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a b s t r a c t 

Windows can significantly affect building performance, and the window-to-wall ratio (WWR) describes 

the portion of an exterior wall that consists of windows. Previous research on the effects of WWR and ef- 

forts to determine optimal WWR generally rely on iterative simulation or algorithmic optimization. This 

study seeks to understand the effects of WWR in actual office buildings using survey data reported in 

the 2012 CBECS (Commercial Building Energy Consumption Survey). Both total annual energy use and 

four discrete end-uses (heating, cooling, lighting and ventilation) were characterized, and 32 categorical 

and numerical building characteristic variables were selected for linear regression analysis. Descriptive 

statistics for energy use intensity (EUI) in ∼10 0 0 office buildings across 6 WWR intervals show increased 

median total EUI with increasing fenestration, driven by increasing cooling loads. Total EUI generally de- 

creases with year of construction, regardless of WWR. Single-variable regression finds consistent statisti- 

cal significance for WWR on cooling, lighting, and ventilation energy use, but with a maximum goodness 

of fit R 2 = 0.04. In contrast, the single variable with the largest explanatory power is cooling degree days 

( R 2 = 0.22 for cooling energy use). Multi-regression modeling finds a maximum R 2 value of 0.34, with 

WWR appearing as a significant variable in the regression equations for cooling and lighting. In sum, the 

2012 CBECS microdata for office buildings suggests that WWR is a significant predictor of energy use for 

cooling, and to a lesser extent lighting and ventilation, but to a much lower degree than has been found 

by purely simulation studies. 

© 2019 Elsevier B.V. All rights reserved. 

1

 

t  

t  

1  

B  

i  

i  

p

o  

o  

i  

a  

e  

N

M

c

I

c  

a  

e

 

d  

r  

o  

i  

s  

u  

o  

e  

p  

h

0

. Introduction 

According to the US Energy Information Administration (EIA),

he commercial building sector consumed approximately 19% of

he 2016 total US energy in 2016, which accounted for almost

8% of national carbon dioxide (CO 2 ) emissions [1] . The Lawrence

erkley National Laboratory estimated 34% of commercial build-

ng energy use in the US is window-related [2] . Although large

nterior lighting and cooling loads ( i.e. , lighting, equipment, and

eople) define internal-load-dominated buildings like offices, 

ffice buildings’ enclosure remains important; the proper design

f fenestration and envelope in can reduce lighting and mechan-

cal system energy use by 10–40% depending on climate [3] . In

ddition to cost and environmental benefits, the advent of new

nergy codes, green building standards, incentive programs, and
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ertification systems motivates higher-performing building design. 

mproved fenestration performance addresses elevated energy 

onservation demands and provides additional benefits such as

voided environmental impacts, reduced economic harm and

nhanced occupant comfort and productivity [4] . 

Because empirical data are not available prior to construction,

esign decisions, rating systems and even some energy codes

ely on building simulation [5] to understand the performance

f specific buildings. These models depend on detailed project

nformation and accurate representations of complex building

ystems [6] , and challenges like unpredictable occupant behavior,

ncertainty regarding specific building characteristics and quality

f construction, and model underspecification, complicate accurate

stimates of energy use [7,8] . An alternate approach to building

erformance develops statistical models using large data sets of

easured energy consumption and building characteristics from

xisting buildings, which offers opportunities to benchmark the

elationships among building parameters as experienced in actual

uildings, in all their messy reality. 

https://doi.org/10.1016/j.enbuild.2019.109434
http://www.ScienceDirect.com
http://www.elsevier.com/locate/enbuild
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enbuild.2019.109434&domain=pdf
mailto:d.fannon@northeastern.edu
mailto:d.fannon@neu.edu
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The Commercial Building Energy Consumption Survey (CBECS),

conducted by the EIA, is the only national-scale data source that

includes building characteristics and measured energy consump-

tion of the non-residential building stock [9] . Office buildings

comprise the largest fraction of primary building activity in the

recently-released 2012 CBECS—by both number of buildings and

by total floor area—representing more than 16 billion square feet

of commercial floor space. Since the dataset is representative of

the national building stock, analysis across all US climate regions

can isolate effects of specific parameters, including location, and

provide analysis relevant for the entire country. 

The present study tests the influence of window-to-wall ratio

(WWR) on energy consumption in commercial office buildings

using the 2012 CBECS data. Descriptive summary statistics ex-

amine relationships between WWR and total annual energy use

intensity (EUI) and with end-uses directly affected by envelope

performance, including heating, cooling, lighting, and ventilation.

Because CBECS surveyed a representative sample of buildings, sim-

ple linear regression can evaluate statistical significance of WWR

and other dataset building characteristics compared to end-use

EUIs. Finally, effects of WWR in conjunction with other selected

variable combinations are considered with multi-linear regression

techniques and the results are validated against prototype building

energy simulations. 

2. Background 

2.1. Window-to-Wall Ratio (WWR) 

Windows shape aesthetics, admit daylight, afford views, and

provide thermal enclosure in buildings. As a result, windows are

regarded as one of the most important components of a commer-

cial building envelope system [10–12] . The window-to-wall ratio

(WWR) represents the proportion of exterior wall surface area that

is glazed (consists of windows), and WWR affects many building

attributes: window size establishes the physical/visual connection

to the exterior, and determines the environmental impacts asso-

ciated with material use [13] . WWR affects building energy use

and occupant comfort through heat transfer (conduction), solar

heat gain (radiation), air leakage or ventilation (infiltration) and

daylighting (lighting demand offset) [4] . 

To quantify the effect of WWR on energy, the ASHRAE Hand-

book of Fundamentals provides a simplified, three-term equation

to calculate the energy flow through window assemblies based

on a combination of physical glazing properties ( e.g. , solar heat

gain coefficient (SHGC), visual transmittance ( T v ) and thermal con-

ductance ( U -value)) as well as climatic conditions. Each term in

the equation is a function of fenestration area, which underscores

the effect of WWR on building energy use. That relationship

is straightforward for thermal conductance, but of course the

orientation and distribution of that fenestration area are critical

to determining solar heat gain, and will affect lighting, which

is not considered in this simple calculation. All three terms also

depend on climate, which directly influences envelope, and es-

pecially window, performance [21–25] . Selecting the appropriate

WWR—like many climate-responsive passive-design strategies—

requires carefully balancing occasionally competing goals like

aesthetics; thermal and visual comfort while reducing dependence

on power-operated systems [26,27] . 

ASHRAE Standard 90.1 , a model energy code, defines building

characteristics to ensure minimum energy performance for each

US climate zone, and establishes a maximum WWR of 40% for

commercial buildings following the prescriptive path to compli-

ance, and as the baseline for the performance path [28] . Numerous

simulation-based investigations have attempted to determine the

optimal WWR [14–20] under various circumstances, and some sug-

gest WWRs less than 40% minimize energy use [29–32] . Proposals
o reduce the maximum WWR to 30% during the 2013 revision of

SHRAE 90.1 met some controversy and were ultimately rejected

33,34] , but WWR remains an important topic in building design

nd operation. 

.2. The Commercial Building Energy Consumption Survey (CBECS) 

Under the 1977 US Department of Energy (DOE) Organization

ct, the EIA was mandated to “collect, evaluate, assemble, analyze,

nd disseminate data and information” relating to energy use

nd production [35] . The EIA developed comprehensive surveys

overing three energy-use sectors (commercial, residential and

anufacturing) which are required to be conducted at every four

ears [36] . CBECS collects Building Survey data directly from own-

rs and operators—although some question the accuracy of such

elf-reporting [37,38] —and supplements as needed with energy

ata from the Energy Supplier Survey [39] . 

The fundamental purpose of CBECS is to provide comprehen-

ive, statistically-representative energy use information about the

S commercial building sector [36] . Uniquely, CBECS data pairs

uilding characteristics with energy consumption data, and covers

 broad range of commercial building types [38,40,41] . Survey

espondents provide most characteristics by choosing generalized

escriptions and categories without resorting to onerous measure-

ent of physical parameters such as envelope R -value. Though

his approach simplifies data collection, it limits the usefulness

f survey responses for energy use calculations and simulations

42] . In any case, CBECS supports a broad range of activities

nd research, including many of the statistical studies cited in

he next section. In addition, the dataset provides a historical

ecord of building performance [40] and serves as the backbone

or benchmarking EnergyStar performance in Portfolio Manager,

hich scores building energy use compared with averages [43] . 

The 2012 CBECS data contains 1119 total variables describing

ach individual building record. Individual variables are indicated

ere in caps (VARIABLE) using their CBECS names. 506 of the

ariables describe building characteristics or operation. 49 of these

06 description variables specify annual energy consumption

y sources ( e.g. , major fuel, electricity, natural gas, fuel oil or

istrict heat) and end-uses ( e.g. , heating, cooling, ventilation,

ater heating, lighting, cooking, refrigeration, computing, office

quipment, and other uses) per source. The annual energy use

ariables are recorded by the amount of energy consumed (in

BTU), expenditures, and the quantity of the energy carrier used

 e.g. , kWh, cubic feet, and gallons). CBECS analysts ensure the end-

se breakdown accounts for the reported total building energy

onsumption by processing end-use variables with engineering

odels, cross-sectional regression and reconciliation [71] . 

Each building observation is weighted according to the pro-

ortion of the population it represents; the final sample weight

FINALWT) variable is the number of buildings in the entire US

uilding stock represented by that single building survey record.

BECS is not a census but a sample survey of statistical estimates,

hich includes associated sampling errors measuring the accuracy

f a particular estimate. To determine the accuracy of applying the

urvey estimate to the entire population, CBECS uses the jackknife

ethod with the provided 197 replicate weights (FINALWT1–

INALWT197) to generate relative standard errors (RSE) between

stimates and the full-sample estimate. The EIA recommends using

he weights and/or calculating RSE when using the CBECS dataset

72] , and we have followed that recommendation here. 

.3. Statistical prediction of building performance 

Numerous studies have investigated different approaches to

etermine the influence of particular building characteristics

n building energy use [44,45] . Statistical methods to forecast
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uilding energy consumption include regression [46–48] , artificial

eural networks (ANN) [49,50] , random forest [51] , clustering

52] and principal component analysis (PCA) [53–55] . Considering

egression, both linear and non-linear multiple regression tech-

iques have been used to predict energy for different building

nd-uses [8] , and the early application of such models during the

esign phase was found to improve energy efficiency and reduce

missions [56] . The number of variables and the complexity of the

egression equation can dramatically affect the model goodness

f fit [57] . The manual selection process of stepwise regression

an provide insight to individual variables and the influence of

ifferent levels [58] . 

Curiously, while WWR has been investigated extensively both

lobally and in the US for its influence on occupant well-being

59–67] , controlled, statistical comparisons of alternative WWR

esigns in buildings generally rely on data generated simulations.

or example, Yu et al. and Korolija et al. performed regression

odeling on window assembly properties ( e.g. , solar heat gain

oefficient (SHGC), visual transmittance ( T v ) and thermal con-

uctance ( U -value)) in combination with the WWR, climate and

rientation in order to predict building energy use [68,69] . These

nalysis demonstrated the influence of climate region, because the

tatistical significance of window size and orientation is different

n each location. In general, past analysis results indicate energy

avings with increased SHGC and T v and a heating energy savings

ith increased U -value [70] . 

The present study takes a parallel approach to determine the

nfluence of WWR on building energy use, constructing regression

odels from data measured in actual buildings and recorded by

he 2012 CBECS dataset, rather than from simulations. The goal

f regression analysis is to quantify the influence of independent

redictor variables (like the characteristics of office buildings) on

he resulting dependent response variables (like energy consump-

ion). Our regression models seek a coefficient for each building

haracteristic predictor variable that achieves the best linear fit to

he surveyed annual energy use response variables: in short, the

est possible prediction of energy use based on building attributes.

. Methods 

.1. Observation & variable selection 

To study of the influence of WWR on office building energy

se, the 6720 commercial building observations in the 2012 CBECS

ataset were subset to 1212 observations, where the ‘Principal

uilding Activity’ (PBA) is classified as ‘Office’, the ‘Percent Exterior

lass’ (GLSSPC) contained a reported value, and the ‘Window

lass Type’ (WINTYP) was not reported as having no windows.

he GLSSPC variable, first introduced to the survey in 2003, is

ynonymous to WWR, with responses collected in six percent-

ge intervals: less than 1%, 2–10%, 11–25%, 26–50%, 51–75% and

6–100%. WWR focuses only on the amount of glass; CBECS also

ontains data regarding the distribution or orientation of windows,

pecifically the categorical variables ‘Equal glass on all sides’

EQGLSS) and ‘Glass on sides with most sunlight’ (SUNGLS). 

.1.1. Independent variables 

We selected 28 independent building characteristic variables

including GLSSPC) that are relevant to energy performance in

ffice buildings. Since this study focuses on windows, we excluded

ariables regarding details of mechanical systems, controls, and

anagement systems. The 28 selected variables are divided into

ix sets to decompose the influence of groups of variables on

uilding energy use. The Initial Set consists of ten variables captur-

ng whole building and façade characteristics that influence energy

se regardless of location. The Envelope, Building , and Operational
ets extend the Initial Set, adding potential energy-contributing

uilding parameters. A Windows Only Set and an Envelope Only

et were isolated from the 28 variables to explore the façade

ffects independently. The selected variables and sets are shown

n Table 1 . Because building energy performance is driven by

ocation-specific weather data [73] , four climate variables recorded

n CBECS (listed in Table 1 ) were also included as independent,

r predictor variables, although of course these overlap inas-

uch as they describe the same climate. Thus, we used 32 total

ndependent, or predictor, variables in this analysis. 

.1.2. Dependent (Response) variables 

This study considered annual building energy use, which CBECS

ecords by energy carrier. These variables are summed to obtain

 new, calculated measure of Total Annual Energy consumption

TOTBTU) which is not in CBECS Public Use Microdata File. To

tandardize comparisons, TOTBTU is divided by the building area

SQFT) of each building to yield the Total Annual Energy Use

ntensity (TOTEUI) measured in kBtu/ft 2 · year. However, TOTEUI

ay mask conflicting trends among different energy end-uses

rising from changes to WWR [74] , and so disaggregated heating,

ooling, ventilation and lighting energy use intensities (HTEUI,

LEUI, VNEUI and LTEUI, respectively) were also calculated and

ndividually analyzed, yielding five total dependent, or response,

ariables listed in Table 1 . 

.2. Data formating and filtering 

Of the 32 independent variables 21 contain categorical data,

hile the remaining 11 contain integers (numerical) data. For

xample, GLSSPC is a categorical parameter because the six levels

re descriptions of a building characteristic indicating a range of

alues, rather than a numerical value of the actual WWR. The

BECS variables are documented in the Variable and Response

odebook [75] , and the details of the variables as used in this

tudy—including notes on data formating—can be found in Table

1 of the Supplemental Information (SI). 

Missing and null values in categorical variables present a

hallenge; to capture nonresponse or not applicable (NA) levels,

e replaced all missing values with zero in these cases. We also

eplaced missing values in numerical variables with zero in cases

here ‘not applicable’ can be interpreted the same as none ( e.g.,

Number of Underground Floors’ (BASEMNT) and ‘Percent Daylight’

DAYLTP)). 

Two of the 32 independent parameters mask values outside the

ypical response ranges to preserve the confidentiality in the sur-

ey. ‘Number of Floors’ (NFLOOR) is explicitly reported for offices

ess than 14 floors, but buildings with more than 14 floors are

eported in two tranches: with values of 994 for 15–25 floors, and

95 for more than 25 floors. Similarly, buildings built before 1946

eport ‘Year of Construction’ (YRCON) as a single default value of

95. 214 office building observations meet both conditions and

ere removed from the dataset based on the lack of specific in-

ormation about building height and age. Unfortunately, these 214

ecords constitute approximately 17% of the office buildings in raw

ataset and by definition represent the older and taller buildings. 

.3. Statistical methods 

We used a set of three increasingly sophisticated method of

tatistical analysis on the dataset, beginning with basic descrip-

ive statistics, followed by simple linear regression, and finally

ulti-linear additive regression to test for relationships between

WR and energy consumption. Applying these techniques to

he unique features of the CBECS dataset demanded particular

ethods, which are described below. 
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Table 1 

Selected independent (Predictor) variable sets and dependent (Response) variables. The numerical hash symbol (#) denotes numerical variables, and all other variables 

are categorical. 

Building Set 

Abbreviation Description Abbreviation Description 

SQFT Square footage (#) RFTILT Roof tilt 

BLDSHP Building shape NFLOOR Number of floors (#) 

BASEMNT Number of underground floors (#) FLCEILHT Floor to ceiling height (#) 

ATTIC Attic YRCON Year of construction (#) 

RENOV Any renovations CUBEC Percent open plan 

DAYLTP Percent daylight (#) 

Envelope Set 

Abbreviation Description Abbreviation Description 

WLCNS Wall construction material RFCNS Roof construction material 

RFCOOL Cool roof materials AWN External overhangs or awnings 

SKYLT Skylights or atriums 

Windows Set 

Abbreviation Description Abbreviation Description 

GLSSPC Percent exterior glass SUNGLS Glass sides most sunlight 

WINTYP Window glass type TINT Tinted window glass 

REFL Reflective window glass 

Operational Set 

Abbreviation Description Abbreviation Description 

FEDFAC Federal complex WKHRS Total hours open per Week (#) 

NOCC Number of businesses (#) NWKER Number of employees (#) 

OWNOCC Owner occupied or leased to tenant(s) SCHED Light scheduling 

OWNOPR Owner responsible for operation and maintenance of energy systems 

Climate Variables 

Abbreviation Description Abbreviation Description 

CENDIV Census division HDD65 Heating degree days (base 65) (#) 

PUBCLIM Building america climate region CDD65 Cooling degree days (base 65) (#) 

Dependent (Response) Variables 

Abbreviation Description Abbreviation Description 

TOTEUI Total annual site EUI (#) LTEUI Lighting annual site EUI (#) 

HTEUI Heating annual site EUI (#) VNEUI Ventilation annual site EUI (#) 

CLEUI Cooling annual Site eUI (#) 
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The CBECS survey design uses sample weights (FINALWT), repli-

cate weights (FINALWT1–FINALWT197) and estimation methodol-

ogy (jackknife) to relate the sample to the total building popula-

tion, and we used the survey package [76] in R to define these pa-

rameters for analysis. With a defined survey design, we fit ordinary

least squares regression models and generalized linear regression

models (GLM) to understand the relationships among the selected

variables while accounting for the weightings associated with each

building observation. The coefficient of determination ( R 2 ) was

used to measure of goodness of fit. The CBECS survey design mod-

els use likelihood ratio tests (LRTs) to calculate the R 2 because the

dataset contains a relatively large number of observations and to

account for weighting variables. A p -value < 0.05 (or a 95% confi-

dence threshold) was used to test for statistical significance [77] . 

To evaluate significance or strong relationships between in-

dividual independent (predictor) variables and each response

(dependent) variable, we fit simple regression models follow the

form Y = β0 + β1 X 1 + ε where: β0 is the intercept of the model,

β1 is the coefficient of the predictor variable X 1 , ɛ is the residuals

(or errors) of the model (assumed to be normally distributed), and

Y is the response variable ( e.g. , TOTEUI or HTEUI). 

When considering multiple predictor variables for a sin-

gle response variable, we used multivariate additive general-

ized linear regression. The model equation is in the form of

 = β0 + β1 X 1 + . . . + βn X n + ε where n is the number of indepen-

dent variables considered. Additive multi-linear models assume

the relationship between each predictor variable is only addition

and evaluate the significance of each predictor variable and the R 2 
oodness of fit for the entire model. We fit additive multi-linear

egression models with all of the selected variable sets described

n Table 1 for all five dependent (response) EUI variables. In

ddition to the full set of 32 variables, the window and envelope

ariable sets in Table 1 were also modeled in isolation. Although

UIs are normalized to building size, SQFT is evaluated with

ulti-linear analysis to ensure that a unique numerical variable

s included in the regression models. We considered p -values

s the criteria to eliminate predictor variables from multi-linear

odels to achieve a statistically significant reduced model with a

inimum number of variables for each response variable. 

As described previously, the CBECS survey includes many

ategorical variables, and in linear regression, categorical data

equires dummy coding to expand each variable to multiple di-

hotomous variables, one for each level of the initial variable. The

ENOV variable, for example, is coded as 1 = ‘Yes’ and 2 = ‘No’

hich becomes two variables after dummy coding, RENOV1

nd RENOV2, coded with binary values of 0 and 1. The general

inear regression equation for these types of variables becomes

 = β0 + β1 i ( I 1 i · X 1 i ) + . . . + βni ( I ni · X ni ) + ε, where I is the binary

ndicator of each dummy coded level and i is the number of levels

ithin the variable. When formated as categorical, the predictor

ariables use one level as the reference or baseline level which

s included in the model intercept ( β0 ). The other levels in the

ariable become a change from the baseline accounted for in

he regression coefficients. A potential challenge with categorical

ormated variables and dummy coding in regression models is the

ossibility of expanded categorical (especially binary) variables
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Fig. 1. Distribution of the number of CBECS (a) Building Observations and (b) Represented Buildings of the national building stock within each GLSSPC (WWR) interval. 

Larger rotated values in bold are the number of observations/buildings with masked values omitted. The dashed portion of each bar, labeled with smaller gray italics values 

is the number of observations/buildings where YRCON or NFLOOR contain a masked value. 
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ecoming perfectly collinear, which prevents the R survey package

rom running, but this was not encountered. 

. Results & discussion 

.1. Descriptive statistics 

The 1212 office building observations with a reported GLSSPC

epresent 902,582 office buildings of the entire national building

tock. Of the 1212 observations, 76 have masked NFLOOR and an

dditional 138 have YRCON masked for confidentiality reasons

s discussed above. Omitting these observations reduces the

ataset to 998 observations. When considering the final sample

eights (FINALWT) associated with each observation, the 998

BECS building records represent 770,592 national stock buildings.

e plotted the distribution of the number of office buildings for

ach GLSSPC level among the final office building dataset, and

sed descriptive and summary statistics to compare the GLSSPC

o the five dependent annual energy use intensity (EUI) variables

TOTEUI, HTEUI, CLEUI, VNEUI, and LTEUI) to understand the

istribution of buildings across the reported WWR. Fig. 1 shows

he distribution of the CBECS building observations (a) and the

ational stock represented buildings (b) in each WWR (GLSSPC)

nterval within the office dataset. The larger bold, values listed

ertically in each bar correspond to the 998 observations with

he YRCON and NFLOOR masked values omitted. The smaller gray

talic values indicate the number of observations and buildings

emoved because of these masked values. 

The 11–25% WWR interval has the most observations while

he 2–10% interval contains the greatest number of represented

uildings. This indicates that while the masked (omitted) obser-

ations are relatively evenly distributed across glass percentage

anges in the CBECS data, the taller and especially older buildings

epresented generally have lower WWRs. The difference in distri-

ution between observations and represented buildings emphasizes

he importance of including the weights during any analysis of the

BECS data. 

The overall average total EUI (TOTEUI) for the 1212 office build-

ngs represented in the CBECS data is 130 kBtu/ft 2 per year. As

een in the end-use EUI break down in Fig. 2 a, 20% of the total EUI

s attributed to office equipment and computers, miscellaneous
lectricity use designated as ‘Other’ accounts for 10%, and an

dditional 5% labeled ‘Minors’ includes the sum of the smallest

nergy contributors (cooking, refrigeration, and water heating) in

ffice buildings. Together these plug loads constitute to 35% of

he total energy use in the CBECS office buildings and are not

ffected by WWR or envelope parameters. Heating energy at 32%

s both the largest end-use affected by envelope, and in the sample

roadly. 

The operating energy is plotted for each GLSSPC interval in

ig. 2 b, with each colored dot representing a single building

bservation, and the box plot showing the distribution. As WWR

ncreases, the median TOTEUI increases, as does the interquartile

ange, which suggests buildings with higher WWR generally use

ore total energy. SI Table S2 includes similar boxplots and data

ables of summary statistics for each end-use EUI vs GLSSPC. We

ould expect higher WWRs to be associated with (1) increased

eating energy due to more conductive loss through larger win-

ows (in cold climates and periods), (2) greater cooling energy use

o counteract the conductive gains and additional solar radiation

hrough increased window area (in warm climates and periods)

nd (3) decreased lighting energy because bigger windows let in

ore daylight. The descriptive statistics reveal that the median for

eating and cooling EUI follow these expected trends but lighting

edian EUI also increases (details in SI Table S2), suggesting that,

t least in this sample daylight is not displacing electric light even

n buildings with large WWR. 

Building age is a potential confounding factor, as building codes

nd window assemblies have dramatically advanced window ther-

al performance since the mid-20th century. Fig. 3 plots GLSSPC

s ‘Year of Construction’ (YRCON), with trendlines showing EUI

erformance within each WWR interval. In general, more recent

RCON corresponds to a lower TOTEUI, except for the 26–50%

nterval, which is relatively constant. The generally declining trend

s most evident in buildings in the highest two WWR intervals,

uggesting that over time, code requirements, and quality im-

rovements in materials and construction have been effective at

educing energy use in buildings with highly glazed façades. 

While consistent with expectations, and perhaps suggestive of

elationships among variables, these simple descriptive statistics

an be misleading, because they do not describe the strength

f relationships between specific variables (most importantly
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Fig. 2. Summary statistics and end use breakdown for Total EUI (TOTEUI) (a) Average of all 1212 office building observations. (b) Summary statistics by GLSSPC (WWR) 

interval and (c) End-use breakdown by GLSSPC. ‘Other’ is estimated miscellaneous electricity use and ‘Minors’ is a sum of the lowest contributors; cooking, refrigeration and 

water heating. 

Fig. 3. Visual investigation of ‘Total Annual EUI’ (TOTEUI) vs ‘Year of Construction’ (YRCON) for each GLSSPC interval. Opacity and size of data points corresponds to sample 

weight (FINALWT) associated with each building observation. Vertical bars and black data point on the right of each GLSSPC interval are summary statistic plots showing 

the 95% confidence interval, inter-quartile range and median (key in lower left). 
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GLSSPC and energy), nor do they estimate our confidence in these

relationships. 

4.2. Regression analysis 

4.2.1. Simple linear regression 

All 32 independent variables were fit in separate simple regres-

sion models with each of the five EUI response variables to identify

statistically significant parameters within each building energy

end-use, and listed by end-use in Table 2 . The full details of the
esults ( R 2 , coefficients, and p -values) for each single regression

odel are provided in Table S3 of the SI. For the categorical predic-

or variables, the results show significance ( p -value) at each level.

he goodness of fit measure ( R 2 ) is evaluated for the entire model,

egardless of the number of levels in a categorical variable, and the

ntercept of each regression model describes the reference level. 

First considering WWR, the only statistically significant ( p -

alue < 0.05) level of GLSSPC across all five EUIs is the < 1%

LSSPC interval, which is also the reference level, or intercept of

he model. The total (TOTEUI) has only one additional significant
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Table 2 

Selected simple regression results. Bold and underlined R 2 value is the maximum of all models (CDD65) in CLEUI). Struck through p -values are 

insignificant ( > 0.05). The model intercepts capture the reference levels in categorical variables and the intercept portion in numerical variables, 

denoted with (Ref) and (Int), respectively. 

Total EUI (TOTEUI) Heating EUI (HTEUI) Cooling EUI (CLEUI) Lighting EUI (LTEUI) Ventilation EUI(VTEUI)) 

R 2 p -value R 2 p -value R 2 p -value R 2 p -value R 2 p -value 

RFCNS9 (Ref) 0.024 < 0.001 0.023 < 0.001 0.041 < 0.001 0.017 < 0.001 0.048 < 0.001 

RFCNS1 < 0.001 0.140 < 0.001 < 0.001 < 0.001 

RFCNS2 < 0.001 0.781 < 0.001 < 0.001 < 0.001 

RFCNS3 < 0.001 0.087 < 0.001 < 0.001 < 0.001 

RFCNS4 < 0.001 0.084 < 0.001 < 0.001 < 0.001 

RFCNS5 < 0.001 0.102 < 0.001 < 0.001 < 0.001 

RFCNS6 < 0.001 0.008 < 0.001 < 0.001 < 0.001 

RFCNS7 < 0.001 0.005 < 0.001 < 0.001 < 0.001 

RFCNS8 < 0.001 0.004 < 0.001 < 0.001 0.043 

GLSSPC1 < 1% (Ref) 0.008 < 0.001 0.009 < 0.001 0.040 < 0.001 0.013 < 0.001 0.014 < 0.001 

GLSSPC2 2 −10% 0.372 < 0.001 < 0.001 < 0.001 0.145 

GLSSPC3 11 −25% 0.121 0.987 < 0.001 0.049 0.017 

GLSSPC4 26 −50% 0.011 0.835 < 0.001 0.006 < 0.001 

GLSSPC5 51 −75% 0.094 0.681 < 0.001 < 0.001 0.001 

GLSSPC6 76 −100% 0.096 0.669 < 0.001 0.095 0.207 

YRCON (Int) 0.004 0.027 0.009 0.080 0.001 0.420 0.000 0.772 0.001 0.105 

YRCON 0.054 0.098 0.287 0.901 0.206 

NFLOOR (Int) 0.009 < 0.001 0.001 < 0.001 0.002 < 0.001 0.005 < 0.001 0.020 < 0.001 

NFLOOR < 0.001 0.045 0.001 < 0.001 < 0.001 

RENOV N/A (Ref) 0.018 < 0.001 0.012 < 0.001 0.003 < 0.001 0.007 < 0.001 0.012 < 0.001 

RENOV1 Yes < 0.001 < 0.001 0.064 < 0.001 < 0.001 

RENOV2 No < 0.001 < 0.001 0.457 < 0.001 < 0.001 

WINTYP (Int) 0.002 < 0.001 0.006 < 0.001 0.024 < 0.001 0.004 < 0.001 0.008 < 0.001 

WINTYP2 0.342 0.197 < 0.001 0.077 0.013 

WINTYP3 0.212 0.864 < 0.001 0.764 0.283 

SUNGLS (Int) 0.002 < 0.001 0.004 < 0.001 0.009 < 0.001 0.001 < 0.001 0.003 < 0.001 

SUNGLS1 0.206 0.606 0.625 0.435 0.222 

SUNGLS2 0.502 0.628 0.001 0.213 0.067 

SUNGLS3 0.024 < 0.001 0.001 0.792 0.835 

HDD65 (Int) 0.010 < 0.001 0.155 0.870 0.165 < 0.001 0.007 < 0.001 0.001 < 0.001 

HDD65 0.013 < 0.001 < 0.001 0.008 0.208 

CDD65 (Int) 0.006 < 0.001 0.101 < 0.001 0.218 0.006 0.004 < 0.001 0.000 < 0.001 

CDD65 0.021 < 0.001 < 0.001 0.005 0.873 
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WR range, 26–50%. The heating EUI (HTEUI) significant only

t intercept and the lowest-glazed level 2–10%, which is quite

urprising given the typically-direct relationship between window

rea and total envelope conductance. On the other hand, all levels

f GLSSPC are significant in cooling EUI (CLEUI), which suggests

 relationship between WWR and cooling energy. CLEUI also has

he largest R 2 coefficient of determination, albeit only 0.04. In the

ighting (LTEUI) model, all levels of GLSSPC are statistically signifi-

ant except 76–100%, and in the ventilation (VNEUI) models levels

re significant except 2–10% and 76–100%. The results suggest

hat the most pronounced effect of varying WWR on energy use

n commercial office buildings will be on cooling loads, which is

onsistent with internally-dominated buildings. There appears to

e a modest effect on lighting energy use, although only in less-

lazed and not in the highest-glazed buildings, perhaps signaling

hat savings from daylighting have an initial benefit, but above a

ertain WWR, are overwhelmed by other energy costs. 

Overall, these regression results for actual buildings stand in

ontrast to the simulation based results (typically performed for

ingle, well-defined buildings) that have found strong correlations

etween WWR and heating and total EUI for office buildings in a

ariety of locations [31,63,79,80] . The lack of significance of WWR

or total building energy use corroborates earlier work by Deng

t al. that applied machine learning algorithms to CBECS microdata

nd also did not find correlation or inclusion of WWR in predictive

rtificial neural network models [78] . These findings emphasize

he importance of considering a variety of buildings, locations, and

se patterns when building predictive energy models. 

Considering other individual predictor variables, all nine types

levels) of ‘Roof Construction Material’ (RFCNS) are significant in
ll models except in the heating model, in which only four levels

re statistically significant. The explanatory power of this single

egression model is greatest for cooling and ventilation energy use

 R 2 = 0.04–0.05). Similarly, most the responses (levels) of ‘Any

enovations’ (RENOV) are significant, as expected from upgrades

o building equipment and envelopes. The categorical variables de-

cribing fenestration ‘Window type’ (WINTYP) and ‘Glass on sides

ith most sunlight’ (SUNGLS) are significant in the cooling model,

ndicating the importance of solar gain during the summer season,

ut have a small explanatory power with R 2 values of 0.024 and

.009, respectively. The numerical variables ‘Number of Floors’

NFLOOR), ‘Heating Degree Days (base 65)’ (HDD65), and ‘Cooling

egree Days (base 65)’ (CDD65) are all statistically significant, with

he strongest correlation of any independent and dependent vari-

ble occurring between cooling degree days and cooling energy use

CLEUI), with a R 2 of 0.218. These data suggest that climate cannot

e neglected, regardless of interior loads, and may indicate the im-

ortance of HVAC systems. In contrast to the visual results shown

n Fig. 3 , YRCON is not statistically significant in any of the simple

egression models, with the exception of intercept of the TOTEUI

odel, and that analysis excludes the older, masked buildings. 

.2.2. Multilinear additive regression 

The single-regression suggests important relationships between

redictor and response but cannot capture combined effects or in-

eractions of multiple predictor variables. Of the multi-regression

odels, CLEUI (containing all independent variables) has the

ighest R 2 of 0.37. Similarly, for models with envelope-only and

indows-only variables, the CLEUI model has greatest R 2 of 0.33

nd 0.30, respectively. Details of these three models are in Table S4
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Table 3 

Reduced multi-linear additive regression models listing the variables that exceeded a confidence threshold of 95% in their contribution to each model and are 

therefore significant predictors. Bold and underlined R 2 value is the maximum of all the EUI models. 

Dependent variable and reduced model formula (Categorical Formated) R 2 

Total EUI (TOTEUI) 

CENDIV + HDD65 + SQFT + RFCNS + NFLOOR + RENOV + WINTYP + RFCOOL + TINT + AWN + BASEMNT + 

ATTIC + CUBEC + NOCC + OWNOCC + WKHRS + NWKER + SCHED 
0.169 

Heating EUI (HTEUI) 

HDD65 + PUBCLIM + SQFT + WLCNS + RFCNS + NFLOOR + RENOV + AWN + BASEMNT + ATTIC + CUBEC + 

OWNOCC + OWNOPR 
0.256 

Cooling EUI (CLEUI) 

CDD65 + SQFT + RFCNS + GLSSPC + NFLOOR + RENOV + SUNGLS + RFTILT + BASEMNT + ATTIC + OWNOCC 
+ WKHRS + NWKER + SCHED 

0.341 

Lighting EUI (LTEUI) 

CENDIV + SQFT + RFCNS + RENOV + DAYLTP + TINT + AWN + RFTILT + ATTIC + CUBEC + FEDFAC + 

OWNOCC + OWNOPR + WKHRS + NWKER + SCHED 
0.186 

Ventilation EUI (VNEUI) 

SQFT + WLCNS + RFCNS + NFLOOR + YRCON + RENOV + WINTYP + DAYLTP + RFCOOL + ATTIC + CUBEC + 

NOCC + OWNOCC + WKHRS + NWKER + SCHED 
0.232 
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of the SI. The best-fit predictor variable formulas of the reduced

regression models are shown in Table 3 . Details of the all the

multiple regression models are given in Table S5 of the SI. Overall,

cooling loads (CLEUI) show the best fit, with a 14-variable model

giving a R 2 of 0.341, a marked improvement from the single vari-

able regression models. In contrast, the Total EUI model, has the

lowest R 2 of 0.169, suggesting that predictive regression modeling

of offices using CBECS data is better carried out at the end-use

level, rather than for whole-building energy use. Considering

WWR, GLSSPC is included in the CLEUI multi-regression model

and is significant for all five levels but is only significant for the 2–

10% and > 76% levels in the LTEUI model, and is not included at all

in the TOTEUI, HTEUI and VNEUI models. This mirrors the single

variable results for GLSSPC described in the previous section. 

Considering other predictor variables, ‘Any Renovations’

(RENOV) and ‘Owner Occupied or Leased to Tenant’ (OWNOCC) are

significant in all five models, while ‘Roof Construction Material’

(RFCNS), ‘Total Hours Open per Week’ (WKHRS) and ‘Number of

Employees’ (NWKER) are significant for all models except heating.

In the same way, ‘Attic’ (ATTIC) and ‘Percent Open Plan’ (CUBEC)

are significant for all models except cooling. The significance of

these variables is logical in terms of physical building performance;

renovations can strongly affect energy efficiency, particularly if

equipment is replaced or buildings are updated to modern codes

and standards. The number and working schedules of the occu-

pants directly influence building operations, particularly as people

and their equipment are a significant source of heat gains in com-

mercial office buildings and therefore drive energy consumption

for cooling and ventilation in most climates and seasons. 

5. Conclusion 

A statistical investigation of the influence of window-to-wall

ratio (WWR) on building energy use was performed using the

CBECS dataset. Descriptive statistics suggested average total EUI

increases with WWR, and disaggregated results showing the

largest increase among cooling loads. However, linear regression

analysis revealed that WWR (GLSSPC) is statistically significant at

all WWR levels only when predicting cooling energy use (CLEUI),

both when considered individually (single) and in conjunction

with other variables (multi-linear additive). In both cases, the

explanatory power of the regression models is low, with a max-

imum R 2 of 0.341 for the multi-regression model. WWR is also

statistically significant at most levels of glazing when predicting

lighting (LTEUI) and ventilation (VNEUI) energy use but was not
ound to be statistically significant for heating loads (HTEUI). The

odest predictive power of the multi-variable regressions suggest

hat complex interactions of building, occupant, and climate char-

cteristics influence energy use, and that these interactions are

ot captured in survey variables. 

These results for a large sample of actual commercial buildings

roadly corroborate previous studies based on building energy

imulation, but with a much lower explanatory power, and some

ignificant exceptions. This finding emphasizes the wide variation

n actual (measured) building characteristics, operations, and

nergy performance that is not captured in simulations. These

esults also highlight the limitations of the CBECS data: while

imulation models precisely define physical performance of all

uilding elements ( e.g. , thermal resistance), this type of infor-

ation is not currently collected by CBECS. Several categorical

ariables in CBECS represent the geometry of the buildings and the

istribution, and orientation of windows, which directly affect the

olar gains and therefore loads, such as ‘Glass on sides with most

unlight’ ( SUNGLS ), but are often generic Yes/No and thus offer

ittle explanatory power. The regression model results do indicate

ome connections among climate, glazing, and energy consump-

ion, but the presence of occupancy characteristics like ‘Number of

mployees’ (NWKER) in the best-fitting multi-regression models

nderscores the importance of internal loads and operations for

redicting energy use in commercial office buildings. In sum, this

nalysis of measured energy consumption indicates that while it

ffects energy consumption—particularly for cooling—the influence

f WWR is more complex and perhaps less influential on the

nergy use of US office buildings than previously thought. 
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