Problem Set #03 Solutions Statistics 500

Problem Set #03

Problem 1 Solutions - Vision

The complete Do-file can be found here.

a.

. import sasxportb5 "https://wwwn.cdc.gov/Nchs/Nhanes/2005-2006/VIX_D.XPT", clear
. rename _all, lower
(all newnames==oldnames)
. quietly compress
save ~/Desktop/vision, replace
f11e ~/Desktop/vision.dta saved
import sasxport5 "https://wwwn.cdc.gov/Nchs/Nhanes/2005-2006/DEMO_D.XPT", clear
. rename _all, lower
(all newnames==oldnames)
. quietly compress
. merge 1:1 seqn using ~/Desktop/vision

Result Number of obs
Not matched 3,368
from master 3,368 (_merge==1)
from using 0 (_merge==2)
Matched 6,980 (_merge==3)

. keep if _merge == 3
(3,368 observations deleted)
. count

6,980

ps03.html
ps03q1.do

b.

Clean up and rename variables.

. rename viq220 glasses

. replace glasses = . if glasses ==
(2 real changes made, 2 to missing)
. replace glasses = glasses - 1
(6,545 real changes made)

. rename ridageyr age

Generate a variable capturing the age brackets.

. capture drop agecat

. generate agecat = floor(age/10)

. replace agecat = . if missing(age)
(0 real changes made)

T’ll demonstrate a number of different approaches:

Using mean

Since the average of a binary variable is it’s proportion, I can use mean to generate the pro-
portions, then just need to clean up the matrix it produces.

. capture matrix drop prop
. quietly mean glasses, over(agecat)
. matrix prop = e(b)'
. matrix prop = prop*100
. matrix colnames prop = "Proportion"
. matrix rownames prop = "10-19" "20-29" "30-39" "40-49" "50-59" ///
> "60-69" "70-79" "80-89"
. matrix list prop, format(%3.1f)
propl[8,1]
Proportion
10-19 67.9
20-29 67.3
30-39 64.1
40-49 63.0
50-59 45.0

60-69 37.8
70-79 33.1
80-89 33.1

Using tabulate and mata to manually calculate

tabulate generates a table with the count of 0’s and 1’s in glasses. I can use mata to quickly
calculate proportions, then again clean up the matrix.

. capture matrix drop prop
. tabulate agecat glasses, matcell(x)

| Glasses/contact
| lenses worn for
| distance
agecat | 0 1| Total
___________ e
1] 670 1,418 | 2,088
2 | 306 631 | 937
3| 269 481 | 750
4 | 286 487 | 773
5 | 335 274 | 609
6 | 392 238 | 630
7| 299 148 | 447
8 | 208 103 | 311
___________ o e
Total | 2,765 3,780 | 6,545
mata
——— mata (type end to exit) --—---—-----
: x = st_matrix("x")
:x =x[., 2]:/&x[., 11 + x[., 21)
: st_matrix("x", x)
: end
. matrix prop = x*100
. matrix colnames prop = "Proportion"
. matrix rownames prop = "10-19" "20-29" "30-39" "40-49" "50-59" ///
> "60-69" "70-79" "80-89"
. matrix list prop, format(%3.1f)
prop[8,1]

Proportion

10-19 67.9
20-29 67.3
30-39 64.1
40-49 63.0
50-59 45.0
60-69 37.8
70-79 33.1
80-89 33.1

3

Using table

table is designed for this sort of operation, though it’s harder if not impossible to format
things as nicely.

. table (agecat) (), stat(mean glasses) nototal nformat("%9.3f" mean)

| Mean
________ e
agecat |
10-19 | 0.679
20-29 | 0.673
30-39 | 0.641
40-49 | 0.630
50-59 | 0.450
60-69 | 0.378
70-79 | 0.331
80-89 | 0.331

Using a loop to fill a matrix

This is the most R-like approach; generating an empty matrix and filling it up as we loop
through the categories. Finally, we again clean up the matrix prior to displaying.

. capture matrix drop prop
. matrix define prop = (0\0\0\0\0\0\0\0)
. foreach n of numlist 1/8 {

2. local lowerage = "n'*10

3. local upperage = ("n'+1)*10

4. quietly mean glasses if age >= “lowerage' & age < “upperage'
5. matrix prop['n', 1] = e(b)

6.

. matrix prop = prop*100

. matrix colnames prop = "Proportion"
. matrix rownames prop = "10-19" "20-29" "30-39" "40-49" "50-59" ///
> "60-69" "70-79" "80-89"
. matrix list prop, format(%3.1f)
propl[8,1]
Proportion
10-19 67.9
20-29 67.3
30-39 64.1
40-49 63.0
50-59 45.0
60-69 37.8
70-79 33.1
80-89 33.1

5

Calculate in-place in the dataset

We can use collapse to replace our dataset with the proportions we want, do some minor
cleaning, then just print the data.

. preserve

. collapse (mean) glasses, by(agecat)
. rename agecat Age

. rename glasses Percent

. replace Percent = Percent*100

(8 real changes made)

. format Percent %9.1f

. list, sep(0)

1. | 10-19 67.9 |
2. | 20-29 67.3 |
3. | 30-39 64.1 |
4. | 40-49 63.0 |
5. | 50-59 45.0 |
6. | 60-69 37.8 |
7. | 70-79 33.1 |
8. | 80-89 33.1 |

Fomm +
restore

C.

Clean up and rename variables.
. rename riagendr gender

capture drop female
. generate female = gender ==
. replace female = . if missing(female)
(0 real changes made)

. rename ridrethl race

label define race 1 "Mexican American' ///
2 "Other Hispanic" ///
3 "Non-Hispanic White" ///
4 "Non-Hispanic Black" ///
5 "Multi-racial"

. label values race race

vV V. V VvV .

. rename indfmpir pir
Run the models.

. quietly logit glasses c.age

. estimate store ml

. quietly logit glasses c.age i.race i.female

. estimate store m2

. quietly logit glasses c.age i.race i.female c.pir
. estimate store m3

Produce the table.

. estimates table ml m2 m3, stats(N r2_p aic) eform

Variable | ml m2 m3
_____________ e
age | .97562897 .97767872 .978056
|
race |
Other His.. | .8552837 .89045517
Non-Hispa.. | .51225603 .60560404
Non-Hispa.. | .7696096 .81270706
Multi-rac~1 | .52152821 .587002
|
female |
1 | .60526462 .59674151
|
pir | .89261693
cons | 3.5288428 6.2755778 7.5094302
_____________ e
N | 6545 6545 6247
r2_p | .04973123 .07195445 .07339952
aic | 8475.8866 8287.7609 7909.8082

. estimates restore m3
(results m3 are active now)

. logit, or

Logistic regression Number of obs = 6,247

LR chi2(7) = 625.30

Prob > chi2 = 0.0000

Log likelihood = -3946.9041 Pseudo R2 = 0.0734
glasses | 0dds ratio Std. err. z P>|z]| [95% conf. intervall
__________________ +__
age | .978056 .0012665 -17.14 0.000 .9755769 .9805414

|

race |
Other Hispanic | .8904552 . 1498325
Non-Hispanic W.. | .605604 .0455103
Non-Hispanic B.. | .8127071 .0643806

|

|

|

|

|

Multi-racial .587002 .0822693
1.female .5967415 .032406

pir .8926169 .0158059

cons 7.50943 .6592368

.69
.67
.62
.80

o O O O

.490
.000
.009
.000

.6403015
.5226635
.6958313
.4460076

.5364902
.8621694
6.322398

1.238339
.7017062
.9492139
. 7725683

.6637595
.9241397
8.919328

Note: _cons estimates baseline odds.

The estimated odds ratio for females is ~.60 and statistically significant, providing evidence
that the odds of females wearing glasses/contacts for distance vision is statistically significantly

lower than the odds for males.
. margins female

Predictive margins
Model VCE: OIM

Expression: Pr(glasses), predict()

Number of obs =

6,247

Delta-method

Margin std. err. z

female
0 .6334955 .0083353 76.00
1 .5190438 .0084379 61.51

. margins female, pwcompare (pv)

Pairwise comparisons of predictive margins
Model VCE: OIM

Expression: Pr(glasses), predict()

| Delta-method Unadjusted

| Contrast std. err. z

P>|z]

[95% conf. intervall]

.6171587 .6498324
.5025058 .53565819

Number of obs = 6,247

_____________ +_______________________________________

female |
1 vs 0O | -.1144517 .0118695 -9.64 0.000

We also see evidence that females have a statistically significantly lower probability of wearing
glasses/contact lenses for distance vision than males.

Problem 2 Solutions - Salika

library(DBI)
sakila <- dbConnect(RSQLite::SQLite(), "data/sakila_master.db")

dbGetQuery(sakila, "
SELECT 1.name, count(l.name) AS count
FROM film AS £
LEFT JOIN language AS 1 on f.language_id = 1l.language_id
GROUP BY 1.name
ORDER by -count
")

name count
1 English 1000

Trick question: They’re all in English.

b.

R approach:
fc <- dbGetQuery(sakila, "SELECT * FROM film_category")
cat <- dbGetQuery(sakila, "SELECT * FROM category")
catcount <- table(fc$category_id)
maxcat <- which.max(catcount)
c(cat$name [cat$category_id == maxcat], catcount[maxcat])

15
"Sportsll ll74"

With a single query:

dbGetQuery(sakila, "
SELECT c.name, count(c.category_id) AS count
FROM category as c
RIGHT JOIN film_category AS fc ON fc.category_id = c.category_id
GROUP BY c.category_id
ORDER by -count
LIMIT 1
")

name count
1 Sports 74

C.

First, to use R, let’s extract all relevant tables into data.frames.

customer <- dbGetQuery(sakila, "SELECT * FROM customer")
address <- dbGetQuery(sakila, "SELECT * FROM address")
city <- dbGetQuery(sakila, "SELECT * FROM city")

country <- dbGetQuery(sakila, "SELECT * FROM country")

Next, we can use merges to mimic what SQL is actually doing. (This produces a warning, but
on variables we don’t care about)

mergedl <- merge(customer, address, by = "address_id",
all.x = TRUE, all.y = FALSE)

merged2 <- merge(mergedl, city, by = "city_id",
all.x = TRUE, all.y = FALSE)

merged3 <- merge(merged2, country, by = "country_id",
all.x = TRUE, all.y = FALSE)

Warning in merge.data.frame(mergedQ, country, by = "country_id", all.x = TRUE,
column names 'last_update.x', 'last_update.y' are duplicated in the result

t <- table(merged3$country)
tlt == 9]

United Kingdom
9

10

Here’s a more R-style approach:

cities <- address$city_id[match(customer$address_id, address$address_id)]
countries <- city$country_id[match(cities, city$city_id)]

tcountries <- table(country$country[match(countries, country$country_id)])
tcountries[tcountries == 9]

United Kingdom
9

Finally, the query:

dbGetQuery(sakila, "
SELECT co.country, count(co.country) AS count
FROM country AS co
RIGHT JOIN
(SELECT country_id
FROM city AS ci
RIGHT JOIN
(SELECT city_id
FROM customer AS c
LEFT JOIN address AS a ON c.address_id = a.address_id
) AS ca ON ca.city_id = ci.city_id
) AS ccc ON ccc.country_id
GROUP BY co.country
HAVING count == 9")

co.country_id

country count
1 United Kingdom 9

Problem 3

dat <- read.csv("data/us-500.csv")

length(dat$email [grepl("net$", dat$email)])/nrow(dat)

[1] 0.14

11

b.

Checking the username portion first - extract the usernames, then detect anything non-
alphanumeric

emails <- strsplit(dat$email, "@")

usernames <- sapply(emails, "[[", 1)

username_non_alphanumeric <- grepl("["a-zA-Z0-9]", usernames)
Repeat for domains, stripping off the TLD first.

domains <- sapply(emails, "[[", 2)

domains <- gsub("\\.[a-z]{3}", "", domains)

domain_non_alphanumeric <- grepl("["a-zA-Z0-9]", domains)

Finally, we can get the proportion.

mean (username_non_alphanumeric | domain_non_alphanumeric)

[1] 0.506

C.

First, make sure that all the phone numbers are the same number of digits so we don’t have
preceeding 1’s or anything like that

table(sapply(dat$phonel, nchar))

12
500

Looks good, so we can assume the first three characters of every number is the area code.
phonelarea <- substr(dat$phonel, 1, 3)

phone2area <- substr(dat$phone2, 1, 3)
sort(table(c(phonelarea, phone2area)), decreasing = TRUE) [1]

973
36

12

d.

In this first approach, we identify any address that ends in a number, then split the string on
spaces and store the last entry.

apartments <- dat$address[grepl("[0-9]+$", dat$address)]

numbers <- sapply(strsplit(apartments, " "), function(x) x[length(x)])
numbers <- as.numeric(gsub("#", "", numbers))
hist(log(numbers))

Histogram of log(numbers)

o _
(QV
>
(@]
e _
o
= o
g S
L
m p—
o pu—
| | | | | |
0 2 4 6 8 10
log(numbers)

Another approach; here we just extract out the numbers that are at the end of the address.

numbers2 <- regmatches(apartments, regexpr("[0-9]+$", apartments))
hist(log(as.numeric(numbers?2)))

13

Histogram of log(as.numeric(numbers2))

o _
[qV}
>
(@]
c —
g
[on o _|
[} —
f—
LL
m_
o_

log(as.numeric(hnumbers2))

Note that for this problem, there were edge cases that would require human intervention to
uncover. For example,

apartments [108]

[1] "51120 State Route 18"

Here the “18” is the highway number, not an apartment number. Identifying all cases where
this occurs would require full knowledge of all such possible roads - e.g. “State Route”, “High-
way”, “Rt”, “Route”, etc. In addition, this assumes no user-error on input. Generally these
would require a human review of the input or a far more advanced solution. This is true of
most human-readble data, and especially true of user-input data. Handling this is not required
for this problem.

€.

table(substr(numbers, 1, 1))

1 2 3 4 656 6 7 8 9
15 13 12 12 15 11 12 11 17

14

This is a uniform distribution, rather than the decreasing distribution as expected by Benford’s
law. This data obviously does not appear real.

f.

housenumbers <- sapply(strsplit(dat$address, " "), function(x) x[1])
lastnum <- sapply(housenumbers, function(x) {
substr(x, length(x), length(x))
b
table(lastnum)

lastnum
1 2 3 4 5 6 7 8 9
52 63 67 58 43 55 60 48 54

We see another uniform distribuion. It gets a bit tricky to apply Benford’s law. On non-leading
digits, Benford’s law predicts a uniform distribution as the position of the digit increases.
However, this is even trickier in this case as the last digit does not hold a fixed position:

table (sapply (housenumbers, nchar))

1 2 3 4 5
106 115 82 109 88

We can look at each length separately.
lens <- sapply(housenumbers, nchar)
for (1 in names(table(lens))) {

print(table(lastnum[lens == 1]))
}

1 2 3 4 656 6 7 8 9
12 13 9 16 13 10 11 8 14

1 2 3 4 5 6 7 8 9
10 10 17 12 8 15 18 13 12

1 2 3 4 65 6 7 8 9

15

https://en.wikipedia.org/wiki/Benford\XeTeXglyph \numexpr \XeTeXcharglyph "0027\relax {}s_law#Generalization_to_digits_beyond_the_first

10 912 910 812 5 7

1 2 3 4
11 23 20 12

w o,
© o
o
[EY

w o
[EY

o ©

1 2 3 4 5 6 7 8

9 8 9 9 91311 9 11

We seem, if anything, an increase in the frequency of the larger digits with low lengths. But
overall, all look like noisy uniforms distributions. So on the one hand, with large counts this
supports Benford’s Law, more realisitically, the first position results (either from part e. or
the first table when length = 1) being uniform contradicts Benford’s Law for this data, as
expected by the artificial nature of this data.

16

	Problem 1 Solutions - Vision
	1
	2
	3
	4
	5

	Problem 2 Solutions - Salika
	Problem 3

