 3) +
geom_line(aes(y = fit), color = "blue", linewidth = 3) +
geom_ribbon(aes(ymin = lwr, ymax = upr), alpha = .2)
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The other arguments

Stats

Behind the scenes, certain geoms are transforming the data before plotting. For example,

ggplot(nnmaps, aes(x = month)) +
geom_bar()
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geom_bar is performing a count on the number of month. If you already have summarized
data (e.g. you have just the counts already), you may want to tell geom_bar to use the existing
count variable instead of computing a new count. Passing stat = "identity" and aes(x =
class, y = count) will accomplish this.

tmonths <- data.frame(table(nnmaps$month))
names(tmonths) <- c("month", "count")
ggplot(tmonths, aes(x = month)) +
geom_bar()
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ggplot(tmonths, aes(x = month, y = count)) +
geom_bar(stat = "identity")
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Position

The position argument is used to tweak how certain aspects of the plots are displayed. Its
use depends heavily on the type of plot. For each geom, some positions will work, some will
do nothing, and some will produce nonsense. They are most commonly used when trying to
create grouped plots.

For example, we can look at a histogram of temp.

ggplot(nnmaps, aes(x = temp)) + geom_histogram()
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If we add fill = month, it will group by class. The default is position = "stack"; another
nice option is fill

nnmaps2 <- nnmaps[!is.na(nnmaps$month), ]
ggplot(nnmaps2, aes(x = temp, fill = month)) +
geom_histogram()
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ggplot(nnmaps2, aes(x = temp, fill = month)) +
geom_histogram(position = "fill")
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In general:

• identity is useful when you want to plot things exactly as they are.
• stack is useful when you want to look both at overall values and per-group values.
• dodge is useful for group comparisons.
• fill is useful for considering percentages instead of counts.
• jitter is useful for scatter plots (and similar) when multiple values may be placed at

the same point.

Positions are generally a trial-and-error procedure for me. If the default isn’t sufficient, see if
the others look/work better.

Coordinate

The default coordinate system is coord_cartesian(). There are two useful and two niche
different coordinate systems.

• coord_fixed forces the x and y axes to have a fixed ratio between units on each. (Default
ratio is 1:1, it takes an argument to define the ratio)

• coord_flip flips x and y. Most useful to get e.g. horizontal instead of vertical bar charts.
• coord_map plots map data
• coord_polar plots on the polar coordinate system.

Demonstrations of coord_fixed and coord_flip:

g <- ggplot(nnmaps2, aes(x = o3, y = month)) +
geom_boxplot()

g
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coord_cartesian (as well as _fixed and _flip) take xlim and ylim arguments.

g + coord_cartesian(xlim = c(0, 20))
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Facet

While gg objects support using par(mfrow... to include multiple plots on one Device, the
built-in faceting system can also be very useful to produce a grid of plots.

In most cases, use facet_wrap, which will automatically pick the right number of rows and
columns.

ggplot(nnmaps2, aes(x = date, y = o3)) +
geom_point() +
facet_wrap(vars(month))
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Note the use of vars(month) due to tidyverse’s non-standard evalution. Passing "month"
works just as well.

ggplot(nnmaps2, aes(x = o3)) +
geom_boxplot() +
coord_flip() +
facet_wrap("month")
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facet_grid is more precise; by default it does not “wrap”, producing a single row of plots.
You can pass in two variables to facet by each variable in one direction.

nnmaps3 <- nnmaps2[nnmaps2$month %in% c("Jan", "Feb", "Mar"), ]
ggplot(nnmaps3, aes(x = o3, y = temp)) +
geom_point() +
stat_ellipse() +
facet_grid(vars(month), vars(year))
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Scale

Scales are used to map data onto the plot. When generating a new plot, certain default scales
are used behind the scenes. For example:

ggplot(nnmaps, aes(x = date, y = o3, color = season)) +
geom_point()
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ggplot(nnmaps, aes(x = date, y = o3, color = season)) +
geom_point() +
scale_x_continuous() +
scale_y_continuous() +
scale_color_discrete()
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Scales can change many aspects of the mapping from the data to the visualization. For
example, to plot the o3 value on the log scale:

ggplot(nnmaps, aes(x = date, y = o3, color = season)) +
geom_point() +
scale_y_continuous(trans = "log")
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They can also be used just to manipulate labels and such.

ggplot(nnmaps, aes(x = date, y = o3, color = season)) +
geom_point() +
scale_y_continuous(name = "Oxygen levels") +
scale_color_discrete(name = "Seasons")
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We can also use scales to completely change how a variable is treated.

ggplot(nnmaps, aes(x = date, y = o3, color = season)) +
geom_point() +
scale_y_binned()
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Finally, we can use scales to change colors

ggplot(nnmaps, aes(x = date, y = o3, color = season)) +
geom_point() +
scale_color_manual(values = c("red", "pink", "orange", "brown"))
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Theme

There are default themes, and you can customize themes.

g <- ggplot(nnmaps, aes(x = date, y = o3, color = season)) +
geom_point()

g
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g + theme_bw()
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Themes refer to only the ploptting area and around; you’d need to modify the color scales to
go fully black and white for example.

g +
theme_bw() +
scale_colour_grey()
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Perhaps even better would be to change the plotting characters.

ggplot(nnmaps, aes(x = date, y = o3, shape = season)) +
geom_point(color = "black") +
theme_bw()
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The generic theme function allows more fine-grained control.

g +
ggtitle("Oxygen over time") +
scale_y_continuous(name = "Oxygen levels") +
scale_x_date(name = "Date") +
scale_color_discrete(name = "Seasons") +
theme(plot.title = element_text(color = "darkred", hjust = .5),

legend.position = "bottom",
legend.background = element_rect(linewidth = 1,

color = "black",
fill = "darkgrey"),

plot.background = element_rect(fill = "darkgrey"),
text = element_text(size = 15))
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Representing higher dimensions in scatter plots

Although scatter plots are inherently a two (or three) dimensional visualization, clever use of
plot characteristics can represent higher dimensions. There is always a trade-off - the more
information you represent in a single plot, the more likely you are to confuse the reader.

We’ll be using the mpg dataset from ggplot2. Our primary variables of interest will be city
mileage (cty) versus highway mileage (hwy), and we’ll be adding other variables as we go.

library(ggplot2)
str(mpg)

tibble [234 x 11] (S3: tbl_df/tbl/data.frame)
$ manufacturer: chr [1:234] "audi" "audi" "audi" "audi" ...
$ model : chr [1:234] "a4" "a4" "a4" "a4" ...
$ displ : num [1:234] 1.8 1.8 2 2 2.8 2.8 3.1 1.8 1.8 2 ...
$ year : int [1:234] 1999 1999 2008 2008 1999 1999 2008 1999 1999 2008 ...
$ cyl : int [1:234] 4 4 4 4 6 6 6 4 4 4 ...
$ trans : chr [1:234] "auto(l5)" "manual(m5)" "manual(m6)" "auto(av)" ...
$ drv : chr [1:234] "f" "f" "f" "f" ...
$ cty : int [1:234] 18 21 20 21 16 18 18 18 16 20 ...
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$ hwy : int [1:234] 29 29 31 30 26 26 27 26 25 28 ...
$ fl : chr [1:234] "p" "p" "p" "p" ...
$ class : chr [1:234] "compact" "compact" "compact" "compact" ...

ggplot(mpg, aes(x = hwy, y = cty)) +
geom_point()
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Before we add any higher dimensions, note that each point in that plot may represent multiple
cars, e.g. there are a Jeep Grand Cherokee and a Toyota Tacoma that each have 17 cty and
22 hwy. To make that clear, we can either use jitter:

ggplot(mpg, aes(x = hwy, y = cty)) +
geom_jitter()
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or make the size of each point relative to the count:

ggplot(mpg, aes(x = hwy, y = cty)) +
geom_count()

41



10

15

20

25

30

35

20 30 40
hwy

ct
y

n

5

10

The geom_count version looks nicer, but changing the size of the points is a technique we’ll
use to represent a 3rd dimension, so we’ll stick with the geom_jitter version.

Displaying a 3rd (or higher) dimension of categorical variables is straightforward and you may
have already used some or all of these methods. The most straightforward is faceting which
we saw earlier:

ggplot(mpg, aes(x = hwy, y = cty)) +
geom_jitter() +
facet_grid(vars(cyl), vars(drv))
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This allows us to represent four dimensions painlessly, as long as the two categorical dimensions
have few unique values:

ggplot(mpg, aes(x = hwy, y = cty)) +
geom_jitter() +
facet_grid(vars(class), vars(manufacturer))
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If we wanted a single plot, we can manipulate the points drawn to be distinct per group.

ggplot(mpg, aes(x = hwy, y = cty, color = class, shape = drv, size = cyl)) +
geom_jitter() +
scale_radius()
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8(Note the + scale_radius(). When using the mapping size, I sometimes see issues with the
smallest point being out of proportion with the rest. [Try it - run the above without the last
line.] Adding scale_radius() [as opposed to scale_size()] can sometimes fix it - try both
options and choose whichever one you like best.)

We’ve gotten messy here (probably too confusing for publication) but this is plotting 5 dimen-
sions! From this plot we can see:

• Mileage in city or highway is strongly correlated.
• More cylinders = worse mileage.
• 4 wheel drive is less efficient than rear-wheel which is less efficient than front-wheel.
• SUV’s and pickups have the worse mileage; 2-seaters, minivans and midsize have mod-

erate mileage; subcompacts and compacts have the best mileage.

Note the choice of which variable gets which modification. cyl, which is ordinal, is used for
the size. There are more class levels than drv, so I feel class is a better choice for colors.
Look how bad this could look with different choices:

ggplot(mpg) +
geom_jitter(aes(x = hwy, y = cty, color = cyl, shape = class, size = drv))

Warning: Using size for a discrete variable is not advised.
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Warning: The shape palette can deal with a maximum of 6 discrete values because
more than 6 becomes difficult to discriminate; you have 7. Consider
specifying shapes manually if you must have them.

Warning: Removed 62 rows containing missing values (`geom_point()`).
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ggplot even complains… a lot.

Note that color functions differently for continuous data:

ggplot(mpg) +
geom_jitter(aes(x = hwy, y = cty, color = displ, shape = drv, size = cyl)) +
scale_radius()
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We see that larger displ (displacement, a.k.a size) corresponds to worse mileage.
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