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A Note on the Unification of
Adaptive Online Learning

Wenwu He, James Tin-Yau Kwok, Senior Member, IEEE, Ji Zhu, and Yang Liu

Abstract— In online convex optimization, adaptive algorithms,
which can utilize the second-order information of the loss func-
tion’s (sub)gradient, have shown improvements over standard
gradient methods. This paper presents a framework Follow the
Bregman Divergence Leader that unifies various existing adaptive
algorithms from which new insights are revealed. Under the
proposed framework, two simple adaptive online algorithms with
improvable performance guarantee are derived. Furthermore, a
general equation derived from a matrix analysis generalizes the
adaptive learning to nonlinear case with kernel trick.

Index Terms— Adaptive gradient descent (GD), Follow
the Bregman Divergence Leader (FTBDL), online learning,
second-order information.

I. INTRODUCTION

ONLINE learning, in which the instances arrive
sequentially, is a popular and natural approach in many

real-time and life-long learning problems. It is also advan-
tageous in large-scale learning because of its efficiency and
competitive performance.

In the basic setting of online convex optimization, an online
algorithm iteratively estimates a weight wt ∈ F ⊆ R

n

(F is assumed to be closed and convex). wt is often used
to define a prediction function ft (x) = 〈wt , x〉 on an input
instance x ∈ R

n at round t . Then, the algorithm suffers a
loss �t (wt ), where �t (·) is also convex. Typically, its per-
formance over a total of T iterations is measured by the
regret RegretT = ∑T

t=1(�t (wt ) − �t (ẘ)), where ẘ ∈ F
is a competitor. Note that this paper is focusing on online
learning algorithms with full information and that the entire
loss function and the gradient (or Hessian) are observed and
computable, that is, bandit-type algorithms are not considered
herein.
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A standard learning procedure for online algorithms is
the gradient descent (GD) [1], which updates the weight as
wt+1 = �F (wt − ηt gt). Here, gt is the gradient (or sub-
gradient) of �t with respect to wt , ηt > 0 is the step-
size, and �F is the Euclidean projection operator onto F .
A common setting for the stepsize is ηt = ηt−(1/2) for some
η > 0.

In cases where different feature dimensions carry different
amounts of information, GD can be significantly improved
by incorporating the second-order information of the loss’s
(sub)gradient. A variety of these adaptive algorithms have been
studied in recent years. Two representative examples are the
adaptive FOrward-Backward Splitting (FOBOS) (A-FOBOS)
[2], [3] and adaptive regularized dual averaging (RDA) (A-
RDA) [2], [4]. They update the weight as

wt+1 = �At
F

(
wt − ηA−1

t gt
)

where �A
F (·) = arg minw∈F ‖w − ·‖A is the projection oper-

ator, ‖ · ‖A = (〈·, A·〉)1/2, and the positive definite matrix At

contains the second-order information. Another algorithm
that is closely related to A-FOBOS is follow the proximal-
regularized leader (FTPRL) [5], but without the sparseness
regularizer. McMahan [6] also presents AODG [7] as a simpler
version of adaptive RDA, where the adaptive behavior is
realized by an identity matrix with time-varying magnitude.

Other adaptive algorithms include the second-order
perceptron (SOP) [8], which updates the input correlation
matrix and uses it for prediction. A similar algorithm that also
uses the input correlation matrix is adaptive regularization of
weights (AROW) [9]. It maintains a Gaussian distribution over
the learned weights and combines it with the large margin
principle. A variant of AROW that aims to obtain robust
performance is narrow AROW (NAROW) [10], which uses
both adaptive and fixed second-order information. A recent
algorithm that uses a similar idea is exact soft confidence-
weighted (SCW) learning [11]. It improves AROW by adding
an adaptive margin.

Interestingly, for expconcave losses,1 two algorithms, follow
the approximate leader (FTAL) and online Newton step (ONS),
also use the second-order information of the gradient and
obtain the logarithmic regret of O(ln T ) [15]. More recently,
Orabona et al. [16] showed that the ONS has a regret on the

1Examples of expconcave loss include the log-loss �t (wt ) = − ln(〈wt , xt 〉)
which arises in the problem of universal portfolio management [12], and the
square loss �t (wt ) = (〈wt , xt 〉 − yt )

2, which is widely used in regression
problems [13], [14]. For a strongly convex loss, regret in scale of O(ln T ) can
be derived, but it is rarely used in learning problems. Therefore, expconcave
can be viewed as a relaxation of strongly convex.
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order of ln(1 + L∗
T ) for smooth and expconcave losses, where

L∗
T is the cumulative loss of the best competitor. In this case,

the regret can become a constant when L∗
T = 0, and it is at

most O(ln T ).
Ross et al. [17] introduce a normalized adaptive gradi-

ent (NAG) descent algorithm that incorporates scale
invariance to adaptive gradient. NAG is robust to features
scales and collapses the range hyperparameter search required
to achieve good performance. The idea of adaption presented
in [17] is similar to that presented in [2] or [5]. A noticeable
adaption method, which is different to what we
discuss here, is variance-based stochastic gradient
descent (SGD) (V-SGD) [18]. V-SGD uses a
per-parameter learning rate proportional to an estimate of
gradient squared divided by variance and second derivative.
Schaul et al. [18] analyze the asymptotic convergence while
the rate and the regret bound are not clear.

The theme of this paper is to develop a general
framework for the understanding of existing adaptive
algorithms, which can then allow the development of
new algorithms. In particular, we introduce a framework,
Follow the Bregman Divergence Leader (FTBDL), to unify the
existing second-order online learning algorithms. In addition,
two simple adaptive algorithms, adaptive exponential
gradient (EG) and simple augment adaptive algorithm, are
proposed, presented, and analyzed. Finally, the existing
adaptive algorithms mainly consider linear learning and
extending them to nonlinear cases is nontrivial. We propose a
matrix equation and prove that it can provide a general way
for extending linear adaptive learning to a nonlinear one.

Kernel trick is popular for nonlinear learning [19], [20]. The
input xt is first mapped to a reproducing kernel Hilbert space
feature space H, i.e., xt : �→ φ(xt ) ⊂ H, then the inner pro-
duction 〈xi , x j 〉 is replaced with k(xi , x j ) = 〈φ(xi ), φ(x j )〉.
Due to the representation theorem [20], wt = ∑

τ∈St
ατ φ(xτ ),

where St is the support set. By the property of reproduction,
ft (x) = ∑

τ∈St
ατ k(xτ , x) is a case of being kernelized. Then,

any algorithms of which the final computation can be reduced
to inner product of input can be kernelized. However, the
algorithm of interest may involve other operation, and then
further discussion is deserved.

In the literature, Cesa-Bianchi et al. [8] use a matrix
equation [21] to kernelize SOP. Another approach
in [9] and [22] uses a representer theorem to kernelize
AROW. Nevertheless, both methods may not be suitable to
other adaptive algorithms, such as A-FOBOS or A-RDA
in [2], where a matrix square root operation is involved.
There are also other types of adaption for the stepsize, such
as stochastic metadescent [23], which has also been used
to kernelize online learning [24], [25]. These methods are
different from what the paper considers, and overall lack a
solid theoretical foundation for regret guarantees.

The rest of this paper is organized as follows. Section II
provides a review on the well-known algorithm follow the
regularizer leader (FTRL) and adaptive online learning in gen-
eral. Section III proposes the general framework, FTBDL. The
simple adaptive algorithm, adaptive EG, is also presented. The
unification of adaptive algorithms is presented in Section IV,

where the simple augment adaptive algorithm is introduced
and analyzed. Section V presents a matrix equation that
provides a general way to extend adaptive learning to nonlinear
cases by kernelization. Section VI gives some concluding
remarks. The proofs of the main results are included in the
Appendix. More details can be found in the full version [26].

Notation: We use ‖x‖ to denote the norm and, in particular,
‖x‖p to denote the p-norm of a vector x ∈ R

n , often p ∈
{1, 2,∞}; N

+ is the set of positive integers; Sn++ is the set of
all n×n positive definite matrices; and Sn+ is the set of all n×n
positive semidefinite matrices. Moreover, A � 0 (resp. A  0)
when A ∈ Sn++ (resp. A ∈ Sn+). For a matrix A, det(A) is
its determinant, Tr(A) is its trace, and diag(A) is its diagonal
matrix. For A ∈ Sn++, ‖x‖A = (〈x, Ax〉)1/2, where 〈·, ·〉 is
the inner product. Moreover, �A

F (v) = arg minu∈F ‖u − v‖A ,
where u, v ∈ R

n , is the projection of v based on ‖ · ‖A .

II. REVIEW

A differentiable function R is σ strongly convex with
respect to a norm ‖ · ‖ if R(u) − R(v) − 〈∇ R(v), u − v〉 ≥
(σ/2)‖u−v‖2 for any u, v ∈ F . When σ = 1, the function will
be simply called strongly convex, e.g., R(w) = (1/2)‖w‖2

2 is
strongly convex.

Denote BR(·, ·) as the measure BD and �R,F (v) =
arg minu∈F BR(u, v) is the projection based on it. For a
strongly convex and differentiable function R(·), BR(u, v) =
R(u) − R(v) − 〈∇ R(v), (u − v)〉 (for more details, see
Section III-A). The conjugate dual (CD) of R is2 R∗(θ) =
supw∈F {〈w, θ〉 − R(w)}. Moreover, let [t] = {1, . . . , t},
(·)1:t be the shorthand for

∑t
τ=1(·)τ , and (·)∼St =∑

τ∈St
(·)τ be the partial sum, where St ⊆ [t]. The loss �t (·)

is convex, and gt ∈ ∂�t (wt ) is the gradient (subgradient)
of �t (wt ). Let G p = maxt ‖gt‖p , Dp = maxx,y∈F ‖x − y‖p

is the diameter of feasible region. A loss �t (w) is
ε-expconcave if for ∀w ∈ F and t > 0, ∃ ε > 0, such that
∇2(exp(−ε�t (w))) � 0.

A. Follow the (Regularized) Leader

Follow the leader (FTL) [27], [28] is one of the classic
online learning algorithm. For t > 1, it updates wt as
wt+1 = arg minw∈F

∑t
τ=1 �τ (w). FTL is based on empir-

ical risk minimization and relies entirely on the observed
history [29]. As such, its solution for wt may shift drasti-
cally from round to round. An interesting example in which
FTL fails can be found in [28].

A natural modification of the FTL is to add a regularizer,
leading to the FTRL algorithm [27]–[29]. Given a strongly
convex regularizer R(·), FTRL updates wt as

wt+1 = arg min
w∈F

R(w) + η

t∑

τ=1

�τ (w) (1)

where η > 0 is the stepsize. A popular choice for R(w) is
(1/2)‖w‖2

2 [28]. FTRL outputs any w1 ∈ F in the first round.

2Examples: for q > 1, let R(w) = (1/2)‖w‖2
q , then R∗(θ) = (1/2)‖θ‖2

p ,
where (1/p) + (1/q) = 1; for A ∈ Sn++, let R(w) = (1/2)‖w‖2

A , then

R∗(w) = (1/2)‖w‖2
A−1 .



1180 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 28, NO. 5, MAY 2017

In the online learning literature, a standard trick for reduc-
tion is to replace �τ (w) in (1) by 〈gτ , w〉, where gτ ∈ ∂�τ (wτ )
is the (sub)gradient of the loss at wτ [1]. The jus-
tification is that as the loss �t is convex, we have
�t (wt ) − �t (ẘ) ≤ 〈gt , wt − ẘ〉 for all ẘ ∈ F . Therefore,

RegretT ≤ ∑T
t=1〈gt , wt −ẘ〉, and the right-hand side provides

an upper bound for the regret.

B. Follow the Proximal-Regularized Leader

As mentioned in Section I, in cases where different feature
dimensions carry different amounts of information, a fixed
regularizer for all t as used in the standard GD may not be
desirable, and it can be significantly improved by incorporating
the second-order information of the loss (sub)gradient.3 Given
Q1 ∈ Sn++ and Qt ∈ Sn+,∀t ≥ 2, the FTPRL algorithm [5]
adapts the regularizer as Rt (w) = (1/2)‖Q1/2

t (w − wt )‖2
2 =

(1/2)‖w − wt‖2
Qt

, and updates wt as

wt+1 = arg min
w∈F

t∑

τ=1

(Rτ (w) + 〈gτ , w〉). (2)

Various Qt ’s have been discussed in [5]. A simple approach
is to define Qt as a diagonal matrix with elements
(Qt )i,i = (Q1:t )i,i − (Q1:t−1)i,i , where

(Q1:t )i,i =
√∑t

τ=1 ‖gτ‖2
2

D2/
√

2
. (3)

This yields a regret bound of
√

2D2(
∑T

t=1 ‖gt‖2
2)

1/2 (see
Section II-C). Recall that for the standard GD algorithm,
its regret bound (with the optimal stepsize) is√

2D2G2
√

T [1], [28]. As (
∑T

t=1 ‖gτ‖2
2)

1/2 ≤
maxt ‖gt‖2

√
T , FTPRL thus has a tighter upper bound

on regret than GD.

C. Adaptive Online Learning

As discussed in Section I, besides FTPRL, there exist many
other adaptive online learning algorithms. In the following, we
provide a brief review. The relationships among them will be
discussed in Section IV-A.

The A-FOBOS [2] updates wt as

wt+1 = arg min
w∈F

BRt (w,wt ) + η〈gt , w〉 (4)

where Rt = (1/2)‖w‖2
At

, At = a I + (
∑t

τ=1 gτ g�
τ )1/2, or sim-

ply At = a I + (diag(Q1:t ))1/2, and (Q1:t )i,i = ∑t
τ=1(gτ [i ])2,

where a ≥ 0.
A-FOBOS trades off the current gradient gt (to get an

improvement using the gradient information) and staying close
to wt using the BD defined on the proximal function Rt

(to keep the learning process stable). Instead of using fixed R
as in FOBOS [3], here, Rt = (1/2)‖w‖2

At
that adapts the

proximal function in a data-driven way. The resulting algo-
rithm is similar to the second-order GD, and constructs an
approximation to the Hessian of the loss.

3Interesting examples can be found in [2] and [5], or references in Section I.

Extending the adaptive idea to RDA [2], [4] renders A-RDA,
which updates wt as wt+1 = arg minw∈F (1/t)Rt + η〈ḡt , w〉,
where ḡt = (1/t)g1:t is the average gradient, and Rt =
(1/2)‖w‖2

At
as defined in A-FOBOS. Equivalently

wt+1 = arg min
w∈F

Rt + η〈g1:t , w〉. (5)

Interestingly, McMahan [6] represents AODG [7] as a
simpler version of A-RDA (η = 1, Rt = (σ1:t/2)‖w‖2

2,
i.e., At = σ1:t I ), which updates wt as wt+1 = wt −
(1/σ1:t )(gt + σtwt ) = −(g1:t/σ1:t ), where σ1 > 0, σt ≥ 0
for t > 1.

By using the input correlation matrix, the SOP in [8]
updates wt as4

wt =
⎛

⎝a I +
∑

τ∈Mt−1∪t

xτ x�
τ

⎞

⎠

−1
∑

τ∈Mt−1

yτ xτ (6)

where a ≥ 0. As we know, the performance of the per-
ceptron algorithm is governed by geometrical properties of
the input data. It is harder to learn when the ellipsoid of
the input data becomes more flat along the target hyper-
plane. Intuitively, the adaptive matrix plumps up the input
data and makes it easier for the perceptron algorithm to
learn.

In a similar form (but the motivation is to give a confidence
over the weights to learn), NAROW in [10] updates wt as

wt =
⎛

⎝I +
∑

τ∈Mt−1∪Ut−1∪t

xτ x�
τ

rτ

⎞

⎠

−1
∑

τ∈Mt−1∪Ut−1

yτ xτ (7)

where rτ > 0.
For an expconcave loss, FTAL [15] updates wt as

wt+1 = arg min
w∈F

t∑

τ=1

�̃τ (w) (8)

where �̃τ (w) � �τ (wτ ) + g�
τ (w − wτ ) + (1/2r)(w − wτ )

�
gτ g�

τ (w − wτ ) and (1/r) = (1/2) min{(1/4D2G2), ε}. It is
understandable that �̃τ (w) is a second-order approximations
of �τ (w). As shown in [15], FTAL is equivalent to the
following algorithm, named ONS for its close connection to
the Newton method, which updates wt as:

wt+1 = �
At
F

{
A−1

t bt
}

(9)

where At = ∑t
τ=1 gτ g�

τ , bt = ∑t
τ=1(gτ g�

τ wτ − rgτ ), and
(1/r) = (1/2) min{(1/4D2G2), ε}. We will see that in the
later part Section IV-A, of this paper, equivalently (9) can be
updated with a closed-form (14), where η = r and r and At

are the same as in (9).

III. ADAPTIVE ONLINE LEARNING FRAMEWORK

Section II lists a number of existing algorithms. To under-
stand their behavior more clearly and shed new insights, we
present in this section a general framework, which lays the
basis of unification of existing algorithms.

4Here, Mt is the index set of the mistake rounds, and Ut is the index set
of rounds, whose prediction is correct but �τ (wτ ) > 0.
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A. Bregman Divergence

A core theme of the section is that of the measure, i.e., BD,
which was first introduced in [30]. Recalling the definition
of BD, for a strongly convex and differentiable function R(·),
BR(u, v) = R(u) − R(v) − 〈∇ R(v), (u − v)〉. That is, BD
from u to v is the difference between R(u) and its linear
approximation via the first-order Taylor expansion of R at v.
For the convexity of R, this difference is always nonnegative.
In addition, by [31, Lemma 1], BD is strongly convex with
respect to its first argument.

We introduce several properties of BD. First, BR(u, v) = 0
when u = v, and in general, BR(u, v) �= BR(v, u). Hence,
typically, BD is not a metric. We, however, have the following
properties that are needed in this paper.

1) Additive: Bh+ f (u, v) = Bh(u, v) + B f (u, v) if h and f
are convex and differentiable.

2) Bh+ f (u, v) = Bh(u, v) if f is linear.
3) Three-Point Equality: BR(u, v) + BR(v,w) =

BR(u, w) + 〈u − v,∇ R(w) − ∇ R(v)〉.
More properties of BD can be found in [27] and [32].

In particular, when R(w) = (1/2)‖w‖2
2, BR(w, v) =

(1/2)‖w − v‖2
2. When R(w) = ∑n

i=1(w[i ] ln w[i ] − w[i ]),
where wi ≥ 0 ∀i , BR(w, v) = ∑n

i=1(w[i ] ln(w[i ]/v[i ]) +
v[i ] − w[i ]) is the generalized Kullback-Leibler (KL) diver-
gence [27], [32], [33]. For the two BDs, Kivinen and Warmuth
[33] developed the linear GD algorithm and EG algorithm,
respectively. BD has also been used in other contexts, for
instance, in clustering [34], in the learning with submodular
functions [35], and recently in alternating direction method of
multipliers [36].

Interestingly, BD is also helpful for online learning with
limited feedback (bandit), as shown in [37], where a curious
connection between the notion of BDs and self-concordant
barriers is discussed and analyzed. In addition, BD can be
extended to measure the nearness of matrix [38] to recover,
for instance, the squared Frobenius norm which may be used in
principal component analysis (PCA) or incremental PCA [39],
or the von Neumann divergence which has been employed for
online PCA [40]. An early work [41] shows the link between
BD and PCA. Please refer to the references (and references
within) for more details.

B. Follow the Bregman Divergence Leader

In this section, we propose the FTBDL algorithm (shown
in Algorithm 1) to provide a basic framework for the unifi-
cation of existing adaptive algorithms (a formal and deeper
unification will be presented in Section IV). It replaces the
fixed regularizer R(w) of FTRL in (1) with

∑t
τ=1 BRτ (w, vτ ),

which is adaptive. The update rule is

wt+1 = arg min
w∈F

t∑

τ=1

(BRτ (w, vτ ) + η�τ (w)) (10)

where Rτ (·) is strongly convex. Hereafter, we replace �τ (w)
with 〈gt , w〉 unless otherwise specified. In the sequel, we either
set vτ = wτ , so that the learner tries to keep w close to
the wτ learned in the previous round; or set vτ to a fixed v

Algorithm 1 Follow the Bregman Divergence Leader
1: Input: η > 0, and a sequence of strongly convex and

differentiable functions R1, . . . , RT .
2: Initialize: w1 ∈ F .
3: for t = 1, 2, . . . do
4: Suffer loss �t (wt ) and compute its subgradient gt ;
5: wt+1 = arg minw∈F

∑t
τ=1

(
BRτ (w, vτ ) + η〈gτ , w〉).

6: end for

(e.g., vτ = 0, or vτ = 1 when the KL divergence is used),
such that the learner tries to keep it close to a fixed point v.

Remark 1: When Rτ (w) = (η/2)‖Q1/2
τ w‖2

2 and vτ = wτ ,
FTBDL reduces to FTPRL in Section II-B.

Remark 2: When Qτ = gτ g�
τ , Rτ (w) = (η/2)‖Q1/2

τ w‖2
2,

and vτ = wτ , FTBDL reduces to FTAL in Section II-C.
Thus, the second-order information is captured by the adaptive
regularizer BRτ (w,wτ ), which is updated with newly arrived
instances.

Let �
Rτ
τ (w) = BRτ (w, vτ )+η〈gτ , w〉. Equation (10) can be

rewritten as

wt+1 = arg min
w∈F

t∑

τ=1

�Rτ
τ (w) = arg min

w∈F
�Rτ

1:t (w) (11)

where �
Rτ
1:t (w) ≡ ∑t

τ=1 �
Rτ
τ (w). The following proposition

will show that wt+1 can be computed in the closed-form:

wt+1 = �R1:t ,F

(

∇ R∗
1:t

(
t∑

τ=1

(∇ Rτ (vτ ) − ηgτ )

))

. (12)

The proof is shown in Appendix A.
Proposition 1: For update rule (10), we have

wt+1 = �
�

Rτ
1:t ,F

(

arg min
w∈Rn

�
Rτ
1:t (w)

)

and that

�
�

Rτ
1:t ,F (v) = �R1:t ,F (v).

For F = R
n , (11) can be solved by setting its gradient to

be 0

t∑

τ=1

(∇ Rτ (vτ ) − ηgτ ) =
t∑

τ=1

∇ Rτ (w) = ∇ R1:t (w).

Recall that ∇ R∗(·) = (∇ R(·))−1 [27], [28]. We obtain the
update in (12).

Remark 3: When Rτ = (στ /2)‖w‖2
2, vτ = 0 and η = 1,

(11) becomes a simple version of A-RDA

wt+1 = arg min
w∈F

σ1:t
2

‖w‖2
2 + 〈g1:t , w〉 (13)

and its closed-form solution is

wt+1 = �σ1:t
2 ‖w‖2

2,F

(

− g1:t
σ1:t

)

= �F
(

− g1:t
σ1:t

)

.
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C. Theoretical Properties

Adaptive algorithms improve over standard GD using
the gradient’s second-order information. Typically, the
second-order information is captured by a properly defined
matrix.5 For example, A-FOBOS in (4) replaces the GD update
with

wt+1 = �
At
F

(
wt − ηA−1

t gt
)
. (14)

Actually, for A-FOBOS, BRt (w,wt ) = (1/2)‖w −wt‖2
At

, and
the closed-form solution of (4) leads to (14). Clearly, when
At = √

t I , it reduces to standard GD.
As will be revealed in Section IV-A, different adaptive

algorithms mainly differ in the choice of the matrix At , and
on whether vτ is origin-centered (i.e., vτ = 0 as in A-RDA)
or updated iteratively (e.g., vτ = wτ as in A-FOBOS). Here,
we summarize several special cases and connect them back to
existing methods.

1) vτ = wτ : Let Rτ (w) = (1/2)‖w‖2
Aτ −Aτ−1

, then
A-FOBOS is a specific case of the following update rule,
called mirror descent (MD) [42], [43]:

wt+1 = arg min
w∈F

BR1:t (w,wt ) + η〈gt , w〉. (15)

Typically, MD is not considered with a changing function R.
We generalize it by adding a strongly convex function Rt to
the BD on each round. Equation (15) can be computed in
the closed-form with (12), and as shown in Proposition 3, this
updating rule-based learning algorithm has also a performance
guarantee.

The following proposition will show the equivalence
between MD and FTBDL, and then, FTBDL (10) covers
A-FOBOS (4). The proof is shown in Appendix B.

Proposition 2: Assume that ŵ1 = w̃1. The MD update

ŵt+1 = arg min
w∈F

{BR1:t (w, ŵt ) + η〈gt , w〉}
and FTBDL update

w̃t+1 = arg min
w∈F

t∑

τ=1

(BRτ (w, w̃τ ) + η〈gτ , w〉)

are equivalent in that ŵt = w̃t for all t > 0.
By the equivalence, regret bounds can be derived with

ease from existing results. For example, using [2, Lemma 16]
or [42, Th. 4.1], the regret for FTBDL (vτ = wτ ) can be
bounded as follows. The proof can be found in Appendix C.

Proposition 3: When vτ = wτ , the regret for Algorithm 1
with respect to ẘ ∈ F is bounded by

RegretT ≤ 1

η

T∑

t=1

BRt (ẘ,wt ) + η

2

T∑

t=1

‖gt‖2
R∗

1:t
. (16)

5Generally speaking, the second-order methods require O(n2) space to
store the adaptive matrix At and O(n2) time each step to compute A−1

t
using Woodbury identity [21], given the gradient (subgradient). For the
first-order methods like GD, only O(n) time is required each step. One
motivation using diagonal versions of adaptive online learning is to reduce
the computation cost. Hazan et al. [15] provide a detailed discussion on
the computational complexity including the computation of projection step.
Second-order methods, however, may provide a regret lower than that of the
first-order methods, and then fewer iterations are required, e.g., O(ln(T ))
regret for ONS versus O(

√
T ) for GD.

This allows us to derive specific regrets that correspond to
different BDs using different R values.

For example, to recover FTPRL, set Rt (w) = (1/2)‖w‖2
Qt

,
BRt (w,wt ) = (1/2)‖w − wt‖2

Qt
, and η = 1. Then

RegretT ≤
T∑

t=1

1

2
‖ẘ − wt‖2

Qt
+ 1

2

T∑

t=1

‖gt‖2
Q∗

1:t
. (17)

The above regret gains a factor 1/2 in the second right-hand
side term, compared with that of [5, Th. 2]. Using the
diagonal Qt in (3), (17) becomes

RegretT ≤ 1

2
max
t∈[T ] ‖w − wt‖2

2 Q1:T + 1

2

T∑

t=1

‖gt‖2
2

Q1:t
.

Furthermore, using [5, Lemma 7], i.e., for any nonnegative
real number sequnce s1, . . . , sT

T∑

t=1

st
√∑t

τ=1 sτ

≤ 2

√
√
√
√

T∑

t=1

st (18)

the regret reduces to
√

2D2(
∑T

t=1 ‖gt‖2
2)

1/2 ≤ √
2D2G2

√
T ,

and then, it has a tighter regret than GD.
2) vτ = v: When vτ is fixed to a given v, we can (recall

the additive property of BD) rewrite (10) as

wt+1 = arg min
w∈F

{BR1:t (w, v) + η〈g1:t , w〉}. (19)

Let g̃t = gt − ∇ Rt (v), (19) can be replaced with

wt+1 = arg min
w∈F

{R1:t (w) + η〈g̃1:t , w〉}.

Set ∇ Rt (v) = 0 (e.g., ∇ R(0) = 0 when R(w) = (1/2)‖w‖2
A ,

also ∇ R(1) = 0 for KL divergence), this update further
reduces to

wt+1 = arg min
w∈F

{R1:t (w) + η〈g1:t , w〉}. (20)

For update (20), we have the following regret (the proof is
shown in Appendix D).

Proposition 4: Let Rt (·) be the strongly convex regular-
izer and wt be the sequence generated by update rule (20),
where t ∈ [T ]. Then, the regret with respect to ẘ ∈ F is
bounded by

RegretT ≤ 1

η
R1:T (ẘ) − 1

η
U + η

2

T∑

t=2

‖gt‖2
R∗

1:t−1
+O(1) (21)

where O(1) corresponds to the term 〈g1, w1 − w2〉 and
U = ∑T

t=1 Rt (wt+1).
A similar result can be obtained for the general case

in (19)

RegretT ≤ 1

η
BR1:T (ẘ, v) − 1

η
U + η

2

T∑

t=2

‖gt‖2
R∗

1:t−1
+ O(1)

where O(1) corresponds to the term 〈g1, w1 − w2〉 ≤ G2 D2
and U = ∑T

t=1 BRt (wt+1, v), which is always nonnegative.
The above bounds allow for more refined results to be

derived in specific cases. Consider that simple A-RDA (13)
and let σ1:t = 2

√
2G2

√
t/D2. Bound (21) provides the
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Algorithm 2 Adaptive Exponential Gradient

1: Input: σ1 > 0, σt ≥ 0 for t > 1, η > 0 and ηt = η
σ1:t ;

BR(w, v) = ∑n
i=1 w[i ] ln w[i]

v[i] and F = {w | ‖w‖1 = 1,
∀i : wi ≥ 0}.

2: Initialize: w1 = v = [ 1
n , · · · , 1

n ]�.
3: for t = 1, 2, . . . do
4: Suffer loss �t (wt ) and compute its subgradient gt ;
5: wt+1 = arg minw∈F {BR(w, v) + ηt 〈g1:t , w〉}.
6: end for

regret (
√

2/2)D2G2
√

T − U + O(1), which gains a
factor 1/2 (meanwhile U > 0) over standard GD (F =
{w | ‖w‖2 ≤ D2/2}) [1].

D. Adaptive Exponential Gradient

In this section, we present a new adaptive algorithm.
Consider the normalized KL divergence, i.e., R(w) =∑n

i=1 w[i ] ln w[i ], w ∈ F , where F = {w | ‖w‖1 = 1,∀i :
wi ≥ 0}, and then BR(w, v) = ∑n

i=1 w[i ] ln(w[i ]/v[i ]).
R(w) is strongly convex with respect to ‖ · ‖1 [28] and the
dual norm ‖ · ‖∞. In addition, the CD is given by R∗(θ) =
ln(

∑n
i=1 eθ[i]) [28]. The resulting algorithm is often called

normalized EG [28], [33].
Now, we design a simple adaptive EG (Algorithm 2). Let

v = [(1/n), . . . , (1/n)]�, σ1 > 0, σt ≥ 0 for t > 1, R1:t (w) =
σ1:t R(w), and ηt = (η/σ1:t ). Using the fact that BR1:t (w, v) =
σ1:t BR(w, v), we update wt (w1 = v) with

wt+1 = arg min
w∈F

{BR(w, v) + ηt 〈g1:t , w〉}. (22)

By (12), it can be updated in the closed-form, and formally,
we have the following results.

Proposition 5: The closed-form update for adaptive
EG algorithm (22) is

wt+1[i ] = wt [i ]e−ηt gt [i]
∑n

j=1 wt [ j ]e−ηt gt [ j ] (23)

and it is equivalent to the following update:
wt+1 = arg min

w∈F
{BR(w,wt ) + ηt 〈gt , w〉} (24)

where w1 = v.
Algorithm 2 is similar to normalized EG but has an adaptive

stepsize ηt . For its regret, we have the following upper bound.
Proposition 6: The regret for Algorithm 2 with respect to

ẘ ∈ F is bounded by

RegretT ≤ σ1:T
η

ln n + η

2

T∑

t=1

‖gt‖2∞
σ1:t

. (25)

In particular, setting σ1:t = √
t , η = √

ln n/G∞ yields

RegretT ≤ 2G∞
√

T ln n. (26)

Furthermore, setting σ1:t = (
∑t

τ=1 ‖gτ‖2∞)1/2, η = G∞ yields

RegretT ≤ 2

√
√
√
√ln n

T∑

t=1

‖gt‖2∞ ≤ 2G∞
√

T ln n. (27)

Regret bound (26) is identical to that of [28, Corollary 2.14]
by setting6 η = √

ln n/T /G∞ therein, but η in (26) is
independent of horizon T . That is, Algorithm 2 is suitable to
cases where T is not known a priori. Hence, it is applicable
to real-time or life-long problems, or the games where the
adversary decides the horizon. The regret (27) is even tighter
than (26), and η is also free with respect to T.

IV. UNIFICATION OF ADAPTIVE ALGORITHMS

FTBDL proposed in Section III provides a basis for the
unification of different adaptive algorithms, and preliminarily,
it have been showed that FTBDL unifies the typical ones, such
as A-FOBOS, FTPRL, and A-RDA. In this section, we turn
to more general adaptive algorithms, and a closer, wider, and
deeper understanding of them under the proposed framework
as follows.

1) The algorithms involved will be cleared up.
2) New observations on the connection within them will be

discussed.
3) A simple adaptive algorithm will be proposed for the

interesting case, where an augment adaptive matrix can
be exploited.

A. Unification of Adaptive Algorithms

First, we reformulate FTBDL (10) to the following form:
wt+1 = arg min

w∈F
∑

τ∈St

(BRτ (w, vτ ) + η〈gτ , w〉) (28)

where Rτ = (1/2)‖w‖2
Aτ −Aτ−1

(then R1:t = (1/2)‖w‖2
At

)
and At ∈ Sn++. St excludes those rounds in which At is not
updated, e.g., SOP [8] or NAROW [10] uses St �= [t]. vt = wt

or vt = 0, as discussed in Section III-C. In particular, let
At = Aat ,b

t and

Aat ,b
t = at I +

⎛

⎝
∑

τ∈St

Qτ

⎞

⎠

b

(29)

for some at ≥ 0, b ∈ {(1/2), 1}, Qτ ∈ Sn+, and St ⊆ [t].
With (28) and (29) at hand, adaptive algorithms presented

in Section II can be unified under the FTBDL (Table I).
1) A-FOBOS and FTPRL:
Proposition 7: A-FOBOS in (4) is equivalent to FTBDL

in (28) on using vτ = wτ , At = Aa,b
t and Rτ =

(1/2)‖w‖2
Aτ −Aτ−1

, where a ≥ 0, b = (1/2), St = [t], and

Qτ = gτ g�
τ (or Qτ is diagonal and (Qτ )i,i = (gτ [i ])2).

As we know, the adaptive (second order) information is
captured by the second part of (29) and a ≥ 0 is used to
balance the identity matrix I and adaptive part. Without the
adaptive part, A-FOBOS reduces to GD using a fixed step
size. For a = 0, At captures the full adaptive information,
which may become unstable, and for a > 0, At stays properly
conditioned and A−1

t can be calculated. In practice, optimal
setting of a can be tuned by validation.

6There is a typo in [28]. η = (
√

ln n/G∞
√

2T ) yields the regret

(
√

2 + (
√

2/2))G∞
√

T ln n, which is not optimal. Note that η involves
horizon T .
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TABLE I

UNIFICATION OF ADAPTIVE ALGORITHMS UNDER THE FTBDL FRAMEWORK

Here, setting b = 1/2 aims to balance two terms in
regret (16) and leads to a regret scaled in O(

√
T ) for general

loss. Actually, for A-FOBOS, regret (16) reduces to the
following8:

RegretT ≤ a

2η
‖ẘ‖2

2 + D2
2

2η
Tr

(
G1/2

T

) + ηTr
(
G1/2

T

)

where Gt = ∑
τ∈St

Qτ . Let F = {w | ‖w‖2 ≤ D2/2}, then
η = D2/

√
2 gives us the optimal performance (a = 0), i.e.,

RegretT ≤ √
2D2Tr(G1/2

T ) = √
2D2

∑n
i=1 λ

1/2
i , where λi is

the i th eigenvalue of GT .
Note that, GT ∈ Sn++ and λi > 0, then

(
n∑

i=1

λ
1/2
i

)2

>

n∑

t=1

λi = Tr(GT ). (30)

Hence, Tr(G1/2
T )>(

∑n
i=1

∑T
t=(gt [i ])2)1/2 =(

∑T
t=1 ‖gt‖2

2)
1/2,

and the upper bound of A-FOBOS is looser than that of
FTPRL using adaptive coordinate-constant regularizer (3).

In general, suppose we consider the case that the feasible
region is a L p-ball, F = {w | ‖w‖p ≤ Dp/2}, Dp > 0.
A-FOBOS does become more helpful for some feasible region,
e.g., when p = ∞ [2]: this will be shown later in a special
case using a diagonal adaptive matrix. A related and graceful
analysis can be found in [5].

FTPRL in [5] is closely related to A-FOBOS, and similarly,
it can be recovered under FTBDL.

Proposition 8: FTPRL in (2) is a specific case of FTBRL
in (28) with η = 1, vτ = wτ , At = Aa,b

t , and Rτ =
(1/2)‖w‖Qτ , where a = 0, b = 1, Q1 ∈ Sn++, Qτ>1 ∈ Sn+,
and St = [t].

Other than the adaptive coordinate-constant (3), a per-
coordinate regularizer is helpful in some cases, e.g., when F is

8In regret (16),
∑T

t=1 BRt (ẘ, wt ) = (1/2)‖ẘ−w1‖2
A1

+(1/2)
∑T

t=2 ‖ẘ−
wt ‖2

At −At−1
≤ (a/2)‖ẘ − w1‖2

2 + (1/2)‖ẘ − w1‖2
2Tr(G1/2

1 ) +
(1/2)

∑T
t=2 ‖ẘ − wt ‖2

2Tr(G1/2
t − G1/2

t−1) ≤ (a/2)‖ẘ‖2
2 + (1/2) maxt ‖ẘ −

wt ‖2
2Tr(G1/2

T ), where we used w1 = 0 for A-FOBOS and ‖w‖2
A ≤

‖w‖2
2Tr(A) for A ∈ Sn+. By [2, Lemma 10],

∑T
t=1 ‖gt ‖2

R∗
1:t

=
∑T

t=1 ‖gt ‖2
A−1

t
≤ 2Tr(G1/2

T ).

a L∞-ball. In particular, let Qτ be diagonal and

(Q1:t )i,i =
√∑t

τ=1(gτ [i ])2

D∞/
√

2
.

It is identical to A-FOBOS using diagonal matrix (a = 0) with
η = D∞/

√
2. Then, regret (17) for FTPRL reduces to

RegretT ≤ √
2D∞

n∑

i=1

√
√
√
√

T∑

t=1

(gt [i ])2. (31)

To cover a L∞-ball feasible region, D2 = √
nD∞,

and then for GD, its upper regret bound has to be√
2nD∞G2

√
T . Hence, the per-coordinate adaption

outperforms GD. Actually, by Cauchy–Schwarz inequality,
∑n

i=1 12 · ∑n
i=1((

∑T
t=1(gt [i ])2)1/2)2 ≥ (

∑n
t=1 1 ·

(
∑T

t=1(gt [i ])2)1/2)2, which means that (n
∑T

t=1 ‖gt‖2
2)

1/2 ≥
∑n

i=1(
∑T

t=1(gt [i ])2)1/2. In addition, for the coordinate-
constant adaption in the case of interest, its upper regret
bound is

√
2nD∞(

∑T
t=1 ‖gt‖2

2)
1/2. Then, it is also looser

than that of per-coordinate adaption. However, for a L2-ball
feasible region, the conclusion is opposite [similar to (30),
∑n

i=1(
∑T

t=1(gt [i ])2)1/2 ≥ (
∑T

t=1 ‖gt‖2
2)

1/2].
2) ONS and FTAL: For a strongly convex loss function, a

regret on the order of O(ln T ) can be derived, even for GD.
In addition, the magic is that, for general convex loss, e.g.,
linear loss, �t (wt ) − �t (ẘ) ≤ 〈gt , wt − ẘ〉, but for σ -strongly
convex loss, �t (wt )−�t(ẘ) ≤ 〈gt , wt −ẘ〉−(σ/2)‖wt −ẘ‖2

2,
where wt , ẘ ∈ F . The extra nonpositive term improves the
regret, and for ηt = (σ t)−1, the upper bound of the regret for
GD is (G2

2/σ)(1 + ln T ) [15].
As discussed in Section I, some widely used loss functions

in learning problems are not strongly convex, but they may still
obtain low regrets. In particular, for expconcave loss functions,
a property analogous to that of strongly convex function can
be exploited. That is, for (1/r) = (1/2) min{(1/4D2G2), ε}

�t (wt ) − �t (ẘ) ≤ 〈gt , wt − ẘ〉 − 1

2r
‖ẘ − wt‖2

Qt
(32)

where exp(−ε�t (·)) is concave, Qt = gt g�
t , and wt , ẘ ∈ F .

Based on this, two algorithms, ONS and FTAL which enjoy the
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logarithmic regret, are developed in [15]. The two algorithms
can also be unified under the proposed framework.

Proposition 9: FTAL in (8) can be recovered with FTBDL
in (28) on setting vτ = wτ , St = [t], At = Aa,b

t and Rτ =
(1/2)‖w‖2

Qτ
, where a = 0, b = 1, Qτ = gτ g�

τ , η = r and
(1/r) = (1/2) min{(1/4D2G2), ε}.

From Proposition 9, FTAL is identical with FTPRL using
Rτ = (1/2)‖w‖2

(1/r)Qτ
, where Qτ = gτ g�

τ . Furthermore, as

shown in [15], ONS is equivalent to FTAL but with a more
efficient implementation. Then, by Proposition 2, it can be
recovered by MD. Formally, we state it as below.

Proposition 10: ONS in (9) can be recovered with FTBDL
in (28) by setting vτ = wτ , St = [t], At = Aa,b

t , and Rτ =
(1/2)‖w‖2

Qτ
, where a = 0, b = 1, Qτ = gτ g�

τ , η = r ,
and (1/r) = (1/2) min{(1/4D2G2), ε}. Equivalently, it can
be updated by MD (15) [and then by its closed-form (14)] on
using vτ = wτ , R1:t = (1/2)‖w‖2

At
, and At = Aa,b

t , where
a = 0, b = 1, η = r , and Qτ = gτ g�

τ .
Thanks to the second term on the right-hand side of (32),

a logarithmic regret as stated in [15] can also be derived
from Proposition 3, with a minor extension to ONS, i.e.,
generalizing a = 0 to a > 0. In particular, the regret of ONS
is upper bounded by (a D2/2r) + (r/2)n ln((G2/a)T + 1),9

which is on the order of O(ln T ) given a proper a.
3) A-RDA and AODG: Different to the above algorithms,

A-RDA or AODG fixes vτ = 0, i.e., it is origin-centered.
Proposition 11: A-RDA in (5) is equivalent to FTBDL

in (28) with vτ = 0, Rτ = (1/2)‖w‖2
Aτ −Aτ−1

, and At = Aa,b
t ,

where a ≥ G2, b = (1/2), St = [t]. Qτ is identical with that
of A-FOBOS.

As pointed out in Section II, AODG [6] in (13) is a
simpler version of A-RDA, and in particular, η = 1, Rτ =
(1/2)‖w‖2

Qτ
, where Qτ = στ I . Then, it is also equivalent to

FTBDL in (28), but with η = 1 and At = Aa,b
t , where a = 0,

b = 1, and Qτ = στ I .
Omit the nonpositive term −U/η in (21), the regret for

A-RDA is upper bounded by10

RegretT ≤ a

2η
‖ẘ‖2

2 + ‖ẘ‖2
2

2η
Tr

(
G1/2

T

) + ηTr
(
G1/2

T

) + O(1).

(33)

The above bound is tighter than that of A-FOBOS as
‖ẘ‖2

2 < D2
2 . The advantage comes from the fact

that, for A-FOBOS, the upper bound has to cover
(1/η)

∑T
t=1 ‖ẘ − wt‖2

Aτ −Aτ−1
, but A-RDA only needs to

9In the case of interest, regret (16) becomes RegretT ≤ (1/2r)‖ẘ−w1‖2
aI +

(1/2r)
∑T

t=1 ‖ẘ − wt ‖2
Qt

+ (r/2)
∑T

t=1 ‖gt ‖2
A−1

t
− (1/2r)

∑T
t=1 ‖ẘ −

wt ‖2
Qt

≤ (aD2/2r) + (r/2)
∑T

t=1 ‖gt ‖2
A−1

t
. Furthermore, [8, Lemma D.1]

gives us that
∑T

t=1 ‖gt ‖2
A−1

t
≤ ln(det(AT )/det(aI )). In addition,

ln(det(AT )/det(aI )) = ln(
∏n

i=1(λi + a/a)) = ∑n
i=1 ln((λi /a) + 1) ≤

n ln((λmax/a) + 1) ≤ n ln((Tr(GT )/a) + 1) ≤ n ln((G2
2T/a) + 1), where

λi is the ith eigenvalue of GT = ∑
τ∈ST

Qτ and λmax is the largest one.
10In the case of interest, R1:T (ẘ) = (1/2)‖ẘ‖2

AT
≤ (1/2)‖ẘ‖2

2Tr(G1/2
T )+

(a/2)‖ẘ‖2
2. By [2, Lemmas 9 and 10],

∑T
t=1 ‖gt ‖2

A−1
t−1

≤ 2Tr(G1/2
T ). Note

that a ≥ G2 is necessary to draw this conclusion.

cover (1/η)
∑T

t=1 ‖ẘ‖2
Aτ −Aτ−1

. Here, the analysis is based on
the upper bound, and interestingly, the practical aspects of
A-RDA versus A-FOBOS also support the conclusion [2], [6].

4) NAROW and SOP: The two algorithms use input corre-
lation matrix for adaption and are designed for classification.
NAROW uses hinge loss and SOP is based on perceptron, and
the two share similar adaptive matrix.

When F = R
n , vτ = 0, and η = 1, the closed-form for

FTBDL in (28) reduces to wt+1 = A−1
t (− ∑

τ∈St
gτ ). It is

identical to NAROW in (7) in that St = Mt ∪ Ut and

At = I +
∑

τ∈St∪{t+1}

xτ x�
τ

rτ
. (34)

For hinge loss, �τ (w) = max{0, 1−yτ 〈wτ , xτ 〉}, where yτ is
the label corresponding to xτ . We observe that gτ = −yτ xτ ,
where �τ (wτ ) > 0, and then, xτ x�

τ = gτ g�
τ . To unify the

presentation with (29), let

Âat ,b
t+1 = at I +

⎛

⎝
∑

τ∈St

Qτ + Qt+1

⎞

⎠

b

then (34) can be represented as At = Â1,1
t+1, where Qτ =

(xτ x�
τ /rτ ). Formally, we have the following results.

Proposition 12: NAROW in (7) is equivalent to FTBDL
in (28) with F = R

n , vτ = 0, Rτ = (1/2)‖w‖2
Aτ −Aτ−1

, and

At = Â1,1
t+1, where St = Mt ∪ Ut , Qτ = (xτ x�

τ /rτ ).
Note that t + 1 ∈ St+1 is not always true, and therefore,

Â1,1
t+1 �= A1,1

t+1 in general. SOP in (6) can be viewed as a
special case of NAROW, but St = Mt , Qτ = xτ x�

τ , and
At = Âat ,1

t+1, where at ≥ 0. SOP and NAROW are developed
for classification and mistake bounds are considered. More
details on the bounds and the parameters rt or at can be found
in the literature [8], [10].

B. Interesting Cases Where gτ g�
τ = xτ x�

τ

Besides hinge loss, for other losses, such as ε-insensitive
loss �τ (w) = max{0, |yτ − 〈w, xτ 〉| − ε}, where yτ is the
target output of xτ , we also have11 gτ g�

τ = xτ x�
τ for �τ > 0.

Hence, we can redefine At by including the current instance
xt into the prediction. As suggested in [8], this may lead to
performance improvement in some scenarios.

In particular, consider that A-RDA in (5), and let
R1:t = (1/2)‖w‖2

At
and12 At = (a2 I + ∑t

τ=1 gτ g�
τ )1/2.

Augment At as

Ât+1 = (
A2

t + xt+1x�
t+1

)1/2

and let R̂1:t = (1/2)‖w‖2
Ât+1

, then ‖gt‖2
R∗

1:t−1
= ‖gt‖2

A−1
t−1

in

regret (21) will be replaced by ‖gt‖2
R̂∗

1:t−1
= ‖gt‖2

Â−1
t

.

11Two scenarios for �τ > 0: 1) yτ −〈w, xτ 〉 > ε, then �τ = yτ −〈w, xτ 〉−ε
and gτ = −xτ and 2) yτ − 〈w, xτ 〉 < −ε, then �τ = 〈w, xτ 〉 − yτ − ε and

gτ = xτ . Then, we have gτ g�
τ = xτ x�

τ in both cases.
12The regret upper bound (33) is still suitable for this regularizer. Actually,

in this case, At � aI + (
∑t

τ=1 gτ g�
τ )1/2, and then, the first two terms

still hold. For the third term, A−1
t � (

∑t+1
τ=1 gτ g�

τ )1/2 when a ≥ G2 and
[2, Lemma 10] confirms the bound.
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Algorithm 3 Simple Augment Adaptive Algorithm

1: Input: η > 0, σ1:t =
√∑t

τ=1 ‖gτ‖2
2 + ‖xt+1‖2

2.
2: Initialize: w1 ∈ F .
3: for t = 1, 2, . . . do
4: Suffer loss �t (wt ) and compute its subgradient gt ;
5: wt+1 = arg minw∈F σ1:t

2 ‖w‖2
2 + η〈g1:t , w〉.

6: end for

As Ât  At−1, so Â−1
t � A−1

t−1. In general, Â−1
t �= A−1

t−1,
and then, it gets an advantage on round t when gt �= 0, i.e.,
‖gt‖2

Â−1
t

< ‖gt‖2
A−1

t−1
. Actually, the Woodbury identity [21]

gives us (A2
t−1)

−1 = (1+x�
t (A2

t−1)
−1xt )( Â2

t )
−1, then A−1

t−1 =
(1 + x�

t (A2
t−1)

−1xt)
1/2 Â−1

t , and we have

g�
t A−1

t−1gt =
√

1 + x�
t

(
A2

t−1

)−1
xt g

�
t Â−1

t gt .

Clearly, (1 + x�
t (A2

t−1)
−1xt )

1/2 > 1 for xt �= 0.
In addition, when gt �= 0, Ât = (A2

t−1+gt g�
t )1/2 = At , and

it is always true (it is trivial when gt = 0) that ‖gt‖2
R̂∗

1:t−1
=

‖gt‖2
A−1

t
. Hence, the upper bound (33) still holds, but the

assumption a ≥ G2 can be removed.
Furthermore, based on the observation, we develop a simple

augment algorithm using diagonal adaptive matrix for losses
that possess the property gτ g�

τ = xτ x�
τ . In particular, the

algorithm is summarized in Algorithm 3.
Clearly, Algorithm 3 is a special case of FTBDL in that

vτ = 0 and Rτ = (στ /2)‖w‖2
2. In addition, regret (21) leads

to the following bound.
Proposition 13: The regret for Algorithm 3 with respect to

ẘ ∈ F is bounded by

RegretT ≤ σ1:T
2η

‖ẘ‖2
2 − 1

η
U + η

2

T∑

t=2

‖gt‖2
2

σ1:t−1
+ O(1). (35)

Let ‖ẘ‖2 ≤ D2/2 and omit the nonpositive term −U/η, then
setting η = D2/2

√
2 yields

RegretT ≤
√

2

2
D2

√
√
√
√

T∑

t=1

‖gt‖2
2 + O(1) (36)

where O(1) corresponds to the term 〈g1, w1 − w2〉.
We can see that, for losses possessing the property gτ g�

τ =
xτ x�

τ , Algorithm 3 gains a factor 1/2 over GD, and mean-
while, (

∑T
t=1 ‖gτ‖2

2)
1/2 ≤ G2

√
T . In addition, regret (36)

gains a factor 1/2 over FTPRL using a coordinate-constant
regularizer (3).

In general, based on the above analysis, more adaptive
algorithms can be developed in specific scenarios. One may
choose different values of vτ s, use the original version of At

or its augment as Algorithm 3 does, set different at , b, or St ,
or more generally, use different BDs as Algorithm 2 does.
In addition, it will be interesting to extend adaptive learning
to kernel-based online learning in a general way.

V. GENERAL MATRIX EQUATION FOR KERNELIZATION

In this section, we derive a general matrix equation to extend
adaptive learning to nonlinear learning with kernels. We first
transform adaptive learning to the form that involves inner
product 〈xi , x j 〉 and, then, generalize it by replacing the inner
product with kernel k(xi , x j ) as has been used in [8].

Without loss of generality,13 consider A-RDA type online
learning with F = R

n and the closed-form for FTBDL in (28)
reduces to14

wt+1 = −ηA−1
t

⎛

⎝
∑

τ∈St

gτ

⎞

⎠ = −ηA−1
t g∼St . (37)

Here, the adaptive matrix At involves xτ x�
τ or gτ g�

τ , and we
have to transform update (37) into some form which can be
represented by inner products.

A. Matrix Equations

First, we restate a matrix equation, which has been used
in [8] for kernelizing SOP.

Proposition 14 [21]: Let A ∈ R
n×m and B = A�, then

B(a In + AB)−1 = (a Im + B A)−1 B. (38)
Now, we present a lemma that will be used later.
Lemma 1: Let A ∈ R

n×n , B ∈ R
m×n , and C ∈ R

m×m .
Assume that B A = C B , then for any d ∈ N

+, we have

B Ad = Cd B. (39)
This can be established by induction. By the assumption,
(39) holds when d = 1. We assume B Ad−1 = Cd−1 B , then

B Ad = B Ad−1 A = Cd−1 B A = Cd−1C B = Cd B.

The following is the key equation that supports the trans-
formation and, then, the kernelization.

Proposition 15: Let A ∈ R
n×m and B = A�, then

B(a In + AB)−
1
2 = (a Im + B A)−

1
2 B. (40)

The proof is included in Appendix E.
More generally, by Lemma 1, B A = C B implies

Bp(A) = p(C)B , where p(·) denotes a polynomial.

B. Kernelization

The above propositions make it possible to transform
update (37) to be of interest. Let gt = [gτ ], τ ∈ St , then
g�∼St

= 1�g�
t (gτ can be replaced by xτ or (xτ /

√
rτ ) as used

in SOP or NAROW). When At = a In + gt g
�
t . Proposition 14

gives us

w�
t+1 = −η1�g�

t

(
a In + gt g

�
t

)−1

= −η1�(
a I|St | + g�

t gt

)−1
g�

t

=: −η1�
A

−1
t g�

t (41)

13It is possible to kernelize adaptive MD (i.e., vτ = wτ ), but it does not
provide more insights and considering the limit of space we omit it.

14By (12), and the closed-form of the update for (28) reduces to wt+1 =
∇ R∗

1:t (
∑t

τ=1(∇ Rτ (vτ ) − ηgτ )) = ∇ R∗
1:t (−η

∑
τ∈St gτ ). Then, the fact that

∇ R∗
1:t (w) = A−1

t w leads to (37).
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Algorithm 4 Simple Adaptive Algorithm With Kernels

1: Input: η > 0, σ1:t =
√∑t

τ=1 ‖gτ‖2
2.

2: Initialize: w1 ∈ H.
3: for t = 1, 2, . . . do
4: Suffer loss �t (wt ) and compute its subgradient gt ;
5: wt+1 = arg minw∈H σ1:t

2 ‖w − wt‖2
2 + η〈gt , w〉.

6: end for

where g�
t gt only involves inner product 〈gi , g j 〉. Note that for

commonly used losses, gτ = ġτ xτ , where ġτ is a scalar.15

Let xt = [xτ ], ġt = [ġτ ], and D(ġt ) be the diagonal matrix
with diagonal elements ġt . Then, gt = xt D(ġt ) and At =
a I|St |+ D(ġt )Kt D(ġt ). Here, Kt := x�

t xt is the corresponding
Gram matrix. Clearly, Kt (τ, τ ) = x�

τ xτ .
As pointed out before, At = (a2 In + gt g

�
t )1/2 makes no

change for the regret analysis. In this case, Proposition 15
gives us

w�
t+1 = −η1�(

a2 I|St | + g�
t gt

)− 1
2 g�

t

=: −η1�
A

−1
t g�

t . (42)

Using Sherman–Morrison–Woodbury formula [21] (or the
matrix inversion lemma [44]), A

−1
t can be updated recur-

sively and costs us O(|St |2) each round. It is common to
use the diagonal version [2], [5], replacing a I|St | + g�

t gt
(or a2 I|St | + g�

t gt ) with its diagonal matrix reduces the
cost to O(|St |), which is on the same order of nonadaptive
online learning. In particular, let cτ = ġτ /(a + ġ2

τ Kt (τ, τ ))
(or cτ = ġτ /(a2 + ġ2

τ Kt (τ, τ ))1/2 in case where square root
operation is used), then (41) [or (42)] reduces to

w�
t+1 = −η

∑

τ∈St

cτ x�
τ =:

∑

τ∈St

ατ x�
τ (43)

whose computation cost scales on the same order as that of
the nonadaptive online learning.

Alternatively, it is possible to use inequality (18) to get a
simple adaptive version with kernels with improvable guaran-
tee. In particular, let Rτ = (στ /2)‖w‖2

2, vτ = wt and FTBDL
reduces to Algorithm 4 (σ1:t only involves inner product). Its
closed-form update is equal to that of GD, but with an adaptive
stepsize, ηt = (η/σ1:t ), and its regret upper bound is improved
to

√
2D2(

∑T
t=1 ‖gt‖2

2)
1/2.

C. Other Topics

A bottleneck for kernelized online learning is that the sup-
port set may keep increasing with learning. Therefore, budget
strategies, which keep |St | under control [45]–[50], or sparse
update methods [51], [52], which perform random update,
can be incorporated with adaptive online learning. An alter-
native way to kernelization is using the duality between
kernels and random processes [53], [54] to approximate the
kernel with the inner products of m randomized features.

15Examples: for hinge loss �t (wt ) = max{0, 1 − yt 〈wt , xt 〉}, consider the
case when �t (wt ) > 0, and we have gt = −yt xt ; for square loss �t (wt ) =
(1/2)(yt − 〈wt , xt 〉)2, we have gt = −(yt − 〈wt , xt 〉)xt .

Then, adaptive online learning can be performed on the
m-dimensional randomized features. In fact, by applying this
approximating idea to the kernel least mean square algorithm,
Singh et al. [55] show a constant computational complexity
with no observable loss in performance. Explicitly, mapping
the input onto the complex feature space (Euler representation)
is another interesting clue for keeping the kernel under control,
as shown in [39], where the authors successfully introduce a
robust incremental PCA called Euler-PCA.

VI. CONCLUSION

This paper proposed a framework, FTBDL, which covers
most popular adaptive algorithms that use the second-order
information. With the proposed framework, a deep unification
of existing algorithms is presented, and some new insights
are revealed. Several new simple adaptive algorithms with
improvable guarantee are developed. Furthermore, this paper
derived a matrix equation that provides a general way to
extend adaptive online linear learning to nonlinear cases via
kernelization. Then, a simple adaptive algorithm applicable to
kernelized online learning is presented.

Developing new algorithms under the proposed framework,
specifically using other forms of BDs, such as KL divergence,
is interesting. Parameter free algorithms, such as V-SGD
in [18], but with clear regret, guarantees deserve further study.

APPENDIX

A. Proof of Proposition 1

Proof: Let w̃t+1 = arg minw∈Rn �
Rτ
1:t (w), and w′

t+1 =
�

�
Rτ
1:t ,F (w̃t+1). By definition, we have

�Rτ
1:t (wt+1) ≤ �Rτ

1:t
(
w′

t+1

)
.

In addition, ∇�Rτ
1:t (w̃t+1) = 0 as w̃t+1 minimizes �Rτ

1:t over R
n .

Then

�Rτ
1:t

(
w′

t+1

) − �Rτ
1:t (w̃t+1) = B

�
Rτ
1:t

(
w′

t+1, w̃t+1
)
.

Furthermore

B
�

Rτ
1:t

(
w′

t+1, w̃t+1
) ≤ B

�
Rτ
1:t

(wt+1, w̃t+1)

= �
Rτ
1:t (wt+1) − �

Rτ
1:t (w̃t+1).

In addition, we have �Rτ
1:t (w′

t+1) ≤ �Rτ
1:t (wt+1). By the assump-

tion of strongly convexity of R, the BD is strictly convex with
respect to its first argument. Thus, �Rτ

1:t is strictly convex, and
we have wt+1 = w′

t+1.
For the second equivalence, recalling the

properties 1) and 2) of BD presented in Section III-A, we
have

B
�

Rτ
1:t

(u, v) =
t∑

τ=1

B
�

Rτ
τ

(u, v) =
t∑

τ=1

BBRτ (·,vτ )(u, v)

=
t∑

τ=1

{BRτ (u, vτ ) − BRτ (v, vτ )

−〈∇BRτ (v, vτ ), u − v〉}
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where ∇BRτ (u, v) is the derivative of BRτ (u, v) with
respect to the first argument u. Then, the three-point
equality of BD presented in Section III-A completes the
proof

B
�

Rτ
1:t

(u, v) =
t∑

τ=1

BRτ (u, v) = BR1:t (u, v).

B. Proof of Proposition 2

Proof: By Proposition 1, we only need to prove the
equivalency in the case of no projection. That is, we aim to
prove that the following two are equivalent:

ŵt+1 = arg min
w∈Rn

{BR1:t (w, ŵt ) + η〈gt , w〉} (44)

w̃t+1 = arg min
w∈Rn

t∑

τ=1

(BRτ (w, w̃τ ) + η〈gτ , w〉). (45)

The proof is done by induction, and the convexity of the two
objective functions is used.

We start with ŵ1 = w̃1 and assume that ŵt = w̃t . By the
optimality for (45), the gradient of the objective function with
respect to w̃t is zero, that is,

∑t−1
τ=1(∇ Rτ (w̃t ) − ∇ Rτ (w̃τ ) +

ηgτ ) = 0. Then, we have

t−1∑

τ=1

∇ Rτ (w̃t ) = −ηg1:t−1 +
t−1∑

τ=1

∇ Rτ (w̃τ ). (46)

On the other hand, by (44)

ŵt+1 = arg min
w∈Rn

t∑

τ=1

BRτ (w, ŵt ) + η〈gt , w〉

= arg min
w∈Rn

t∑

τ=1

(Rτ (w) − Rτ (ŵt )

−〈∇ Rτ (ŵt ),w − ŵt 〉) + η〈gt , w〉

= arg min
w∈Rn

t∑

τ=1

(Rτ (w) − 〈∇ Rτ (ŵt ),w〉) + η〈gt , w〉

= arg min
w∈Rn

t∑

τ=1

Rτ (w) −
t−1∑

τ=1

〈∇ Rτ (ŵt ),w〉

−〈∇ Rt (ŵt ),w〉 + η〈gt , w〉.
Replacing ŵt in the above equation with w̃t and
using (46)

ŵt+1 = arg min
w∈Rn

t∑

τ=1

Rτ (w) − 〈∇ Rt (w̃t ),w〉 + η〈gt , w〉

−
〈

−ηg1:t−1 +
t−1∑

τ=1

∇ Rτ (w̃τ ), w

〉

= arg min
w∈Rn

t∑

τ=1

(Rτ (w) − 〈∇ Rτ (w̃τ ), w〉 + η〈gτ , w〉).

That is

ŵt+1 = arg min
w∈Rn

t∑

τ=1

(Rτ (w) − Rτ (w̃τ ) + η〈gτ , w〉

−〈∇ Rτ (w̃τ ), w − w̃τ 〉)
= arg min

w∈Rn

t∑

τ=1

(BRτ (w, w̃τ ) + η〈gτ , w〉)
= w̃t+1.

It completes the proof.

C. Proof of Proposition 3

Proof: Due to the equivalence of MD and FTBDL in
Proposition 2, it is sufficient to prove regret (16) for MD (15).

By the derivation of [42, Th. 4.1], i.e., (4.21) therein, for any
ẘ ∈ F , we have �t (wt ) − �t (ẘ) ≤ (�t/η) + (η/2)‖gt‖2

R∗
1:t

,
where �t := BR1:t (ẘ,wt ) − BR1:t (ẘ,wt+1). Summing two
sides of the inequality, the regret can be upper bounded by

T∑

t=1

�t

η
+ η

2

T∑

t=1

‖gt‖2
R∗

1:t
=: RS1 + η

2

T∑

t=1

‖gt‖2
R∗

1:t
.

Furthermore, by the additivity and nonnegativity of BD

RS1 ≤ 1

η
BR1(ẘ,w1) + 1

η

T −1∑

t=1

�̂t+1 = 1

η

T∑

t=1

BRt (ẘ,wt )

where �̂t+1 := BR1:t+1(ẘ,wt+1) − BR1:t (ẘ,wt+1). It com-
pletes the proof.

D. Proof of Proposition 4

Proof: Let R̃t := (1/η)R1:t (w) and rewrite (20) as

wt+1 = arg min
w∈F

{R̃t (w) + 〈g1:t , w〉}. (47)

Recall that R̃∗
t (θ) = supw∈F (〈θ,w〉 − R̃t (w)), and we have

RegretT ≤
T∑

t=1

〈gt , wt − ẘ〉 − R̃T (ẘ) + R̃T (ẘ)

≤
T∑

t=1

〈gt , wt 〉 + sup
w∈F

{−〈g1:T , w〉 − R̃T (w)}

+R̃T (ẘ)

= R̃T (ẘ) +
T∑

t=1

〈gt , wt 〉 + R̃∗
T (−g1:T ).

By the optimality in (47), we have

R̃∗
T (−g1:T ) = −〈g1:T , wT +1〉 − R̃T (wT +1)

= −〈g1:T , wT +1〉 − R̃T −1(wT +1) − 1

η
RT (wT +1)

≤ sup
w∈F

{−〈g1:T , w〉 − R̃T −1(w)} − 1

η
RT (wT +1)

= R̃∗
T −1(−g1:T ) − 1

η
RT (wT +1).
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Note that Rτ is strongly convex and R̃t is 1/η-strongly
convex. Then, R̃∗

t (θ) has η-Lipschitz continuous gradients and
∥
∥∇ R̃∗

t (θ1) − ∇ R̃∗
t (θ2)

∥
∥

R1:t ≤ η‖θ1 − θ2‖R∗
1:t .

Due to the duality of strongly convex and strongly smooth
functions [28, Lemma 2.19], we have

R̃∗
t (θ1) ≤ R̃∗

t (θ2) + 〈∇ R̃∗
t (θ2), θ1 − θ2

〉 + η

2
‖θ1 − θ2‖2

R∗
1:t

.

(48)

And, for the gradient of the CD [31, Lemma 2]

∇ R̃∗
t (θ) = arg min

w∈F
{−〈θ,w〉 + R̃t (w)}. (49)

Then, due to (48)

R̃∗
T −1(−g1:T ) ≤ R̃∗

T −1(−g1:T−1) − 〈∇ R̃∗
T −1(−g1:T−1), gT

〉

+η

2
‖gT ‖2

R∗
1:T −1

.

Furthermore, (49) and the optimality of (47) show that
〈∇ R̃∗

T −1(−g1:T−1), gT
〉 = 〈wT , gT 〉.

Hence, we have

RegretT ≤ R̃T (ẘ) − 1

η
RT (wT +1) + η

2
‖gT ‖2

R∗
1:T −1

+
T −1∑

t=1

〈gt , wt 〉 + R̃∗
T −1(−g1:T−1).

Repeat this process T − 1 times (on time index t), and we
have

RegretT ≤ R̃T (ẘ) − U ′

η
+

T∑

t=2

η

2
‖gt‖2

R∗
1:t−1

+ 〈g1, w1〉 + R̃∗
1(−g1)

where U ′ = ∑T
t=2 Rt (wt+1). Using the fact that R̃∗

1(−g1) =
−〈g1, w2〉 − (1/η)R1(w2), we complete the proof.

E. Proof of Proposition 15

Proof: It is equivalent to prove (a Im + B A)1/2B =
B(a In + AB)1/2. For simplicity, let Ân := a In + B A and
Âm := a Im + AB . As we know AB and B A share the same
nonzero eigenvalues, then δ( Ân) = δ( Âm), where δ(·) is the
set of all the different eigenvalues. Let s ≤ min{n, m} be
the number of different eigenvalues and denote this set by
{λ1, . . . , λs}, where λi �= λ j for i �= j . Moreover, assume
that there is a function h(·) = (·)1/2, and let D(·) be the
diagonal matrix with diagonal elements (·).

Ân is positive definite, and it has a unique square root

( Ân)
1
2 = P1 D

(
λ

1
2
i1
, . . . , λ

1
2
in

)
P−1

1

where P1 is an orthogonal matrix, and for all k ∈ [n], λik ∈
{λ1, . . . , λs} and {λi1 , . . . , λin } ⊇ {λ1, . . . , λs}. Similarly, we
have

( Âm)
1
2 = P2 D

(
λ

1
2
j1
, . . . , λ

1
2
jm

)
P−1

2

where P2 is an orthogonal matrix, and for all k ∈ [m], λik ∈
{λ1, . . . , λs} and {λ j1, . . . , λ jm } ⊇ {λ1, . . . , λs }. That is

h( Ân) = ( Ân)
1/2 = P1 D(h(λi1 ), . . . , h(λin ))P−1

1

and

h( Âm) = ( Âm)
1
2 = P2 D(h(λ j1), . . . , h(λ jm ))P−1

2 .

Therefore

Ân = P1 D(λi1 , . . . , λin )P−1
1 , Âm = P2 D(λ j1, . . . , λ jm )P−1

2 .

They are all diagonalizable matrices.
Let Ps−1 be the polynomial of degree s − 1. Then, by the

properties of diagonalizable matrix [56, Ch. 3.1, Th. 3], there
exists a polynomial function p(λ) ∈ Ps−1, such that

p(λ j ) = h(λ j ), j = 1, 2, . . . , s

and

p( Ân) = h( Ân), p( Âm) = h( Âm).

The function h(·) is unrelated to the choice of P1 or P2, and
so does p(·). In particular, recall here h(·) = (·)1/2.

By Proposition 14, we have B Ân = Âm B , and Lemma 1
gives us Bp( Ân) = p( Âm)B . Then, B( Ân)

1/2 = ( Âm)1/2 B ,
and the result follows.
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