
Problem Set #01 Solutions Statistics 506

Problem Set #01

Problem 1 Solutions - Wine Data

a.

wine <- read.csv("data/wine/wine.data", header = FALSE)
names(wine) <- c("class",

"alcohol",
"malic_acid",
"ash",
"alcalanity",
"magnesium",
"phenols",
"flavaniods",
"nonflavanoiids",
"proanthocyanins",
"color_intensity",
"hue",
"od280",
"proline")

b.

“wines.name” reports:

class 1 59 class 2 71 class 3 48

table(wine$class)

1

ps01.html

1 2 3
59 71 48

c.

wine$class[which(wine$alcohol == max(wine$alcohol))]

[1] 1

wine$class[which(wine$alcohol == min(wine$alcohol))]

[1] 2

table(wine$magnesium > 114)

FALSE TRUE
152 26

table(wine$magnesium > 114, wine$class)

1 2 3
FALSE 44 65 43
TRUE 15 6 5

d.

means <- rbind(colMeans(wine[, -1]),
colMeans(wine[wine$class == 1, -1]),
colMeans(wine[wine$class == 2, -1]),
colMeans(wine[wine$class == 3, -1]))

means <- as.data.frame(means)
rownames(means) <- c("Overall", "Class 1", "Class 2", "Class 3")
round(means, 2)

2

alcohol malic_acid ash alcalanity magnesium phenols flavaniods
Overall 13.00 2.34 2.37 19.49 99.74 2.30 2.03
Class 1 13.74 2.01 2.46 17.04 106.34 2.84 2.98
Class 2 12.28 1.93 2.24 20.24 94.55 2.26 2.08
Class 3 13.15 3.33 2.44 21.42 99.31 1.68 0.78

nonflavanoiids proanthocyanins color_intensity hue od280 proline
Overall 0.36 1.59 5.06 0.96 2.61 746.89
Class 1 0.29 1.90 5.53 1.06 3.16 1115.71
Class 2 0.36 1.63 3.09 1.06 2.79 519.51
Class 3 0.45 1.15 7.40 0.68 1.68 629.90

e.

t.test(wine$ash[wine$class == 1], wine$ash[wine$class == 2])

Welch Two Sample t-test

data: wine$ash[wine$class == 1] and wine$ash[wine$class == 2]
t = 4.4184, df = 125.59, p-value = 2.124e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.116383 0.305226
sample estimates:
mean of x mean of y
2.455593 2.244789

t.test(wine$ash[wine$class == 1], wine$ash[wine$class == 3])

Welch Two Sample t-test

data: wine$ash[wine$class == 1] and wine$ash[wine$class == 3]
t = 0.46489, df = 105, p-value = 0.643
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.06043717 0.09745695
sample estimates:
mean of x mean of y
2.455593 2.437083

3

t.test(wine$ash[wine$class == 2], wine$ash[wine$class == 3])

Welch Two Sample t-test

data: wine$ash[wine$class == 2] and wine$ash[wine$class == 3]
t = -4.184, df = 114.96, p-value = 5.627e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.2833328 -0.1012564
sample estimates:
mean of x mean of y
2.244789 2.437083

From these results, we see that Class 2’s ash is statistically significantly lower, but Class 1 and
3’s ash is statistically indistinguishable.

Problem 2 Solutions - Perfect Powers

a.

isPerfectPower <- function(n, power = 2) {

if (power < 2) {
stop("`power` must be at least 2")

}
if (!(all.equal(n, round(n)) == TRUE) |

!(all.equal(power, round(power)) == TRUE)) {
stop("`n` and `power` must be integers")

}

if (n < 0) {
if (power %% 2 == 0) {
For negative n's, only odd powers can be perfect
return(list(isPerfectPower = FALSE,

root = NA))
}
res <- isPerfectPower(abs(n), power = power)
if (res$isPerfectPower) {
res$root <- -res$root
return(res)

4

} else {
return(list(isPerfectPower = FALSE,

root = NA))
}

}

root <- n^(1/power)
rounded <- round(root)
If the `root` rounds to the same value, it means we have a perfect power.

Using `all.equal` to handle floating point rounding issues
if (all.equal(rounded, root) == TRUE) {

return(list(isPerfectPower = TRUE,
root = root))

} else {
return(list(isPerfectPower = FALSE,

root = NA))
}

}

isPerfectPower(4, 2)

$isPerfectPower
[1] TRUE

$root
[1] 2

isPerfectPower(5, 2)

$isPerfectPower
[1] FALSE

$root
[1] NA

isPerfectPower(-8, 3)

$isPerfectPower

5

[1] TRUE

$root
[1] -2

isPerfectPower(1, 10)

$isPerfectPower
[1] TRUE

$root
[1] 1

b.

findRootPower <- function(n) {
Stopping at 50; even 2^50 is larger than any inputs
for (i in 2:50) {

res <- isPerfectPower(n, i)
if (res$isPerfectPower) {
Return early the first time we've found a solutions
return(paste0(n, " = ", res$root, "^", i))

}
}
Only hits here if it doesn't return by finding something
print(paste(n, "is not a perfect power"))

}

findRootPower(27)

[1] "27 = 3^3"

findRootPower(13060694016)

[1] "13060694016 = 6^13"

findRootPower(7776)

[1] "7776 = 6^5"

6

findRootPower(170859375)

[1] "170859375 = 15^7"

findRootPower(58247422)

[1] "58247422 is not a perfect power"

findRootPower(94143178827)

[1] "94143178827 = 3^23"

Problem 3 Solutions - ChatGPT

Solutions to this problem will obviously vary greatly depending on the response from Chat-
GPT. Here is one example.

a.

Here’s what ChatGPT responded with:

Sure, I can help you with that. Here are the two R functions you requested:

Function to determine the name of a poker hand
get_poker_hand_name <- function(suits, ranks) {
hand <- data.frame(suits, ranks)

if (length(unique(hand$suits)) == 1) {
if (all(hand$ranks %in% c("10", "J", "Q", "K", "A"))) {
return("Royal Flush")

}
if (all(diff(as.numeric(factor(hand$ranks, levels = c("A", "K", "Q", "J", "10", "9", "8", "7", "6", "5", "4", "3", "2"))) == 1)) {
return("Straight Flush")

}
return("Flush")

}

if (all(diff(as.numeric(factor(hand$ranks, levels = c("A", "K", "Q", "J", "10", "9", "8", "7", "6", "5", "4", "3", "2"))) == 1)) {
return("Straight")

}

7

rank_counts <- table(hand$ranks)
if (any(rank_counts == 4)) {

return("Four of a Kind")
}
if (any(rank_counts == 3) && any(rank_counts == 2)) {

return("Full House")
}
if (any(rank_counts == 3)) {

return("Three of a Kind")
}
if (sum(rank_counts == 2) == 2) {

return("Two Pair")
}
if (any(rank_counts == 2)) {

return("One Pair")
}

return("High Card")
}

Function to simulate a round of poker
simulate_poker_round <- function(num_players) {
suits <- c("Hearts", "Diamonds", "Clubs", "Spades")
ranks <- c("2", "3", "4", "5", "6", "7", "8", "9", "10", "J", "Q", "K", "A")

deck <- expand.grid(suits = suits, ranks = ranks)
shuffled_deck <- deck[sample(nrow(deck)),]

hands <- matrix(nrow = num_players, ncol = 5)
for (i in 1:num_players) {

hands[i,] <- shuffled_deck[(i - 1) * 5 + 1:i * 5,]
}

hand_names <- character(num_players)
for (i in 1:num_players) {

hand_names[i] <- get_poker_hand_name(hands[i, "suits"], hands[i, "ranks"])
}

result <- data.frame(Player = 1:num_players, Hand = hand_names)
return(result)

}

8

You can use the simulate_poker_round function to simulate a round of poker with a specified
number of players, and it will return a data frame showing the hands and their corresponding
names.

b.

It took quite a bit to get this working. I’m put it in a seperate document to make this file a
bit easier to read.

c.

Commented code below, based on the fixed version:

This first function takes in a vector of suits and ranks for a given hand, and
returns the name of the hand.
get_poker_hand_name <- function(suits, ranks) {
Create a 5x2 data.frame containing the hand
hand <- data.frame(suits, ranks)

If all the suits are the same, we have some kind of flush
if (length(unique(hand$suits)) == 1) {

Checking if all card ranks are above 10
if (all(hand$ranks %in% c("10", "J", "Q", "K", "A"))) {
return("Royal Flush")

}
This does a lot:
1. Convert ranks from strings to factor
2. Convert then to numeric, so we hace numeric values 1 through 13
3. Look at the differences between ranks
4. Check if those differences are all 1, implying a straight
if (all(diff(as.numeric(factor(hand$ranks,

levels = c("A", "K", "Q", "J", "10",
"9", "8", "7", "6", "5",
"4", "3", "2"))) == 1))) {

return("Straight Flush")
}
Otherwise, normal flush
return("Flush")

}

Using the same logic above to identify straights - but we know that it's no
longer a flush since we'd have `return`ed above if it was a flush of any
kind.
if (all(diff(as.numeric(factor(hand$ranks,

9

ps01solns-fixcode.qmd

levels = c("A", "K", "Q", "J", "10", "9",
"8", "7", "6", "5", "4", "3",
"2"))) == 1))) {

return("Straight")
}

rank_counts <- table(hand$ranks)
If we have four of the same rank...
if (any(rank_counts == 4)) {

return("Four of a Kind")
}
If we have 3 & 2 of the same rank...
if (any(rank_counts == 3) && any(rank_counts == 2)) {

return("Full House")
}
If we had 3 & 2, it would have returned already, so we must have 3 & 1 & 1
if (any(rank_counts == 3)) {

return("Three of a Kind")
}
Again, we know we have no ranks appearing more than twice, check if we have
two ranks appearing twice.
if (sum(rank_counts == 2) == 2) {

return("Two Pair")
}
If we have any pairs left, it can only be a single pair.
if (any(rank_counts == 2)) {

return("One Pair")
}

return("High Card")
}

This function takes in the number of players, draws hands, uses
`get_poker_hand_name` to identify the hand, then returns the results.
simulate_poker_round <- function(num_players) {
suits <- c("Hearts", "Diamonds", "Clubs", "Spades")
ranks <- c("2", "3", "4", "5", "6", "7", "8", "9", "10", "J", "Q", "K", "A")

After defining the unique suits and ranks, `expand.grid` creates all unique
combinations of them.
deck <- expand.grid(suits = suits, ranks = ranks)

10

Shuffle the deck!
shuffled_deck <- deck[sample(nrow(deck)),]

hands <- list()
for (i in 1:num_players) {

Save the top five cards into the hand
hands[[i]] <- shuffled_deck[1:5,]
Remove the cards from the deck
shuffled_deck <- shuffled_deck[-(1:5),]

}

hand_names <- character(num_players)
for (i in 1:num_players) {

Iterate over each hand, obtaining it's name
hand_names[i] <- get_poker_hand_name(hands[[i]]["suits"],

hands[[i]]["ranks"])
}

Store the results in a nicer format
result <- data.frame(Player = 1:num_players, Hand = hand_names)
return(result)

}

d.

First, let’s just throw some input at the function to see what happens.

set.seed(1) # Setting a seed for reproducible results
simulate_poker_round(4)

Player Hand
1 1 One Pair
2 2 High Card
3 3 One Pair
4 4 High Card

We requested to see the hand, which we don’t see. Let’s fix this. (I’ve used code-folding to
make this document more readable.

simulate_poker_round <- function(num_players) {
suits <- c("Hearts", "Diamonds", "Clubs", "Spades")

11

https://quarto.org/docs/output-formats/html-code.html#folding-code

ranks <- c("2", "3", "4", "5", "6", "7", "8", "9", "10", "J", "Q", "K", "A")

deck <- expand.grid(suits = suits, ranks = ranks)

shuffled_deck <- deck[sample(nrow(deck)),]

hands <- list()
for (i in 1:num_players) {

hands[[i]] <- shuffled_deck[1:5,]
shuffled_deck <- shuffled_deck[-(1:5),]

}

hand_names <- character(num_players)
for (i in 1:num_players) {

hand_names[i] <- get_poker_hand_name(hands[[i]]["suits"],
hands[[i]]["ranks"])

}

for (i in 1:num_players) {
cat("Player", i, ":\n", 1

paste(hands[[i]]$ranks, hands[[i]]$suits, sep = " of ", collapse = "\n "),
"\n Hand:", hand_names[i], "\n")

}
}

1 Add in hand printing

set.seed(2)
simulate_poker_round(4)

Player 1 :
7 of Hearts
5 of Clubs
3 of Diamonds
A of Diamonds
9 of Spades
Hand: High Card
Player 2 :
3 of Spades
6 of Hearts
9 of Hearts

12

K of Diamonds
4 of Spades
Hand: High Card
Player 3 :
Q of Hearts
4 of Clubs
2 of Hearts
2 of Clubs
5 of Spades
Hand: One Pair
Player 4 :
K of Spades
K of Clubs
10 of Hearts
J of Diamonds
10 of Diamonds
Hand: Two Pair

simulate_poker_round(11)

Player 1 :
8 of Spades
2 of Spades
4 of Hearts
Q of Diamonds
K of Clubs
Hand: High Card
Player 2 :
3 of Diamonds
9 of Spades
5 of Clubs
5 of Hearts
10 of Clubs
Hand: One Pair
Player 3 :
3 of Spades
K of Diamonds
Q of Spades
6 of Hearts
3 of Hearts
Hand: One Pair

13

Player 4 :
A of Diamonds
K of Hearts
J of Clubs
5 of Spades
7 of Hearts
Hand: High Card
Player 5 :
4 of Clubs
J of Hearts
10 of Spades
4 of Diamonds
5 of Diamonds
Hand: One Pair
Player 6 :
J of Diamonds
Q of Hearts
Q of Clubs
4 of Spades
6 of Diamonds
Hand: One Pair
Player 7 :
6 of Spades
2 of Hearts
A of Clubs
K of Spades
A of Spades
Hand: One Pair
Player 8 :
3 of Clubs
10 of Diamonds
2 of Clubs
8 of Clubs
7 of Diamonds
Hand: High Card
Player 9 :
7 of Clubs
9 of Clubs
7 of Spades
9 of Diamonds
8 of Diamonds
Hand: Two Pair
Player 10 :

14

10 of Hearts
6 of Clubs
8 of Hearts
A of Hearts
9 of Hearts
Hand: High Card
Player 11 :
J of Spades
2 of Diamonds
NA of NA
NA of NA
NA of NA
Hand: High Card

Those NA’s are undesireable. Let’s add some input sanitization to make sure num_players is
reasonable.

simulate_poker_round <- function(num_players) {
if (num_players < 1) { 1

stop("Too few players!")
}
if (num_players > 10) { 2

stop("Too many players!")
}
if (!all.equal(round(num_players), num_players)) { 3

If `num_players` rounds to something besides itself, it must not be an
integer
stop("`num_players` must be whole number")

}
suits <- c("Hearts", "Diamonds", "Clubs", "Spades")
ranks <- c("2", "3", "4", "5", "6", "7", "8", "9", "10", "J", "Q", "K", "A")

deck <- expand.grid(suits = suits, ranks = ranks)

shuffled_deck <- deck[sample(nrow(deck)),]

hands <- list()
for (i in 1:num_players) {

hands[[i]] <- shuffled_deck[1:5,]
shuffled_deck <- shuffled_deck[-(1:5),]

}

15

hand_names <- character(num_players)
for (i in 1:num_players) {

hand_names[i] <- get_poker_hand_name(hands[[i]]["suits"],
hands[[i]]["ranks"])

}

for (i in 1:num_players) {
cat("Player", i, ":\n",

paste(hands[[i]]$ranks, hands[[i]]$suits, sep = " of ", collapse = "\n "),
"\n Hand:", hand_names[i], "\n")

}
}

1 Ensure we have a positive number of players
2 Ensure we have enough cards for everyone
3 Ensure we have an integer input

set.seed(2)
simulate_poker_round(11)

Error in simulate_poker_round(11): Too many players!

simulate_poker_round(-2)

Error in simulate_poker_round(-2): Too few players!

simulate_poker_round(2.6)

Error in !all.equal(round(num_players), num_players): invalid argument type

simulate_poker_round(sqrt(2)^2) # Does it work with near integers?

Player 1 :
7 of Hearts
5 of Clubs
3 of Diamonds
A of Diamonds

16

9 of Spades
Hand: High Card
Player 2 :
3 of Spades
6 of Hearts
9 of Hearts
K of Diamonds
4 of Spades
Hand: High Card

Finally, let’s make sure it can correctly identify all the hands.

Royal Flush
get_poker_hand_name(rep("Hearts", 5), c("10", "J", "Q", "K", "A"))

[1] "Royal Flush"

Straight Flush
get_poker_hand_name(rep("Hearts", 5), c("5", "6", "7", "8", "9"))

[1] "Flush"

get_poker_hand_name(rep("Hearts", 5), c("5", "6", "7", "9", "8"))

[1] "Flush"

Flush
get_poker_hand_name(rep("Hearts", 5), c("5", "2", "7", "9", "8"))

[1] "Flush"

Straight
get_poker_hand_name(c(rep("Hearts", 4), "Diamonds"),

c("5", "6", "7", "8", "9"))

[1] "High Card"

17

get_poker_hand_name(c(rep("Hearts", 4), "Diamonds"),
c("9", "8", "7", "6", "5"))

[1] "High Card"

get_poker_hand_name(c(rep("Hearts", 4), "Diamonds"),
c("5", "6", "7", "9", "8"))

[1] "High Card"

Four of a kind
get_poker_hand_name(c("Hearts", "Diamonds", "Spades", "Spades", "Diamonds"),

c("5", "5", "5", "A", "5"))

[1] "Four of a Kind"

Full House
get_poker_hand_name(c("Hearts", "Diamonds", "Spades", "Spades", "Diamonds"),

c("5", "5", "5", "A", "A"))

[1] "Full House"

Three of a Kind
get_poker_hand_name(c("Hearts", "Diamonds", "Spades", "Spades", "Diamonds"),

c("5", "5", "5", "A", "10"))

[1] "Three of a Kind"

Two Pair
get_poker_hand_name(c("Hearts", "Diamonds", "Spades", "Spades", "Diamonds"),

c("5", "5", "2", "10", "10"))

[1] "Two Pair"

18

One Pair
get_poker_hand_name(c("Hearts", "Diamonds", "Spades", "Spades", "Diamonds"),

c("7", "5", "2", "10", "10"))

[1] "One Pair"

High Card
get_poker_hand_name(c("Hearts", "Diamonds", "Spades", "Spades", "Diamonds"),

c("7", "5", "2", "8", "10"))

[1] "High Card"

All the straights are failing. There’s no sorting going on - let’s add that.

get_poker_hand_name <- function(suits, ranks) {
hand <- data.frame(suits, ranks)

if (length(unique(hand$suits)) == 1) {
if (all(hand$ranks %in% c("10", "J", "Q", "K", "A"))) {
return("Royal Flush")

}
if (all(diff(sort(as.numeric(factor(hand$ranks, 1

levels = c("A", "K", "Q", "J", "10",
"9", "8", "7", "6", "5",
"4", "3", "2"))))) == 1)) {

return("Straight Flush")
}
return("Flush")

}

if (all(diff(sort(as.numeric(factor(hand$ranks, 2

levels = c("A", "K", "Q", "J", "10", "9",
"8", "7", "6", "5", "4", "3",
"2"))))) == 1)) {

return("Straight")
}

rank_counts <- table(hand$ranks)
if (any(rank_counts == 4)) {

return("Four of a Kind")

19

}
if (any(rank_counts == 3) && any(rank_counts == 2)) {

return("Full House")
}
if (any(rank_counts == 3)) {

return("Three of a Kind")
}
if (sum(rank_counts == 2) == 2) {

return("Two Pair")
}
if (any(rank_counts == 2)) {

return("One Pair")
}

return("High Card")
}

1 Add sort() to the call stack.
2 Add sort() to the call stack.

Be careful to place the closing (in the proper position.

Straight Flush
get_poker_hand_name(rep("Hearts", 5), c("5", "6", "7", "8", "9"))

[1] "Straight Flush"

get_poker_hand_name(rep("Hearts", 5), c("5", "6", "7", "9", "8"))

[1] "Straight Flush"

Straight
get_poker_hand_name(c(rep("Hearts", 4), "Diamonds"),

c("5", "6", "7", "8", "9"))

[1] "Straight"

20

get_poker_hand_name(c(rep("Hearts", 4), "Diamonds"),
c("9", "8", "7", "6", "5"))

[1] "Straight"

get_poker_hand_name(c(rep("Hearts", 4), "Diamonds"),
c("5", "6", "7", "9", "8"))

[1] "Straight"

21

	Problem 1 Solutions - Wine Data
	Problem 2 Solutions - Perfect Powers
	Problem 3 Solutions - ChatGPT

