
R: Parallel ProcessingStatistics 506

Serial versus Parallel processing

Consider that we have a series of functions to run:, f1, f2, f3, etc.

Serial processing means that f1 runs first, and until f1 completes, nothing else can run. Once
f1 completes, f2 begins, and the process repeats.

Parallel processing (in the extreme) means that all the f# functions start simultaneously and
run to completion on their own.

In the past, in order to run each of these functions at the same time, we’d require multiple
computers. Most (all?) modern are multicore, meaning that we split the processing across
these cores.

The serial-parallel scale

A problem can range from “inherently serial” to “perfectly parallel”.

An “inherently serial” problem is one which cannot be parallelized at all - for example, if f2
depended on the output of f1 before it could begin, using parallelization would not help. In
fact, it may actually run slower than on a single core, due to the pre- and post-processing
required for paralell performance.

On the other hand a “perfectly parallel” problem (often called embarrassingly parallel) is one
in which there is absolutely no dependency between iterations, such that all functions can start
simultaneously. Monte carlo simulations usually (though not always) fall into this category,
as well as the *apply functions.

Sometimes the dependency occurs at the end of each function; so we could start running f1
and f2 in completion, but f2 would pause before finishing while it waits for f1 to finish. We
can still see a speed gain here.

Here we’re going to exclusively discuss the perfectly parallel situation; it is where most (though
of course not all) statistical situations will land. The more complicated parallel situations arise
generally in deeper computer science scenarios, for example handling many users of a service.
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Terminology

Let’s just nail down some terminology.

• A core is a general term for either a single processor on your own computer (technically
you only have one processor, but a modern processor like the i7 can have multiple cores
- hence the term) or a single machine in a cluster network.

• A cluster is a collection of objecting capable of hosting cores, either a network or just
the collection of cores on your personal computer.

• A process is a single running version of R (or more generally any program). Each core
runs a single process. Typically a process runs a single function.

The parallel package

There are a number of packages which can be used for parallel processing in R. Two of the
earliest and strongest were multicore and snow. However, both were adopted in the base R
installation and merged into the parallel package.

library(parallel)

You can easily check the number of cores you have access to with detectCores:

detectCores()

[1] 8

The number of cores represented is not neccessarily correlated with the number of processors
you actually have thanks to the concept of “logical CPUs”. For the most part, you can use
this number as accurate. Trying to use more cores than you have available won’t provide any
benefit.

Methods of Paralleization

There are two main ways in which code can be parallelized, via sockets or via forking. These
function slightly differently:

• The socket approach launches a new version of R on each core. Technically this con-
nection is done via networking (e.g. the same as if you connected to a remote server),
but the connection is happening all on your own computer. I mention this because you
may get a warning from your computer asking whether to allow R to accept incoming
connections, you should allow it.
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• The forking approach copies the entire current working instance of R and moves it to a
new core.

There are various pro’s and con’s to the two approaches:

Socket:

• Pro: Works on any system (including Windows).
• Pro: Each process on each node is unique so it can’t cross-contaminate.
• Con: Each process is unique so it will be slower since you can’t do any general pre-

processing prior to splitting into parallel processing.
• Con: Because of this, things such as package loading need to be done in each process

separately. Variables defined on your main version of R don’t exist on each core unless
explicitly placed there.

• Con: More complicated to implement.

Forking:

• Con: Only works on POSIX systems (Mac, Linux, Unix, BSD) and not Windows.
• Con: Because processes are duplicates, it can cause issues specifically with random

number generation (which should usually be handled by parallel in the background)
or when running in a GUI (such as RStudio). This doesn’t come up often, but if you get
odd behavior, this may be the case.

• Pro: Faster than sockets.
• Pro: Because it copies the existing version of R, your entire workspace exists in each

process.
• Pro: Trivially easy to implement.

In general, I’d recommend using forking if you’re not on Windows.

Note: These notes were compiled on OS X.

Parallel processing in RStudio

A mentioned “con” of forking about is that GUI applications (such as RStudio) can behave
oddly with forking. This does not mean that forking won’t work in RStudio, but it does mean
that you may get crashing or other undesired results. You can use the actual R GUI or the
command line if you want to avoid this issue.

Note that the parallel package will still let you carry out forking in RStudio (and really, it
works most of the time). There are other packages, such as future that we’ll talk about next,
that explicitly disable forking in RStudio. The parallelly package can detect whether your
current R session supports forking:
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library(parallelly)
supportsMulticore()

[1] TRUE

Try running that on RStudio. These notes are not build inside RStudio so in this case, forking
is supported.

Forking with mclapply

The most straightforward way to enable parallel processing is by switching from using lapply
to mclapply.

library(lme4)

Loading required package: Matrix

f <- function(i) {
lmer(Petal.Width ~ . - Species + (1 | Species), data = iris)

}

system.time(lapply(1:1000, f))

user system elapsed
5.609 0.032 5.683

system.time(mclapply(1:1000, f))

user system elapsed
3.599 0.236 3.870

If you were to run this code on Windows, mclapply would simply call lapply, so the code
works but sees no speed gain.

mclapply takes an argument, mc.cores. By default, mclapply will use all cores available to
it. If you don’t want to (either becaues you’re on a shared system or you just want to save
processing power for other purposes) you can set this to a value lower than the number of cores
you have. Setting it to 1 disables parallel processing, and setting it higher than the number
of available cores has no effect.
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system.time(mclapply(1:100, f, mc.cores = 1))

user system elapsed
0.529 0.007 0.536

system.time(mclapply(1:100, f, mc.cores = 2))

user system elapsed
0.347 0.092 0.440

system.time(mclapply(1:100, f, mc.cores = 4))

user system elapsed
0.217 0.101 0.324

system.time(mclapply(1:100, f, mc.cores = 8))

user system elapsed
0.698 0.278 0.302

system.time(mclapply(1:100, f, mc.cores = 16))

user system elapsed
0.679 0.395 0.390

Operating on lists

There are two functions that are very handy for operating on lists, Reduce and do.call. These
come in useful because there is no analogue of sapply for automatically collapsing lists.

Reduce takes in a function and a list, and applies the function to elements of the list, recur-
sively.

l <- list(1, 2, 3, 4, 5)
Reduce(sum, l)

[1] 15
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Reduce(`+`, l)

[1] 15

Those calls are equivalent to

sum(1, sum(2, sum(3, sum(4, 5))))

[1] 15

(1 + (2 + (3 + (4 + 5))))

[1] 15

`+`(1, `+`(2, `+`(3, `+`(4, 5))))

[1] 15

On the other hand, do.call passes all elements of the list in as arguments to the function:

do.call(sum, l)

[1] 15

do.call(`+`, l)

Error in .Primitive("+")(1, 2, 3, 4, 5): operator needs one or two arguments

The equivalent calls are

sum(1, 2, 3, 4, 5)

[1] 15
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`+`(1, 2, 3, 4, 5)

Error in `+`(1, 2, 3, 4, 5): operator needs one or two arguments

The + function takes in exactly two arguments, so it doens’t work with do.call (unless the
list has two elements only). sum takes in any number of arguments (via ...) so it works in
either case.

A common use case is to reduce a list of vectors down to a matrix or a larger vector.

head(mt <- as.list(mtcars[, -1]), 2)

$cyl
[1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4 8 8 8 8 4 4 4 8 6 8 4

$disp
[1] 160.0 160.0 108.0 258.0 360.0 225.0 360.0 146.7 140.8 167.6 167.6 275.8
[13] 275.8 275.8 472.0 460.0 440.0 78.7 75.7 71.1 120.1 318.0 304.0 350.0
[25] 400.0 79.0 120.3 95.1 351.0 145.0 301.0 121.0

head(do.call(cbind, mt))

cyl disp hp drat wt qsec vs am gear carb
[1,] 6 160 110 3.90 2.620 16.46 0 1 4 4
[2,] 6 160 110 3.90 2.875 17.02 0 1 4 4
[3,] 4 108 93 3.85 2.320 18.61 1 1 4 1
[4,] 6 258 110 3.08 3.215 19.44 1 0 3 1
[5,] 8 360 175 3.15 3.440 17.02 0 0 3 2
[6,] 6 225 105 2.76 3.460 20.22 1 0 3 1

head(Reduce(cbind, mt))

init
[1,] 6 160 110 3.90 2.620 16.46 0 1 4 4
[2,] 6 160 110 3.90 2.875 17.02 0 1 4 4
[3,] 4 108 93 3.85 2.320 18.61 1 1 4 1
[4,] 6 258 110 3.08 3.215 19.44 1 0 3 1
[5,] 8 360 175 3.15 3.440 17.02 0 0 3 2
[6,] 6 225 105 2.76 3.460 20.22 1 0 3 1
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Note the differences in how they operate with respect to column names. Because of the
recursive nature of Reduce, the names get lost.

head(do.call(c, mt))

cyl1 cyl2 cyl3 cyl4 cyl5 cyl6
6 6 4 6 8 6

head(Reduce(c, mt))

[1] 6 6 4 6 8 6

The reverse issue arises - because do.call takes in all elements simultaneously, it keeps the
names around.

There’s also a huge performance difference between these functions, but it’s not always clear
(at least to me) which one would be faster. We’d expect do.call to always be faster since it
only calls its function once (whereas Reduce calls it length(list) - 1 times), but in some
cases, it’s far slower.

library(microbenchmark)
microbenchmark(
do.call(cbind, mt),
Reduce(cbind, mt),
do.call(c, mt),
Reduce(c, mt)

)

Warning in microbenchmark(do.call(cbind, mt), Reduce(cbind, mt), do.call(c, :
less accurate nanosecond times to avoid potential integer overflows

Unit: microseconds
expr min lq mean median uq max neval

do.call(cbind, mt) 1.968 2.1320 2.30994 2.255 2.3985 4.428 100
Reduce(cbind, mt) 7.995 8.5075 8.97244 8.774 9.1840 17.056 100

do.call(c, mt) 25.748 26.1990 26.94315 26.445 26.8345 44.280 100
Reduce(c, mt) 4.920 5.2275 5.53828 5.494 5.7195 10.291 100

8



Example

Let’s see an example. Bootstrapping is a technique that can be used to estimate standard
errors for any statistic. It is a computationally expensive operation that is useful in situations
where you don’t want to make a distributional assumption for your statistic (e.g. you think
the data is very non-normal and don’t want to use the central limit theorem).

The basic idea is to resample your data, with replacement, treating your original sample as
a “population”. You can then estimate your statistic on each bootstrap sample, and estimate
the standard error from the empirial distribution of bootstrap estimates of the statistic.

Let 𝜃 be the parameter of interest from some population, and let ̂𝜃 be the estimate of 𝜃 from
data 𝑋. We can obtain a bootstrap estimate of 𝜃, called ̃𝜃, by estimating 𝜃 in the data 𝑋̃,
where 𝑋̃ is a resampling with replacement of 𝑋. Noteably, the dimension of 𝑋 and 𝑋̃ are
identical.

Repeat this process 𝑅 times, leading to ̃𝜃𝑟 for 𝑟 ∈ [1, 𝑅]. (Typically 𝑅 > 1000.) From this, we
can estimate the standard error of ̂𝜃 as

√√√
⎷

1
𝑅 − 1

𝑅
∑
𝑖=1

( ̃𝜃𝑟 − 𝜃𝑅)2,

where 𝜃𝑅 = ∑𝑅
𝑖=1

̃𝜃𝑟
𝑅 . Note that the best estimate of 𝜃 is ̂𝜃, not 𝜃𝑅.

There are no distributional assumptions in this derivation.

Let’s load up the 2020 RECS data.

recs <- read.csv("data/recs2020_public_v6.csv")
names(recs) <- tolower(names(recs))

We’re going to fit a model predicting the electricty expenses of buildings, controlling for the
“heating degree days” and “cooling degree days” and their interaction as well as the number
of rooms. Our goal is to examine whether costs differ between mobile homes and single family
homes. Since the data is national, we’re concerned about differences by states (either due to
climate or costs), so we’ll include state as a random effect, along with “heating degree days”
and “cooling degree days” (and their interaction) random slopes.

First, standardize the continuous variables (they’re on very different scales which can cause
converge issues):

recs$hdd65 <- with(recs, (hdd65 - mean(hdd65))/sd(hdd65))
recs$cdd65 <- with(recs, (cdd65 - mean(cdd65))/sd(cdd65))
recs$dollarel <- with(recs, (dollarel - mean(dollarel))/sd(dollarel))
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recs$typehuq <- as.factor(recs$typehuq)

Fit the model on the original data.

library(lme4)
mod <- lmer(dollarel ~ hdd65*cdd65 + typehuq + totrooms +

(1 + hdd65*cdd65 | state_fips), data = recs)

Warning in checkConv(attr(opt, "derivs"), opt$par, ctrl = control$checkConv, :
Model failed to converge with max|grad| = 0.00387431 (tol = 0.002, component 1)

# typehuq 1 (reference) is mobile home, typehuq2 2 is single family
estcoef <- fixef(mod)["typehuq2"]

Now we define the bootstrap function:

boot <- function(dat) {
dat <- dat[sample(1:nrow(dat), replace = TRUE), ]
mod <- lmer(dollarel ~ hdd65*cdd65 + typehuq + totrooms +

(1 + hdd65*cdd65 | state_fips), data = dat)
return(fixef(mod)["typehuq2"])

}

Finally, we use lapply and mclapply. For demonstration purposes here, we’ll keep the number
of reps low; in practice you want a much higher number of reps (at least 1,000).

reps <- 10
system.time(res1 <- lapply(seq_len(reps), function(x) boot(recs)))

user system elapsed
16.311 1.023 17.354

system.time(res2 <- mclapply(seq_len(reps), function(x) boot(recs)))

user system elapsed
8.333 0.130 9.702
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sd1 <- sd(Reduce(c, res2))
sd2 <- sd(Reduce(c, res2))
rbind(c(estcoef + 1.96*sd1, estcoef - 1.96*sd1),

c(estcoef + 1.96*sd2, estcoef - 1.96*sd2))

typehuq2 typehuq2
[1,] -0.04709568 -0.1778196
[2,] -0.04709568 -0.1778196

Using sockets with parLapply

As promised, the sockets approach to parallel processing is more complicated and a bit slower,
but works on Windows systems. The general process we’ll follow is

1. Start a cluster with as many nodes as desired.
2. Execute any pre-processing code necessary in each node (e.g. loading a package)
3. Use par*apply as a replacement for *apply. Note that unlike mcapply, this is not a

drop-in replacement.
4. Destroy the cluster (not necessary, but best practices).

Starting a cluster

The function to start a cluster is makeCluster which takes in as an argument the number of
cores:

numCores <- detectCores()
numCores

[1] 8

cl <- makeCluster(numCores)

The function takes an argument type which can be either PSOCK (the socket version) or FORK
(the fork version). Generally, mclapply should be used for the forking approach, so there’s no
need to change this.

If you were running this on a network of multiple computers as opposed to on your local
machine, there are additional arguments you may wish to run, but generally the other defaults
should be specific.
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Pre-processing code

When using the socket approach to parallel processing, each process is started fresh, so things
like loaded packages and any variables existing in your current session do not exist. We must
instead move those into each process.

The most generic way to do this is the clusterEvalQ function, which takes a cluster and any
expression, and executes the expression on each process.

clusterEvalQ(cl, 2 + 2)

[[1]]
[1] 4

[[2]]
[1] 4

[[3]]
[1] 4

[[4]]
[1] 4

[[5]]
[1] 4

[[6]]
[1] 4

[[7]]
[1] 4

[[8]]
[1] 4

Note the lack of inheritance:

x <- 1
clusterEvalQ(cl, x)

Error in checkForRemoteErrors(lapply(cl, recvResult)): 8 nodes produced errors; first error: object 'x' not found
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We could fix this by wrapping the assignment in a clusterEvalQ call:

clusterEvalQ(cl, y <- 1)

[[1]]
[1] 1

[[2]]
[1] 1

[[3]]
[1] 1

[[4]]
[1] 1

[[5]]
[1] 1

[[6]]
[1] 1

[[7]]
[1] 1

[[8]]
[1] 1

clusterEvalQ(cl, y)

[[1]]
[1] 1

[[2]]
[1] 1

[[3]]
[1] 1

[[4]]
[1] 1
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[[5]]
[1] 1

[[6]]
[1] 1

[[7]]
[1] 1

[[8]]
[1] 1

y

Error in eval(expr, envir, enclos): object 'y' not found

However, now y doesn’t exist in the main process. We can instead use clusterExport to pass
objects to the processes:

clusterExport(cl, "x")
clusterEvalQ(cl, x)

[[1]]
[1] 1

[[2]]
[1] 1

[[3]]
[1] 1

[[4]]
[1] 1

[[5]]
[1] 1

[[6]]
[1] 1
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[[7]]
[1] 1

[[8]]
[1] 1

The second argument is a vector of strings naming the variables to pass.

Finally, we can use clusterEvalQ to load packages:

clusterEvalQ(cl, {
library(lme4)

})

[[1]]
[1] "lme4" "Matrix" "stats" "graphics" "grDevices" "utils"
[7] "datasets" "methods" "base"

[[2]]
[1] "lme4" "Matrix" "stats" "graphics" "grDevices" "utils"
[7] "datasets" "methods" "base"

[[3]]
[1] "lme4" "Matrix" "stats" "graphics" "grDevices" "utils"
[7] "datasets" "methods" "base"

[[4]]
[1] "lme4" "Matrix" "stats" "graphics" "grDevices" "utils"
[7] "datasets" "methods" "base"

[[5]]
[1] "lme4" "Matrix" "stats" "graphics" "grDevices" "utils"
[7] "datasets" "methods" "base"

[[6]]
[1] "lme4" "Matrix" "stats" "graphics" "grDevices" "utils"
[7] "datasets" "methods" "base"

[[7]]
[1] "lme4" "Matrix" "stats" "graphics" "grDevices" "utils"
[7] "datasets" "methods" "base"
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[[8]]
[1] "lme4" "Matrix" "stats" "graphics" "grDevices" "utils"
[7] "datasets" "methods" "base"

Note that this helpfully returns a list of the packages loaded in each process.

Using par*apply

There are parallel versions of the three main apply statements: parApply, parLapply and
parSapply for apply, lapply and sapply respectively. They take an additional argument for
the cluster to operate on.

parSapply(cl, mtcars, mean)

mpg cyl disp hp drat wt qsec
20.090625 6.187500 230.721875 146.687500 3.596563 3.217250 17.848750

vs am gear carb
0.437500 0.406250 3.687500 2.812500

All the general advice and rules about par*apply apply as with the normal *apply functions.

Close the cluster

stopCluster(cl)

This is not fully necessary, but is best practices. If not stopped, the processes continue to run
in the background, consuming resources, and any new processes can be slowed or delayed. If
you exit R, it should automatically close all processes also. This does not delete the cl object,
just the cluster it refers to in the background.

Keep in mind that closing a cluster is equivalent to quitting R in each; anything saved there
is lost and packages will need to be re-loaded.

Continuing the iris example

cl <- makeCluster(detectCores())
clusterEvalQ(cl, library(lme4))
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[[1]]
[1] "lme4" "Matrix" "stats" "graphics" "grDevices" "utils"
[7] "datasets" "methods" "base"

[[2]]
[1] "lme4" "Matrix" "stats" "graphics" "grDevices" "utils"
[7] "datasets" "methods" "base"

[[3]]
[1] "lme4" "Matrix" "stats" "graphics" "grDevices" "utils"
[7] "datasets" "methods" "base"

[[4]]
[1] "lme4" "Matrix" "stats" "graphics" "grDevices" "utils"
[7] "datasets" "methods" "base"

[[5]]
[1] "lme4" "Matrix" "stats" "graphics" "grDevices" "utils"
[7] "datasets" "methods" "base"

[[6]]
[1] "lme4" "Matrix" "stats" "graphics" "grDevices" "utils"
[7] "datasets" "methods" "base"

[[7]]
[1] "lme4" "Matrix" "stats" "graphics" "grDevices" "utils"
[7] "datasets" "methods" "base"

[[8]]
[1] "lme4" "Matrix" "stats" "graphics" "grDevices" "utils"
[7] "datasets" "methods" "base"

system.time(save3 <- parLapply(cl, 1:100, f))

user system elapsed
0.104 0.009 0.279

stopCluster(cl)

Timing this is tricky - if we just time the parLapply call we’re not capturing the time to open
and close the cluster, and if we time the whole thing, we’re including the call to lme4. To
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be completely fair, we need to include loading lme4 in all three cases. I do this outside of
this Markdown file to ensure no added complications. The three pieces of code were, with a
complete restart of R after each:

reps <- 1000
### lapply
library(parallel)
f <- function(i) {
lmer(Petal.Width ~ . - Species + (1 | Species), data = iris)

}

system.time({
library(lme4)
save1 <- lapply(seq_len(reps), f)

})

### mclapply
f <- function(i) {
lmer(Petal.Width ~ . - Species + (1 | Species), data = iris)

}

system.time({
library(lme4)
save2 <- mclapply(seq_len(reps), f)

})

### mclapply
f <- function(i) {
lmer(Petal.Width ~ . - Species + (1 | Species), data = iris)

}

system.time({
cl <- makeCluster(detectCores())
clusterEvalQ(cl, library(lme4))
save3 <- parLapply(cl, seq_len(reps), f)
stopCluster(cl)

})

lapply mclapply parLapply
5.736 4.353 2.996
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Bootstrap example continued

Let’s run the bootstrap example with sockets as well.

reps <- 10
system.time({
cl <- makeCluster(detectCores())
clusterEvalQ(cl, library(lme4))
clusterExport(cl, c("recs", "boot"))
res3 <- parLapply(cl, seq_len(reps), function(x) boot(recs))
stopCluster(cl)

})

user system elapsed
0.466 0.100 8.065

sd3 <- sd(Reduce(c, res3))
c(estcoef + 1.96*sd3, estcoef - 1.96*sd3)

typehuq2 typehuq2
-0.0538258 -0.1710895

In this case, the socket approach is faster than the forking approach - this will not always be
the case.
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