
R: FuturesStatistics 506

Concurrent and Asynchronous Computing

Asynchronous computing refers to having events that occur independent of the primary control
flow in our program.

In a traditional, synchronous program each statement or expression blocks while evaluating.
In other words, it forces the program to wait until if continues. An asynchronous program,
in contrast, has some statements that do not block – allowing the program to continue until
either (1) the value of the earlier statement is needed or (2) execution resources such as CPU
cores are exhausted.

In parallel programming we explicitly split portions of our program into chunks of code that
can be executed independently. In concurrent programming we specify chunks of code that
can be executed independently of others. A concurrent program can be executed sequentially
or in parallel.

Traditionally concurrent programming has been focused on I/O bound tasks where one is
querying external servers or databases and would otherwise have to wait for each query to
finish and return before sending the next request. Concurrency helps in this situation because
it allows the program to wait in multiple queues at once. This video explains how concurrency
helps to load webpages more quickly if you’re curious.

Concurrent Programming with Futures in R

The R package future provides utilities that allow us to write concurrent programs using an
abstraction known as a future. Quoting the package author,

In programming, a future is an abstraction for a value that may be available at
some point in the future.

1

https://www.youtube.com/watch?v=4kvX0awOSBU
https://CRAN.R-project.org/package=future

Once the future has resolved, its value becomes available immediately. If we request the value
of a future that has not yet resolved the request blocks leading our program to wait until the
value becomes available.

First, consider the following code:

x <- 5
print("Non-trivial code that does not depend on `x`")

[1] "Non-trivial code that does not depend on `x`"

x + 4

[1] 9

When we execute those three lines of code, x has its value assigned first, then the “non-trivial”
code runs, and finally x is used in the final statement. However, since x is not needed in the
“non-trivial” code, we really didn’t need to evaluate x <- 5 until just prior to it’s use.

Let’s place the x <- 5 line into concurrent programming. To make things more apparent,
we’ll add some artificial slow code.

library(future)
plan(multisession)
x <- future({
print("Assigning x")
Sys.sleep(1)
5

})
print("Non-trivial code that does not depend on `x`")

[1] "Non-trivial code that does not depend on `x`"

value(x) + 4

[1] "Assigning x"

[1] 9

2

Take note of the structure of future() to assign, and value() to access. We’ll talk about the
plan function below.

What’s happening here is that when we call future, the calculation and assignment of x takes
place “behind” the other code. Since the calculation of x involves that “slow” code, the print
statement starting with “Non-trivial code” gets executed prior to x resolving. Because the
final line of code depends on x resolving, it is blocking and the code will not proceed until x is
resolved.

Future calls to value do not re-resolve the code; instead the result is stored as normal.

x <- future({
print("Assigning x")
Sys.sleep(1)
5

})
print("Non-trivial code that does not depend on `x`")

[1] "Non-trivial code that does not depend on `x`"

system.time(value(x) + 4)

[1] "Assigning x"

user system elapsed
0.001 0.000 0.988

system.time(value(x) - 2)

[1] "Assigning x"

user system elapsed
0 0 0

The first system.time is timing not only how long it takes to executer x + 4, but also how
it takes to finish resolving x. Note that the “user” time is 0 in both cases; because of the
multi-core approach, the resolving of x takes place in another R process, so in this session, no
processing time was taken (just the waiting time).

3

plans

We used the line plan(multisession) above. This tells futures how to handle the concur-
rency. There are three main plans:

1. plan(sequential): This is the default; it basically ignores the future functionality and
evaluates them at the point of creation. Useful for debugging.

2. plan(multicore): Behind the scenes this utilizes forking from the parallel process.
3. plan(multisession): Behind the scenes this functions similiarly to the socket appraoch,

albeit without the need to execute code on each process manually.

Much of the same pros and cons of different approaches applies. Specifically that
plan(multicore) is not supported on Windows.

An additional complexity is that plan(multicore) is not supported in RStudio even in Mac
or *nix based systems. The distinction betwee them is less important as future handles most
of the annoying stuff behind the scenes, but I would still recommend using forking on any
system that supports it. You can enable forking on RStudio if you want.

Explicit vs implicit futures

The future()/value() syntax is a bit burdensome. future calls this creating a future “ex-
plicitly”. We can also create an future “implicitly” with the %<-% assignment operator.

x %<-% {
print("Assigning x")
Sys.sleep(1)
5

}
print("Non-trivial code that does not depend on `x`")

[1] "Non-trivial code that does not depend on `x`"

system.time(x + 4)

[1] "Assigning x"

user system elapsed
0.001 0.000 0.993

4

17-parallel-processing.qmd
17-parallel-processing.qmd#using-sockets-with-parlapply
17-parallel-processing.qmd#methods-of-paralleization
https://parallelly.futureverse.org/reference/supportsMulticore.html#enable-or-disable-forked-processing-1

system.time(x - 2)

user system elapsed
0.000 0.000 0.001

In almost all cases, %<-% is a drop-in replacement for <-. The exception is regarding saving
many futures to an object as in a simulation.

f <- list()
for (i in 1:3) {
f[[i]] %<-% i

}

Error: Subsetting can not be done on a 'list'; only to an environment: 'f[[i]]'

for (i in 1:3) {
f[[i]] <- future(i)

}
lapply(f, value)

[[1]]
[1] 1

[[2]]
[1] 2

[[3]]
[1] 3

It’s generally safe to use %<-% as default, dropping back to explicit only if needed.

Also, while you don’t have to use {}, it is strongly recommended that you do. Consider the
following:

x %<-% 5 * rnorm(1)

Error in x %<-% 5 * rnorm(1): non-numeric argument to binary operator

5

x %<-% { 5 * rnorm(1) }

%<-% is a high-priority operator, so x %<-% gets evaluated first, before being multiplied.

A similar issue can arise with piping (demonstrated here with R’s pipe, but also a problem for
the tidyverse pipe.)

x %<-% 1:5 |> sum()

Error in sum(x %<-% 1:5): invalid 'type' (environment) of argument

x %<-% { 1:5 |> sum() }

Blocking

We defined “blocking” before, but let’s reiterate. In the following code:

x %<-% 5 # 1
y <- 3 # 2
x + y # 3

[1] 8

Because line 3 depends on x, it is “blocking”. That is, line 2 can be run regardless of whether
x has finished resolving, but when line 3 is run, it will pause until x has resolved.

We can check the status of resolution of a particular future if we desire.

x %<-% {
Sys.sleep(1)
5

}
resolved(futureOf(x))

[1] FALSE

Sys.sleep(1.2)
resolved(futureOf(x))

6

[1] TRUE

The futureOf function is necessary when using implicit assignment; we don’t need it with
explicit assigment:

x <- future({
Sys.sleep(1)
5

})
resolved(x)

[1] FALSE

Sys.sleep(1.2)
resolved(x)

[1] TRUE

Errors in resolution

If a future resolves into an error, the error will get thrown at the point of accessing the object,
not during its creation. It will throw the error every time the object is accessed.

x %<-% {
stop("error")

}
print("Some code")

[1] "Some code"

Sys.sleep(1)
print("more code")

[1] "more code"

x + 2

Error in withCallingHandlers({: error

7

x - 3

Warning: restarting interrupted promise evaluation

Error in withCallingHandlers({: error

Example 1

Let’s use futures to handle data processing. First, let’s extract the batting tables from the
Lahman database into files by year:

library(DBI)
lahman <- dbConnect(RSQLite::SQLite(), "data/lahman_1871-2022.sqlite")

yrs <- dbGetQuery(lahman,
"SELECT DISTINCT yearID FROM BATTING")[, 1]

for (i in yrs) {
dat <- dbGetQuery(lahman,

paste("SELECT * FROM BATTING WHERE yearID ==", i))
write.csv(dat, file = paste0("data/lahman/batting_", i, ".csv"))

}

Make sure it works:

head(dir("data/lahman"))

[1] "batting_1871.csv" "batting_1872.csv" "batting_1873.csv" "batting_1874.csv"
[5] "batting_1875.csv" "batting_1876.csv"

Let’s read each file in, collapse it to some averages, then combine the results to run a model
upon. Specifically, the question of interest is whether the introduction of the Designated Hitter
rule (allowing a player who is not on the field to bat in place of the pitcher) in 1973 shows any
correlation with the ratio of RBIs to at bats per season. (Looking at the ratio to account for
an increase in the number and length ofa games over time.) To do this, we’ll estimate a slope
prior to 1973 and a slope post 1973 and compare them.

First, we’ll define the function that carries out the data management step.

8

f <- function(file) {
dat <- read.csv(file)
ratios <- datRBI/datAB
ratio <- mean(ratios[dat$AB > 0], na.rm = TRUE)
return(c(dat$yearID[1], ratio))

}

Next, run it without futures for timing comparison.

system.time({
save <- list()
for (file in dir("data/lahman", full.names = TRUE)) {

save[[file]] <- f(file)
}
savedf <- data.frame(Reduce(rbind, save))
names(savedf) <- c("year", "ratio")
savedf$prepost <- savedf$year >= 1973

})

user system elapsed
0.278 0.010 0.288

head(save, n = 2)

$`data/lahman/batting_1871.csv`
[1] 1871.0000000 0.1476379

$`data/lahman/batting_1872.csv`
[1] 1872.0000000 0.1099565

head(savedf)

year ratio prepost
init 1871 0.14763790 FALSE
X 1872 0.10995653 FALSE
X.1 1873 0.11487818 FALSE
X.2 1874 0.10178443 FALSE
X.3 1875 0.07594255 FALSE
X.4 1876 0.08076249 FALSE

9

summary(lm(ratio ~ year*prepost, data = savedf))

Call:
lm(formula = ratio ~ year * prepost, data = savedf)

Residuals:
Min 1Q Median 3Q Max

-0.024365 -0.007094 -0.000484 0.005685 0.046570

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.566e-01 8.023e-02 5.691 6.56e-08 ***
year -1.900e-04 4.175e-05 -4.551 1.10e-05 ***
prepostTRUE -3.227e-01 2.559e-01 -1.261 0.209
year:prepostTRUE 1.692e-04 1.286e-04 1.315 0.190

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01241 on 148 degrees of freedom
Multiple R-squared: 0.1236, Adjusted R-squared: 0.1058
F-statistic: 6.955 on 3 and 148 DF, p-value: 0.000207

system.time({
plan(multisession)
save <- list()
for (file in dir("data/lahman", full.names = TRUE)) {

save[[file]] <- future(f(file))
}
savevals <- lapply(save, value)
savedf <- data.frame(Reduce(rbind, savevals))
names(savedf) <- c("year", "ratio")
savedf$prepost <- savedf$year >= 1973

})

user system elapsed
4.207 0.039 6.534

head(save, n = 2)

10

$`data/lahman/batting_1871.csv`
MultisessionFuture:
Label: '<none>'
Expression:
f(file)
Lazy evaluation: FALSE
Asynchronous evaluation: TRUE
Local evaluation: TRUE
Environment: R_GlobalEnv
Capture standard output: TRUE
Capture condition classes: 'condition' (excluding 'nothing')
Globals: 2 objects totaling 31.41 KiB (function 'f' of 31.27 KiB, character 'file' of 136 bytes)
Packages: 1 packages ('utils')
L'Ecuyer-CMRG RNG seed: <none> (seed = FALSE)
Resolved: TRUE
Value: 64 bytes of class 'numeric'
Early signaling: FALSE
Owner process: 44cfa7e8-58b8-cd7a-ee10-8503c3a451ad
Class: 'MultisessionFuture', 'ClusterFuture', 'MultiprocessFuture', 'Future', 'environment'

$`data/lahman/batting_1872.csv`
MultisessionFuture:
Label: '<none>'
Expression:
f(file)
Lazy evaluation: FALSE
Asynchronous evaluation: TRUE
Local evaluation: TRUE
Environment: R_GlobalEnv
Capture standard output: TRUE
Capture condition classes: 'condition' (excluding 'nothing')
Globals: 2 objects totaling 31.41 KiB (function 'f' of 31.27 KiB, character 'file' of 136 bytes)
Packages: 1 packages ('utils')
L'Ecuyer-CMRG RNG seed: <none> (seed = FALSE)
Resolved: TRUE
Value: 64 bytes of class 'numeric'
Early signaling: FALSE
Owner process: 44cfa7e8-58b8-cd7a-ee10-8503c3a451ad
Class: 'MultisessionFuture', 'ClusterFuture', 'MultiprocessFuture', 'Future', 'environment'

head(savevals, n = 2)

11

$`data/lahman/batting_1871.csv`
[1] 1871.0000000 0.1476379

$`data/lahman/batting_1872.csv`
[1] 1872.0000000 0.1099565

head(savedf)

year ratio prepost
init 1871 0.14763790 FALSE
X 1872 0.10995653 FALSE
X.1 1873 0.11487818 FALSE
X.2 1874 0.10178443 FALSE
X.3 1875 0.07594255 FALSE
X.4 1876 0.08076249 FALSE

summary(lm(ratio ~ year*prepost, data = savedf))

Call:
lm(formula = ratio ~ year * prepost, data = savedf)

Residuals:
Min 1Q Median 3Q Max

-0.024365 -0.007094 -0.000484 0.005685 0.046570

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.566e-01 8.023e-02 5.691 6.56e-08 ***
year -1.900e-04 4.175e-05 -4.551 1.10e-05 ***
prepostTRUE -3.227e-01 2.559e-01 -1.261 0.209
year:prepostTRUE 1.692e-04 1.286e-04 1.315 0.190

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.01241 on 148 degrees of freedom
Multiple R-squared: 0.1236, Adjusted R-squared: 0.1058
F-statistic: 6.955 on 3 and 148 DF, p-value: 0.000207

This is a case where parallel processing hurts us - because the operation is so fast. What if we
had slower code?

12

Artificially slower code

Let’s add an artificial bottleneck by pausing 1 second within each file. This mimics the data-
processing being on larger data or just overall slower.

f <- function(file) {
Sys.sleep(1)
dat <- read.csv(file)
ratios <- datRBI/datAB
ratio <- mean(ratios[dat$AB > 0], na.rm = TRUE)
return(c(dat$yearID[1], ratio))

}

system.time({
save <- list()
for (file in dir("data/lahman", full.names = TRUE)) {

save[[file]] <- f(file)
}
savedf <- data.frame(Reduce(rbind, save))
names(savedf) <- c("year", "ratio")
savedf$prepost <- savedf$year >= 1973

})

user system elapsed
1.615 0.085 154.298

system.time({
plan(multisession)
save <- list()
for (file in dir("data/lahman", full.names = TRUE)) {

save[[file]] <- future(f(file))
}
savevals <- lapply(save, value)
savedf <- data.frame(Reduce(rbind, savevals))
names(savedf) <- c("year", "ratio")
savedf$prepost <- savedf$year >= 1973

})

user system elapsed
5.842 0.078 21.165

13

Example 2

Here’s another example of a simulation. Let’s compare what happens in a large logistic regres-
sion model when there are many informative variables, as opposed to when there is only one
variable related to the outcome and the rest add independent noise. Specifically, how does the
distribution of the coefficient on the variable of interest change between the two situations

n <- 1000
p <- 100

x <- matrix(rnorm(n * p), ncol = p)

pr1 <- arm::invlogit(rowSums(x)) # all x's informative
pr2 <- arm::invlogit(x[,1]) # Only x1 informative

f <- function(x, pr) {
y <- rbinom(nrow(x), 1, prob = pr)
suppressWarnings(mod <- glm(y ~ x, family=binomial()))
return(mod$coef[2])

}

reps <- 100

save1 <- list()
save2 <- list()
system.time(for (i in seq_len(reps)) {
save1[[i]] <- future(f(x, pr1), seed = TRUE)
save2[[i]] <- future(f(x, pr2), seed = TRUE)

})

user system elapsed
5.973 0.098 8.639

save1 <- sapply(save1, value)
save2 <- sapply(save2, value)

Use median and IQR because `save1` likely has some extreme values
matrix(c(median(save1), median(save2), IQR(save1), IQR(save2)),

byrow = TRUE, nrow = 2,
dimnames = list(c("median", "IQR"), c("all x", "only x1")))

14

all x only x1
median 68.09187 1.1249493
IQR 81.84375 0.1228094

Note the use of seed = TRUE to future. This is needed if RNG is used within a future to
avoid issues with non-random results.

For comparison, timing of a non-futures version.

save1 <- list()
save2 <- list()
system.time(for (i in seq_len(reps)) {
save1[[i]] <- f(x, pr1)
save2[[i]] <- f(x, pr2)

})

user system elapsed
19.950 0.168 20.209

15

	Concurrent and Asynchronous Computing
	Concurrent Programming with Futures in R
	plans
	Explicit vs implicit futures
	Blocking
	Errors in resolution

	Example 1
	Artificially slower code

	Example 2

