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ABSTRACT
A brain-computer interface (BCI) is a system that translates brain activity into commands to operate
technology. A common design for an electroencephalogram (EEG) BCI relies on the classification of the
P300 event-related potential (ERP), which is a response elicited by the rare occurrence of target stimuli
among common nontarget stimuli. Few existing ERP classifiers directly explore the underlying mechanism
of the neural activity. To this end, we perform a novel Bayesian analysis of the probability distribution of
multi-channel real EEG signals under the P300 ERP-BCI design. We aim to identify relevant spatial temporal
differences of the neural activity, which provides statistical evidence of P300 ERP responses and helps design
individually efficient and accurate BCIs. As one key finding of our single participant analysis, there is a 90%
posterior probability that the target ERPs of the channels around visual cortex reach their negative peaks
around 200 milliseconds poststimulus. Our analysis identifies five important channels (PO7, PO8, Oz, P4, Cz)
for the BCI speller leading to a 100% prediction accuracy. From the analyses of nine other participants, we
consistently select the identified five channels, and the selection frequencies are robust to small variations of
bandpass filters and kernel hyper parameters. Supplementary materials for this article are available online.
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1. Introduction

1.1. Background

A brain-computer interface (BCI) is a device that interprets
brain activity to operate technology. An electroencephalogram
(EEG)-based BCI speller system is a particular BCI device that
enables a person to “type” words without using a physical key-
board by recording EEG brain activity. It has been used for
assisting people with disabilities, such as amyotrophic lateral
sclerosis (ALS), with regular communication (Wolpaw et al.
2018). The brain activity is measured with EEG signals, which
have the features of noninvasiveness, low cost, and high tempo-
ral resolution.

The conventional BCI framework is based on the P300 event-
related potential (ERP) BCI design, known as the P300 ERP-BCI
design (Farwell and Donchin 1988). However, we also include
other types of ERPs that help interpret and classify the brain
activity. An ERP is a signal pattern in the brain activity in
response to an external event. The P300 ERP is a particular
ERP that occurs in response to a rare, but relevant event (i.e.,
highlighting a group of characters on the screen). The relevant
(target) P300 ERP has a positive deflection in voltage with the
latency (the delay from the onset of the event to the first response
peak) around 300 ms (Rodden and Stemmer 2008). The right-
most plot in Figure 1 shows the typical target and nontarget P300
ERPs from a real participant.

There are three challenges in making valid inferences on
brain activity in the P300 ERP-BCI system. First, the signal-to-
noise ratio of the EEG signals is quite low. A typical P300
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ERP-BCI system requires collecting data from multi-
dimensional input and repeated sequences of events. Second, to
reduce the time to complete the sequence of events necessary
to present all the keys on the virtual keyboard, we minimize
the time between adjacent events within each sequence and
between adjacent sequences. Thus, the time between events is
shorter than the time required to produce a P300 ERP response.
Therefore, the observed EEG signal is a mixture of overlapping
ERP responses, which may or may not contain a P300 ERP. No
formal statistical methods can resolve this mixture and make
valid inferences on the overlapping responses. Finally, during
the calibration time in the current P300 ERP-BCI system,
participants may experience variations in attention from fatigue
to boredom, leading to missed or delayed responses that may
obscure statistical inferences.

1.2. Conventional Framework with Motivating Dataset

The conventional P300 ERP-BCI design presents a sequence
of events on a virtual keyboard and analyzes the EEG signals
in a fixed time response window after each event to make a
binary decision whether a P300 ERP response is produced by
that event, which forms the fundamental basis of the P300 ERP-
BCI operation. For multi-channel EEG signals, channel-specific
EEG signal segments are concatenated for binary classification.
Here, an EEG channel is defined as an electrode capturing brain
activity. Multiple electrodes are placed on the scalp to achieve
stable prediction accuracy. The binary classification results are
then converted into character-level probabilities. We denote
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Figure 1. An illustration of the conventional procedure of the P300 ERP-BCI operation. The P300 ERP-BCI design presents a sequence of events on a virtual screen to the
user. The user focuses on a specific character and responds to different events eliciting different brain signals (P300 or no P300). These brain signals are recorded by the EEG
machine. Classifiers are then constructed to analyze EEG signals in a fixed time response window after each event to make a binary decision whether a P300 ERP response
is produced. The binary classification results are converted into character-level probabilities, and the character with the highest probability is shown on the screen.

“key” and “target key” as a generic character to be typed and
the specific character that the user wants to type, respectively.
Usually, events within each sequence cover all the possible keys,
but multiple keys can exist in each event. Thus, the P300 ERP-
BCI is designed to identify the unique key from the inter-
section of all events that produce P300 ERP responses within
each sequence. Finally, the conventional P300 ERP-BCI design
presents a fixed number of events (stimuli) with a fixed number
of sequences before the final decision is made. Figure 1 describes
the procedure of the conventional P300 ERP-BCI operation.

To better illustrate the framework, we briefly introduce
the motivating dataset following the experimental protocol by
(Thompson, Gruis, and Huggins 2014). It is part of the database
of noninvasive experimental data in the P300 ERP-BCI exper-
iments conducted at the University of Michigan Direct Brain
Interface Laboratory (UM-DBI). Under the protocol mentioned
above, each participant copied a multi-character phrase during
the experimental session. The dataset of each participant con-
sisted of the training (calibration) data and the testing (free-
typing) data. We created a participant-specific classifier with
the training data and tested on the free-typing data. The study
adopted the row-and-column paradigm (RCP) design devel-
oped by Farwell and Donchin in 1988. The BCI display screen
was a 6 × 6 grid of characters. Each event was either a row
stimulus or a column stimulus. The order of the row and column
stimuli was random, and it looped through all rows and columns
every consecutive 12 stimuli, called a sequence. For each char-
acter of interest, participants were asked to mentally count when
they saw a row or column stimulus containing the character of
interest and to ignore stimuli that did not include the current
character of interest. Thus, each sequence always had two events
(stimuli) that were supposed to elicit P300 ERPs (one row and
one column) out of every 12 events. In particular, the left side of
Figure 1 shows 36 characters in a 6 × 6 grid with the fourth row
being highlighted.

Many state-of-the-art machine learning (ML) methods such
as stepwise linear discriminant analysis (swLDA) (Donchin,
Spencer, and Wijesinghe 2000; Krusienski et al. 2008), logistic
regression (LR) (Viana, Batista, and Melges 2014), random for-
est (RF) (Okumuş and Aydemır 2017), support vector machine

(SVM) (Kaper et al. 2004), convolutional neural network (CNN)
(Cecotti and Graser 2010), independent component analysis
(ICA) (Xu et al. 2004), and recent XGBoost (Leoni et al.
2021) have successfully constructed binary classifiers for P300-
ERPs. These discriminant approaches treat target or nontar-
get stimuli as the response variable and the truncated-and-
concatenated EEG signal segments as feature vectors. Although
these approaches are straightforward to implement, it is diffi-
cult for them to make statistical inferences about brain activity
with overlapping P300 ERP responses. The functional graphical
model (Qiao, Guo, and James 2019, FGM) is a powerful tool
to model the conditional dependency over functional variables
and it has been used to model multiple-subject EEG data in an
alcoholism study for functional connectivity analysis. However,
FGM cannot be directly adopted in our study due to the differ-
ences in the goal of analysis and the data structure.

As a flexible tool for Bayesian nonparametrics and machine
learning, the Gaussian Process (GP), a stochastic process where
every finite collection of its realizations follows a multivariate
normal distribution, has been widely used for modeling func-
tional and dependent data over time and space (Rasmussen
2003). Different extensions of GPs have been proposed for
different neuroscience applications. In particular, for feature
selection in scalar-on-image regression, the soft-thresholded GP
prior (Kang, Reich, and Staicu 2018) models sparse, continu-
ous and piece-wise smooth functions. This prior has also been
extended to model the sparsity and dependence in the effects
of nodes over a graph in the framework of Bayesian network
marker selection (Cai, Kang, and Yu 2020). However, none of
these existing GPs can be directly applied to detection of our
P300 ERPs in EEG signals.

1.3. Our Contributions

To the best of our knowledge, we are among the first to study the
probability distribution of multi-trial EEG signals from real par-
ticipants in BCI experiments using a Bayesian generative model.
Our Bayesian analysis explores the mechanism of neural activity
in response to external stimuli. Our model explicitly addresses
the challenge of overlapping ERPs between adjacent stimuli,
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and the model can be applied to multi-channel EEG signals
without signal concatenation nor segmentation. We develop a
new GP-based prior to the spatial-temporal varying trajectories
of P300 ERP responses. The proposed prior facilitates selecting
important time windows in which the average brain activity
in response to the target stimuli and nontarget stimuli is dif-
ferent (split) or the same (merge); thus, it is termed the split-
and-merge GP (SMGP). We make fully posterior inferences
on participant-and-channel-specific P300 ERPs in a fixed EEG
response window.

Based on our Bayesian analysis, we first aim to identify sig-
nificant split time windows for frontal, central, parietal, parietal-
occipital, and occipital channels. We do not expect to identify
significant split time windows for channels close to ears. We
study the neural activity patterns among both healthy controls
and participants with the Amyotrophic Lateral Sclerosis (ALS)
disease under the ERP-BCI design. Finally, we perform the brain
region ranking by the participant-specific information criterion.
We hypothesize brain regions associated with the cognitive
function as well as the visual function will be selected with
high reproducibility across participants (Brunner et al. 2010).
In addition, we expect that the signal to detect target P300 ERPs
for the participant with ALS is weaker than healthy controls, but
it should still be significant for classification. Finally, we expect
that it may take longer for senior participants than for the young
participants to reach the peak of target P300 ERP responses
(Polich, Howard, and Starr 1985).

The article is organized as follows: Section 2 presents the
model for the probability distribution of EEG signals under the
P300 ERP-BCI design along with the prior specifications. Sec-
tion 3 develops the method for posterior inference. Sections 4
and 5 present the analyses of the multi-channel EEG data from
real BCI users and simulations, respectively. Section 6 concludes
the paper with a brief discussion.

2. Bayesian Modeling of EEG-BCI Data

2.1. Notation and Problem Setup

We begin with the notation. Denote by R the real line. For any
interval A ⊂ R, let IA(t) = 1 if t ∈ A and 0 otherwise. Denote
by N (μ, �) a normal distribution with mean μ and variance
(covariance) �. Denote by GP(μ, κ) the GP with the mean
function μ and the covariance kernel κ . All the time variables
in this manuscript are multiples of a prespecified unit time.

Our model focuses on the multi-channel EEG data for one
participant. Suppose a total of L target characters are typed
for BCI calibration in the training data. For each character
l(l = 1, . . . , L), the BCI generates I sequences of J(J = 12)

stimuli consisting of six row stimuli, denoted as 1, . . . , 6 and
six column stimuli, denoted as 7, . . . , 12 on the 6 × 6 keyboard
in a random order (Figure 2(a)). Let i(i = 1, . . . , I) index
the sequence. For the ith sequence of the lth target character,
let Wl,i = (Wl,i,1, . . . , Wl,i,12)

� represent the starting time
points of the J stimuli (stimulus-occurring indicators) and take
values from permutations of {1, . . . , 12}. For example, W l,i =
(8, . . . , 3, 2, . . . 11︸ ︷︷ ︸

J dimension

)� indicates that the first row,…, the last row,

the first column · · · and the last column appear in the 8th

stimulus, . . . 3rd stimulus, 2nd stimulus, . . ., and 11th stim-
ulus, respectively. Let Yl = (Yl,1, . . . , Yl,12)

� represent the
stimulus-type indicators, where Yl,j ∈ {0, 1} with the constraint∑6

j=1 Yl,j = ∑12
j=7 Yl,j = 1. The event Yl,j = 1 indicates the lth

target letter is located in the jth row stimulus for j = 1, . . . , 6 and
the (j − 6)th column stimulus for j = 7, . . . , 12. Thus, each pos-
sible value of Yl uniquely determines one target character on the
6×6 keyboard. For example, Yl = (0, 0, 0, 1, 0, 0︸ ︷︷ ︸

row

, 0, 1, 0, 0, 0, 0︸ ︷︷ ︸
column

)�

indicates that the target letter is “T” located at the fourth row
and the second column. We drop the sequence index i for Y l
because the stimulus-type indicators are always the same given
the same character l. For all the sequences, the time domain
of the EEG signals are registered to [0, T]. Finally, suppose we
consider E channels of EEG signals and let e(e = 1, . . . , E)

index the channel, and we denote Xl,i,e(t) as the observed EEG
signal intensity of the ith sequence and lth target character from
channel e at time t ∈ [0, T].

2.2. A Bayesian Generative Model

Suppose we are interested in making inferences on the P300-
ERP in a window of length Tz right after the onset of the stim-
ulus. We refer to Tz as the response window length and assume
Tz is a multiple of d for simplicity, where d is the stimulus-to-
stimulus interval. The total length of time T per sequence is then
defined as T = Tz + (J − 1)d. We consider the observed EEG
signals Xl,i,e(t) as a mixture of the J stimulus-induced potentials
given stimulus-type indicators Yl and stimulus-occurring times
Wl,i as follows: For any t ∈ [0, T],
Xl,i,e(t) = Ml,i,e(t) + εl,i,e(t), τl,i,j = t − (Wl,i,j − 1)d,

Ml,i,e(t) =
J∑

j=1

[
β1,e(τl,i,j)Yl,j + β0,e(τl,i,j)(1 − Yl,j)

]
I[0,Tz](τl,i,j),

(1)
where Ml,i,e(t) is the expected EEG signals at time t from chan-
nel e induced by J stimuli that occur at different time points.
The two unknown functions β1,e(τ ) and β0,e(τ ) (τ ∈ [0, Tz])
represent the average brain activity responses to the target and
the nontarget stimulus, respectively. To simplify the problem,
we assume that the shape and magnitude of ERP functions only
depend on the stimulus-type indicators, regardless of the stim-
ulus location or the stimulus order. The random noise εl,i,e(t)
characterizes the intrinsic brain activity of channel e that is,
unrelated to the stimulus responses. Assuming that εl,i,e(t) is
spatially-correlated across channels and temporally dependent,
we consider the following additive model:

εl,i,e(t) = ζl,i,e + εl,i(t),
ζ l,i = (ζl,i,1, . . . , ζl,i,E)� ∼ N (0, Cs),

εl,i(t) = ρt,0 +
q∑

m=1
ρt,mεl,i(t − md) + εl,i,0(t),

εl,i,0(t) ∼ N (0, σ 2
x ),

where ζl,i,e is the channel-specific random effect and
ζl,i,1, . . . , ζl,i,E jointly follows a multivariate normal distribution
with the mean zero and the covariance matrix Cs. The temporal
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Figure 2. (a). A figure showing a 6 × 6 grid screen of the ERP-BCI speller system, where only one row or one column was being flashed gray for each stimulus. (b). A figure
from Wikimedia Commons (URL) by Brylie Christopher Oxley / CC0, 2017, demonstrating a 64-channel EEG locations using the International 10–20 standard developed by
Jasper (1958). Channels marked with red were used in our ERP-BCI design. (c). An illustration of the data generative mechanism of a single-channel EEG sequence under
the ERP-BCI design. Red, blue, green, and yellow blocks represented target responses, nontarget responses, background noise irrelevant to stimuli, and observed signals
(Xt ). W , Y were stimulus-occurring indicators and stimulus-type indicators. We assumed each stimulus-related potential could be characterized by β1 or β0 with a long
and fixed response window; the observed signal was generated when we aligned different signal components and summed up at each time point. For example, given the
target character was “T,” the fourth stimulus was the target one. The graph in the bottom right of the figure illustrates the empirical ERP estimates from channel Cz based
on a real participant, where target and nontarget ERP estimates were averaged over 570 and 2850 EEG signal segments, respectively. A significant magnitude difference
between target and nontarget ERPs was observed around 300 ms poststimulus.

random effect εl,i(t) is assumed to follow an autoregressive
model of order q and noise variance σ 2

x . For a given channel
e and a letter l, Figure 2(c) illustrates the proposed Bayesian
generative model for half the length of a sequence. Among the
consecutive six stimuli, there exists one target stimulus at the
4th stimulus.

2.3. The Split-and-Merge GP

To identify the time window that contains major differences in
brain activity responses between target and nontarget stimuli,
we develop a new GP-based model to model the joint prior
distribution of β0,e(τ ) and β1,e(τ ), for τ ∈ [0, Tz], named as
the split-and-merge GP (SMGP). For k = 0, 1, we assume that
{βk,1(τ ), . . . , βk,E(τ )} are independent and marginally follow
the same prior distribution specified by the SMGP. For simplic-
ity, we drop the channel-specific subscript e to specify the SMGP
as follows:

βk(τ ) = αk(τ )ζ(τ ) + α0(τ ){1 − ζ(τ )}, (2)

where αk(τ ) ∼ GP(0, κα) and ζ(τ ) ∈ [0, 1]. Note that β0(τ ) =
α0(τ ) and β1(τ ) is the weighted average between α1(τ ) and
α0(τ ) by ζ(τ ). When ζ(τ ) = 0, β0(τ ) = β1(τ ) with probability
one, that is, the two processes are merged; when ζ(τ ) = 1,
β0(τ ) �= β1(τ ) with probability one. Thus, we refer to ζ(τ ) as
the split-and-merge indicator process. Let Ws = {τ : ζ(τ ) >

ζ0} and Wm = {τ : ζ(τ ) ≤ ζ0} represent the split time window

and the merge time interval, respectively, where ζ0 is a hyper
parameter. For efficient posterior inference on Ws and Wm, we
define the truncated GP (TGP) similar to the ordinary GP as
follows. A time-continuous stochastic process {ζ(τ ), τ ∈ T }
is a truncated GP if and only if for every finite set of indices
τ1, . . . , τp in the index set T , ζτ1 , . . . , ζτp follows a multivariate
truncated Gaussian distribution, where the truncated domain
has the block rectangular shape. In this case, we assign a TGP
prior with mean 0.5 and covariance kernel κζ truncated on [0, 1]
to ζ(τ ), that is, ζ(τ ) ∼ T GP [0,1](0.5, κζ ).

3. Posterior Inference

3.1. Model Representation and Prior Specification

Let MN (M, U, V) denote a matrix normal distribution with
location matrix M and two scale matrices U and V (Dawid
1981). We rewrite Equation (1) in the form of matrix normal
distribution such that

Xl,i ∼ MN
(
Ml,i, Ct , Cs

)
, (3)

where Xl,i = (Xl,i,e)
E
e=1 and Ml,i = (Ml,i,e)

E
e=1 are matrix-wise

observed EEG signals and predicted EEG signals using convo-
lution for the ith sequence, lth target character, respectively. Cs
and Ct are the spatial and temporal covariance matrices jointly
characterizing the random error εl,i = (εl,i,e)

E
e=1, respectively.
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Equation (3) can be expressed as

vec(Xl,i) ∼ N
(
vec(Ml,i), Cs ⊗ Ct

)
, (4)

where ⊗ is the Kronecker product and vec(·) is the vectorization
operator that converts the matrix to the column vector. The log-
likelihood of the matrix normal model is∑

l,i
−T

2
log det(Cs) − E

2
log det(Ct)

− 1
2

tr
[

C−1
s

(
Xl,i − Ml,i

)T C−1
t

(
Xl,i − Ml,i

)]
.

(5)

Therefore, we rewrite the mean structure of Ml,i with convolu-
tion as follows:

vec(Xl,i) ∼ N
(
diag(Gl,i)vec(β), Cs ⊗ Ct

)
, i = 1, . . . , I,

l = 1, · · · , L,
β = (βe)

E
e=1, βe = (βT

1,e, βT
0,e)

T = S(ζ e)αe = A(αe)ζ e,
α = (αe)

E
e=1, αe = (αT

1,e, αT
0,e)

T ,
(6)

where β1,e, β0,e are channel-specific response functions to target
and nontarget stimuli after we have applied the SMGP prior.
α1,e, α0,e are channel-specific response functions to target and
nontarget stimuli before selection. They follow the GP(0, κα)

with the scale parameters σ 2
0,1,e, σ 2

0,0,e. We use a γ -exponential
function shown in Equation (7) to specify the kernel covariance
function.

k(xi, xj) = σ 2
0 exp

{
−

(
||xi − xj||22

s0

)γ0}
, (7)

where 0 ≤ γ0 < 2, s0 > 0. In practice, we treat them as
the hyper parameters and select the optimal pair by the Bayes
factor (Kass and Raftery 1995). ζ e follows the truncated normal
distribution T ND(μ, �) with the prior mean 0.5 and the prior
covariance matrix �ζ on the truncated domain [0, 1]Tz . We
use the method by Li and Ghosh (2015) for efficient sampling.
S, A are linear transformations that map αe, ζ e to βe. Gl,i is
the linear transformation that maps βe to the predicted EEG
signals via convolution. For Cs, we decompose Cs as σ 2

x C̃s, where
σ 2

x follows the inverse gamma distribution −1(as, bs) with the
shape parameter as and the rate parameter bs, and C̃s is a positive
definite matrix characterized by the distance measure among
selected channels. To simplify, we assume all selected channels
share the same distance such that C̃s has a compound symmetry
structure dependent on the scalar parameter ρs. We use an
adaptive rejection sampling method (Gilks and Wild 1992) to
sample ρs, where it is originally generated from the uniform
distribution U(0, 1). For Ct(ρt), we assume ρt follows a discrete
uniform distribution Ud(Vρt ), where ρt is a two-dimension
vector and takes values from a discrete set Vρt for which the
correlation matrix is invertible, that is, ||ρt||1 < 1. Finally, the
prior specification is as follows:

α1,e ∼ GP(0, σ 2
1,eκα), α0,e ∼ GP(0, σ 2

0,eκα),
ζ e ∼ T N [0,1](0.5, �ζ ),

σ 2
x ∼ −1(as, bs), ρs ∼ U(0, 1), ρt ∼ Ud(Vρt ).

(8)

3.2. Markov Chain Monte Carlo

We perform the standard Markov chain Monte Carlo (MCMC)
method to sample parameters from their posterior conditional
distribution given the training set. We adopt the Gibbs sampler
to simulate the posterior distribution of α, ζ , σ 2

x , ρs, and ρt .
Since ζ takes continuous values between 0 and 1, we average
the posterior samples of β1, β0 whenever ζ samples are smaller
than the threshold ζ0 for the explicit split-and-merge effect,
where ζ0 is a hyper parameter, and it takes discrete values in
{0.1, 0.2, . . . , 0.8, 0.9} and the optimal one is selected by the
Bayes factor. For the convergence check, we run multiple chains
with different seed values, and evaluate the conditional log-
likelihood and Gelman-Rubin statistic of each parameter (Gel-
man and Rubin 1992). Details of the Gibbs sampling scheme can
be found in the supplementary materials.

3.3. Posterior Predictive Probability for Character
Classification

Under the RCP design, the selection of the target character
requires the selection of the target row among six candidate
rows and the target column among six candidate columns. Let
W∗, Y∗, and X∗ be I∗ sequences of stimulus-occurring indi-
cators, stimulus-type indicators, and I∗ sequences of matrix-
wise EEG signals from new observations given the same target
character ω, respectively. Let � be the parameter set defined
in Equation (1). Let yω ∈ {0, 1}, rω, cω be the stimulus-type
indicator, row index, and column index associated with the
target character ω, respectively. The probability of ω as the target
character is

Pr
(
Y∗ = yω|X∗, W∗, X, W, Y

)
=

∫
Pr

(
Y∗ = yw|�; X∗, W∗)π (�|X, W, Y) d�

=
∫

Pr
(

Y∗ = yω, yω
rω = yω

cω = 1, y∗
j = 0,

j /∈ {rω, cω}|�; X∗, W∗
)

π (�|X, W, Y) d�

where Pr
(
Y∗ = yω, yω

rω = yω
cω = 1, yω

j = 0, j /∈
{rω, cω}|�; X∗, W∗) is proportional to

Pr(Y∗ = yω)

I∗∏
i=1

π(X∗
i |�; yω

rω = yω
cω = 1, yω

j = 0,

j /∈ {rω, cω}, W∗
i ).

Here, Pr(Y∗ = yω) = 1/36 is the predictive prior on each
candidate character if we do not have prior knowledge about
the inferred target character. In practice, when we need multiple
sequences to select the target character, we compute the cumula-
tive character-based posterior conditional probability vector by
multiplying sequence-specific posterior conditional likelihood
estimates together.

4. Analysis of EEG-BCI Data

We performed the analysis of EEG-BCI data and demonstrated
the detailed results from one real BCI participant, referred to
as Participant A. Since the primary goal of our analysis was
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to identify the spatial-temporal pattern of P300 ERP response
signals, participants with clear signal patterns (larger signal-
to-noise ratios) were preferred. We selected ten participants
among the total population under the RCP design such that the
number of sequence to achieve 100% accuracy on the training
data with the logistic model was smaller than five. The steps
of real-data analysis were as follows: First, we fitted the model
to all 16 channels using the spatial dependency correlation of
the compound symmetry structure. We identified the spatial-
temporally activated locations. Next, we performed the channel
selection based on our method and fitted the model to the data
for the selected channels using the same spatial dependency
assumption. Then, we fitted six existing ML methods to the
dataset and compared the prediction accuracy of our method
to the other ML methods to evaluate the goodness of model
fit. Finally, we provided the cross-participant, sensitivity and
reproducibility analyses.

4.1. Dataset and Preprocessing

For the training session, each participant was asked to wear an
EEG cap with 16 channels corresponding to different regions
on the brain surface and sit approximately 0.8 m from a 17-
inch monitor with the BCI display. Figure 2(b) shows the spatial
distribution of channels. Channels marked with red were used
for recording and analysis purposes. The abbreviated names
were F3, Fz, F4, T7, C3, Cz, C4, T8, CP3, CP4, P3, Pz, P4,
PO7, PO8, and Oz (Thompson, Gruis, and Huggins 2014). For
the calibration dataset, each participant copied a 19-character
phrase “THE_QUICK_BROWN_FOX” including three spaces.
The stimulus presentation and recording were controlled using
the BCI2000 software platform (Schalk et al. 2004). An event was
defined as a row stimulus or column stimulus, which highlighted
for 31.25 ms and paused for 125 ms afterwards, and the total of
156.25 ms was referred to as the stimulus-to-stimulus interval
d. We defined the 12 stimuli flashing all rows and columns as a
sequence and defined multiple sequences as a super-sequence.
In our P300 ERP-BCI design, a super-sequence corresponded
to the EEG signals associated with the given target character.
During the training session, each super-sequence included 15
sequences, and a total of 19 super-sequences were collected.
Extra time was recorded after the last stimulus in the super-
sequence. The length of each super-sequence was about 29,000
ms with the sampling rate of 256 Hz.

The data preprocessing steps are summarized as follows:
First, we applied a notch filter at 60 Hz to remove the power
line noise and a band-pass filter between 0.5 Hz and 6 Hz to
all 16 channels and then down-sampled raw signals with a
decimation factor of eight. Second, we truncated each character-
specific super-sequence into 15 sequence segments, where each
sequence segment contained 12 consecutive stimuli and subse-
quent signals of 20 time points to record the entire ERP response
to the last stimulus within the single sequence. Each sequence
segment contained 2500 ms, 80 sampling points.

4.2. Model Settings

To evaluate the model performance, we chose the odd sequences
in the calibration dataset as the training set and used the even

sequences as the testing set. This splitting scheme reduced the
overlap between adjacent sequences and attenuated the effect of
any shift in attention compared to a random training-testing-
split scheme. Since it took time for participants to be famil-
iar with the study design or identify the target characters, we
excluded the first sequence of each super-sequence from the
training set. Therefore, for the SMGP method, the training set
and testing set both ended up with 133 (7 sequences for 19 char-
acters) 80-dimension sequence segments for each channel. We
used the cumulative character-level accuracy at seven sequences
for prediction evaluation.

For other existing ML methods, we truncated the original
character-specific super-sequence into 180 stimulus signal seg-
ments in addition to the same band-pass filter, down-sampling
procedure, and splitting scheme, where each stimulus signal
segment started from the onset of a single stimulus and lasted
for 780 ms, that is, 25 sampling points. Therefore, the training
set and testing set both contained 1596 (19 characters, each con-
tained 7 sequences of 12 stimuli) 400-dimension concatenated
truncated signal segments for all 16 channels.

For the SMGP method, κα was generated from a γ -
exponential kernel with hyper parameters s0 = 0.5, γ0 =
1.8, σ 2

0,1 = 1, and σ 2
0,0 = 1. For feature selection and prediction

of the swLDA method, the inclusion and exclusion probabilities
were 0.1 and 0.15, and at most 30% of the feature vector was
selected. We ran the MCMC algorithm for 2000 iterations with
1000 burn-ins for three chains with different seed values. We
concluded that the algorithm converged, as the Gelman–Rubin
statistics for the parameters of interest were all smaller than 1.1.

To rank the importance of the channels, we propose the
following statistics based on the SMGP model fitting of multi-
channels EEG data:

R2
e = var {E(Xe(t)|Me(t)}

var {Xe(t)} , (9)

where the numerator and the denominator explained the vari-
ability of the convolution components in Equation (1) across
sequences and the variability of the observed signals across
sequences, respectively. Under our model assumption, R2

e took
values between 0 and 1. To examine the proposed information
criterion, we included from the optimal two and up to five
channels for sub-channel analyses. For each combination of
channels, we refitted the model and reported the prediction
accuracy.

4.3. Single-Participant Results

We focus on the results of Participant A in this section.
ERP Estimates: The left panel of Figure 3 showed the mean
estimated ERP functions of target and nontarget stimuli and
their 95% credible bands based on the 16-channel model fit-
ting result. Channel-specific plots are arranged by their relative
spatial locations. In general, we saw a clear separation of target
against nontarget ERP functions for all channels except channel
T8. Between 400 ms and 500 ms poststimulus, the target ERP
functions gradually declined to zero and collapsed with nontar-
get ERP functions, which shows that our SMGP prior worked
well in this case.
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Figure 3. Left Panel: Channel-specific ERP function estimates of target and nontarget stimuli with the 95% credible bands of Participant A. Right Panel: Channel-specific
significant temporal intervals by varying thresholds of median split probabilities of Participant A. The result was produced by the 16-channel model fitting results. The
varying thresholds included 0.6, 0.75, and 0.9. We arranged the channel-specific plots by their spatial locations. The upper and lower rows represented the front and back
of the head. A “z” (zero) referred to a channel placed on the mid-line sagittal plane of the skull. Channels with even numbers (2, 4, 6, 8) referred to the electrode placement
on the right side of the head, whereas channels with odd numbers (1, 3, 5, 7) referred to those on the left.

Split Windows: The right panel of Figure 3 showed channel-
specific significant split time windows with varying thresholds
of median split probabilities of 0.6, 0.75, and 0.9. We rearranged
channel-specific brain activity plots by their spatial locations.
With 90% posterior probability, the split time windows appeared
at 50–65 ms and 160–175 ms for channel F3, at 170–205 ms for
channel PO7, at 160–170 ms for channel Oz, and at 150–190
ms for channel PO8 poststimulus. These significant split time
windows corresponded to the first negative peaks of their target
ERP curve estimates. For channel Cz, the split time windows
appear at 370–430 ms poststimulus with 75% posterior prob-
ability, which approximately corresponded to the first positive
peaks of the target P300 ERP response curve estimates. For
channel Pz, the split time windows appeared at 650–700 ms
poststimulus with 75% posterior probability. For channels T7,
C4, and T8 close to ears, moderate differences in brain activity
between target and nontarget stimuli were observed, but no
split time window was identified with more than 60% posterior
probability. A common gap of split time windows around 150
ms was observed, which corresponded to the time points where
target and nontarget ERP functions first crossed. For time points
when target and nontarget ERP functions were merged, fewer
points were generally selected by the SMGP prior.

Interpretation: Two common patterns were observed among
the results of the ERP estimates. First, the target ERPs of the
frontal and central channels (channel names starting with “F”
and “C”) shared the negative drop around 100 ms and reached
their first peak with the latency around 250 ms, which corre-
sponded to the N100 and P300 pattern described by Rodden and
Stemmer in 2008. Second, the target ERPs of parietal-occipital
and occipital channels (channel names starting with “PO” and
“O”) reached their negative peaks around 200 ms poststimulus,
and they gradually collapsed with nontarget ERP functions
without reaching a positive peak. Since channels PO7, PO8,
and Oz represented the locations of the visual cortex, observing

only the negative peaks might be indicative of the pattern of the
N2 signal (Folstein and Van Petten 2008). Several discrepancies
were also observed. First, the lengths of the split time windows
differed among channels. For example, the central channels and
frontal channels had the split time window between the onset of
the stimulus and 500 ms poststimulus and between the onset of
the stimulus and 400 ms poststimulus, respectively. Second, the
shapes of ERP functions differed among channels. For example,
channels C3, CP3, and P3 had secondary peaks around 400 ms
poststimulus, while target ERP functions of other channels col-
lapsed with the nontarget ones without clear secondary peaks.
Those secondary peaks might be indicative of the pattern of the
P3b signals (van Dinteren et al. 2014).
Channel Ranking and Prediction: According to the 16-channel
joint fitting result of the SMGP method and the proposed
information criterion R2

e in Equation (9), the top five selected
channels for Participant A were PO7, PO8, Oz, P4, and Cz.
We compared the prediction accuracy of our SMGP method to
other ML methods for Participant A to evaluate the goodness
of our model fit. Table 1 summarizes the cumulative testing
prediction accuracy, comparing the SMGP method to other ML
methods at seven sequences for the top five selected channels
and all 16 channels, where the best prediction accuracy values
are in bold in each row in Table 1. The SMGP method achieved
100% accuracy with channels PO8 and PO7, and maintained
100% with more channels included. It performed better than
other ML methods. The SMGP method, swLDA and XGBoost
performed perfectly when all channels were used.
Sensitivity and Reproducibility: We performed the sensitivity
analysis for the dataset of Participant A by changing the hyper
parameters of the γ -exponential kernel. We assigned 0.4, 0.5,
and 0.6 to the scale parameter s0 and 1.7, 1.8, and 1.9 to the
gamma parameter γ0. We selected channels PO7, PO8, Oz, P4,
and Cz for the sensitivity analysis. Figures S3 and S4, supple-
mentary materials showed the P300 ERP function estimates
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Table 1. Cumulative prediction accuracy of Participant A for 19 characters compar-
ing the SMGP method with ζ0 = 0.4 to other ML methods at seven sequences for
the top five selected channels and all 16 channels.

Channels SMGP CNN SVM Logistic RF swLDA XGBoost

PO8, PO7 1.00 0.89 0.95 0.95 0.95 0.95 0.95
PO8, PO7, Oz 1.00 0.89 1.00 1.00 0.95 1.00 0.95
PO8, PO7, Oz, P4 1.00 0.89 1.00 0.95 1.00 1.00 0.95
PO8, PO7, Oz, P4, Cz 1.00 0.89 1.00 0.95 1.00 1.00 0.95
All Channels 1.00 0.89 0.95 0.95 0.95 1.00 1.00

with 95% credible bands and channel-specific significant tem-
poral intervals by different thresholds of median split probabil-
ities for channels Cz and PO8 under nine variations of kernel
hyper parameters. Overall, the combination of s0 and γ0 did not
affect either ERP function estimates very much. For channel Cz,
we observed the split window with the threshold of 0.90 when
s0 and γ0 were in the middle of the hyper parameter space. Table
S4, supplementary materials shows the prediction accuracy with
channels PO8, PO7, Oz, P4, and Cz at seven sequences under
nine combinations of kernel hyper parameters. The analysis
suggested that a combination of moderate s0 and γ0 produced
the best prediction performance for Participant A.

4.4. Cross-Participant Comparison

First, we applied our information criterion to each of the
selected ten participants to identify the top five channels by the
information criterion in Equation (9), and selected the ultimate
top five channels based on the frequency. Then, we identified
spatial-temporal patterns of the neural activity based on selected
ten participants. Among 10 participants, we selected four typical
participants to compare the neural activity patterns between
participants with ALS and controls as well as between younger
and older participants.

We performed two sensitivity analyses on channel ranking
with respect to bandpass filters and kernel hyper parameters.
Overall, the channel selection results were robust. For band-
pass filters, we always identified channels PO7, PO8, and Oz,
followed by channels P4 and Cz. For kernel hyper parame-
ters, we always identified channels PO7, PO8, and Oz, fol-
lowed by channels P4 and P3. For common neural patterns,
target ERPs of frontal and central channels shared the nega-
tive drops between 100 ms and 150 ms and reached their first
positive peaks around 300 ms poststimulus. Target ERP func-
tions gradually declined to zero and collapsed with nontarget
ERP functions between 600 ms and 800 ms poststimulus. Target
ERP functions of parietal-occipital, and occipital channels only
reached their negative peaks between 200 ms and 250 ms post-
stimulus without reaching further positive peaks.

In comparing the results of Participant E with ALS to the
three healthy controls (A, B, and J), Figure 4 showed the ERP
function estimates of channels Fz of the four participants. We
identified a common positive peak for target ERP functions
around 300 ms poststimulus although Participant E had the
smallest peak magnitude of 0.6 μV compared to the remaining
three above 2.0 μV . Finally, we compared the neural activity
patterns of two young participants (A and B, around 25 years
old) with two senior participants (E and J, around 60 years

Figure 4. ERP function estimates of target and nontarget stimuli with 95% credible
bands of Participants A, B, E, and J at channel Fz. Participants A and B were young
female healthy controls, while Participants E and J were elderly men, of whom only
E was diagnosed with ALS.

old). The split-and-merge time windows (SMTW) of frontal
channels appeared significantly different between the young and
senior participants. On channel Fz, target ERP functions of all
participants showed another negative peak after the first major
positive peak. For young participants (A and B), target ERP
functions merged with nontarget ERP functions after the second
negative peak within the 800 ms poststimulus window; however,
for senior participants (E and J), target ERP functions were
significantly below nontarget ERP functions. One reason is that
generally, it takes longer for senior participants to achieve the
target P300 response peak (Pavarini et al. 2018). Therefore, for
a senior participant, if the ERP response window is set to be
longer, target ERP functions may merge with nontarget ERP
functions after 800 ms.

5. Simulations

We performed several simulation studies to make statistical
inferences and compare the prediction accuracy of our method
to other ML methods. To make the simulated data resemble
the real data, we assumed the simulated data with an additive
signal-and-noise effect. For the signal component, we applied
the convolution rule, and designed the ERP functions based on
Hoffmann et al. (2008). For the noise component, we considered
both Gaussian and student-t distributions to mimic different
tail distributions with variances close to the real data. We also
considered the autoregressive correlation structure to model the
temporal association of the background noise. Finally, we con-
sidered a scenario where, given true stimulus-type indicators, a
subset of target stimuli was randomly selected as nontarget ones.
This pattern mimicked a situation when participants missed
target stimuli due to an attention shift in practical BCI use.

Section 5.1 presents a multi-channel simulation study to
examine channel ranking and selection by our information cri-
terion, and to evaluate the SMTW with our inference-based cri-
terion. Section 5.2 presents the single-channel simulation study
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with different misspecification scenarios to test the robustness
of our analysis.

5.1. Channel Selection and Ranking

Setup: We randomly generated stimulus-occurring indica-
tors and stimulus-type indicators with 19 characters of inter-
est, “THE_QUICK_BROWN_FOX,” including three spaces. To
evaluate the performance and the channel ranking, we designed
two groups of prespecified mean response functions (MRFs 1
and 2). MRF 1 had different temporal separation effects, while
MRF 2 had channel-specific SNR values (Figure S1, supplemen-
tary materials). We considered a true generative scenario with
two levels of noise variance, that is, σ 2

x ∈ {20, 40}. We simulated
the noise assuming a temporal relationship of AR(2) with the
parameter ρt = (0.5, 0) and a spatial dependency relationship
of compound symmetry structure with the parameter ρs = 0.5.
The EEG signals were generated with a response window of
length 935 ms, that is, 30 time points. We performed 100 dataset
replications for this scenario. For each dataset, we generated five
sequences per character for training and testing.

Model Settings and Diagnostics: All simulated datasets were
fitted with Equation (3). A feature vector was defined as a three-
dimensional super-sequence matrix with five replications and
the channel-specific response window was of length 935 ms, that
is, 30 time points. The covariance kernel κα was assumed with
a γ -exponential kernel. The length-scale, gamma, and scaling
of nontarget stimuli were s0 = 0.5, γ0 = 1.8, and σ 2

0,0 = 0.5,
respectively. For simulation studies with MRF 1, the peak ratios
of target to nontarget stimuli were all 5; for simulation studies
with MRF 2, the peak ratios of target to nontarget stimuli were
5, 2, and 1, respectively. We ran the MCMC for 2000 iterations
with 1000 burn-ins. The MCMC convergence was assessed by
running three chains with different seeds and initial values.
The Gelman-Rubin statistics for the parameters of interest were
smaller than 1.1, indicating an approximate convergence for
each model fit.

Results: To evaluate the SMTW, we defined two quantities, the
inference-based split window ratio (ISWR) and the inference-
based merge window ratio (IMWR) as follows:

ISWR(ζ ) = |{t : ζ̂ (t) > ζ0 & ζ(t) = 1}|
|{t : ζ(t) = 1}| ,

IMWR(ζ ) = |{t : ζ̂ (t) ≤ ζ0 & ζ(t) = 0}|
|{t : ζ(t) = 0}| .

Since the swLDA method explicitly performed feature selec-
tion, we defined the estimation-based selection window ratio
(ESWR) and the estimation-based exclusion window ratio
(EEWR) as follows:

ESWR(ζ ) = |{t : ζ̂ (t) = 1 & ζ(t) = 1}|
|{t : ζ(t) = 1}| ,

EEWR(ζ ) = |{t : ζ̂ (t) = 0 & ζ(t) = 0}|
|{t : ζ(t) = 0}| .

Table 2 summarized the channel-specific ISWR, IMWR of the
SMGP method and the ESWR, EEWR of the swLDA method,

Table 2. Channel-specific ISWR, IMWR of the SMGP method and the ESWR, EEWR
of the swLDA method.

Testing sequences

Methods 3 4 5

SMGP 0.91 (0.07) 0.96 (0.04) 0.99 (0.03)
Neural network 0.76(0.10) 0.87(0.08) 0.92(0.07)

SVM 0.81(0.09) 0.89(0.07) 0.94(0.06)

Logistic regression 0.76(0.08) 0.87(0.07) 0.91(0.06)

Random forest 0.76(0.10) 0.86(0.08) 0.92(0.06)

swLDA 0.85(0.08) 0.93(0.06) 0.97(0.04)

XGBoost 0.67(0.11) 0.77(0.09) 0.85(0.08)

SMGP swLDA

Channels ISWR IMWR ESWR EEWR

1 0.98 (0.03) 0.56 (0.11) 0.32 (0.07) 0.69 (0.08)
2 0.99 (0.03) 0.56 (0.12) 0.32 (0.07) 0.75 (0.09)
3 0.99 (0.02) 0.59 (0.11) 0.26 (0.07) 0.8 (0.09)

NOTE: Upper Panel: Cumulative prediction accuracy for the multi-channel sim-
ulation study under the true generative mechanism with σ 2

x = 20, ρt =
(0.5, 0), ρs = 0.5 comparing the SMGP method to other ML methods. The split
threshold of SMGP method was ζ0 = 0.5. Point estimates and standard errors
averaged over 100 datasets were reported. Results of the SMGP method were
marked in bold. Overall, the SMGP method had the highest and most precise
prediction accuracy. Lower Panel: The ISWR, IMWR of the SMGP method and the
ESWR, EEWR of the swLDA method for the multi-channel simulation study under
the true generative mechanism with σ 2

x = 20, ρt = (0.5, 0). Channel-specific
point estimates and standard errors averaged over 100 datasets were reported.

and the cumulative prediction accuracy over the number of test-
ing sequences with σ 2

x = 20 comparing the SMGP method to
other ML methods. The ISWR of the SMGP method was close to
100%, which indicated that our method identified relevant tem-
poral features better than the swLDA method. Our method also
had the highest and most precise prediction accuracy among all
methods. Similar results were obtained when we used σ 2

x = 40.
Plots of ERP function estimates for both σ 2

x = 20, 40, prediction
accuracy, and the SMGP prior evaluation for σ 2

x = 40 were
shown in the Supplementary Material. For simulation studies
with varying SNR values, the means and standard errors of R2

e
estimates were 20.52(1.55), 9.94(1.07), 4.81(0.82) for σ 2

x = 20,
and 10.66(1.05), 4.90(0.68), 2.48(0.53) for σ 2

x = 40 (values mul-
tiplied by 100). The information criterion ranked three channels
successfully for all the datasets, indicating that the information
criterion worked well.

5.2. Misspecification Scenarios

Setup: The stimulus-occurring indicators and stimulus-type
indicators were generated randomly following the same rule
as in Section 5.1. We illustrated the design of the prespecified
mean response functions in Figure 5. For the data generative
mechanism, we considered the following five scenarios with the
AR(2) temporal correlation parameter ρt = (0.5, 0) and two
levels of the noise variance σ 2

x = 10, 20. (i) The true gener-
ative mechanism scenario simulated the data completely from
Equation (1). (ii) The misspecified noise scenario simulated the
data from Equation (1) with the noise following a Student-t
distribution with 5 degrees of freedom. (iii) The scenario of
the shorter response window length simulated the data with
prespecified mean response functions of length 780 ms, that is,
25 time points. (iv) The scenario of the longer response win-
dow length simulated the data with prespecified mean response
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Figure 5. The upper and lower panels showed the 95% credible bands of ERP functions to target and nontarget stimuli under five simulation scenarios with true parameter
σ 2

x = 10, ρ = (0.5, 0) and σ 2
x = 20, ρ = (0.5, 0), respectively. The split threshold was ζ0 = 0.5. The dots and curves were the true curve values. For the true generative

scenario, the credible bands covered the entire true curve. For the misspecified scenarios, the credible bands almost covered the true curves.

functions of length 1090 ms, that is, 35 time points. (v) The
misspecified signal scenario simulated the data with a dispro-
portionate distribution of target and nontarget stimuli. Given
true stimulus-type indicators, a subset (10%) of target stimuli
was randomly treated as nontarget ones by mistake so that it
produced the incorrect target P300 ERPs. The replication size,
training sequences, and testing sequences were the same as in
Section 5.1.

Model Settings and Diagnostics: All simulated datasets were
fitted with the proposed model with the estimated response
window of length 935 ms, that is, 30 time points. The covariance
kernel κα was set to an exponential squared kernel. The length-
scale, the scaling of target stimuli, and the scaling of nontarget
stimuli were s0 = 0.5, σ 2

0,1 = 10, and σ 2
0,0 = 0.5, respectively.

We ran the MCMC for 2000 iterations with 1000 burn-ins. The
MCMC convergence was assessed by running three chains with
different seeds and initial values. The Gelman-Rubin statistics
for the parameters of interest were smaller than 1.1, indicating
an approximate convergence.

Results: Figure 5 showed the estimated ERP functions for
target and nontarget stimuli under five scenarios with true
parameters σ 2

x = 10 (the upper panel) and σ 2
x = 20 (the

lower panel). For the true generative scenario, the credible bands
covered the entire true curves. For the misspecified scenarios,
credible bands almost covered the true curves. The posterior
distributions of σx and ρ concentrated around the true values.
Table 3 summarizes the ISWR, IMWR of the SMGP method and
the ESWR, EEWR of the swLDA method under five scenarios

with σ 2
x = 10 (the upper panel) and σ 2

x = 20 (the lower panel).
Both point estimates and standard errors over 100 datasets were
computed. In the single-channel setting, both the ISWR and
IMWR of our method were higher than the ESWR and EEWR
of the swLDA method. This result implied that our method
identified time windows better than the swLDA method. We
also summarized the cumulative prediction accuracy under five
scenarios comparing the SMGP method to other ML methods.
The prediction accuracy of the SMGP method among the mis-
specified scenarios was consistently higher than the other ML
methods, suggesting that our analysis was relatively robust to
moderate model mis-specifications.

6. Discussion

We have applied a new Bayesian generative framework to model
the conditional distribution of multi-sequence EEG signals from
real participants under the P300 ERP design. Our Bayesian
analysis explored the mechanism of brain activity in response
to external stimuli by directly considering the overlapping ERPs
between adjacent stimuli without signal concatenation and seg-
mentation. We developed a new GP-based prior to identify the
spatial-temporally activated intervals with the split-and-merge
GP (SMGP) prior. We proposed an information criterion for
channel ranking and confirmed it with existing literature.

We made fully posterior inferences on participant-and-
channel specific P300 ERPs with the SMGP prior given a fixed
EEG response window. Although past studies by (D’Avanzo
et al. 2011; Mowla et al. 2018) have developed Bayesian and
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Table 3. The detection accuracy of the SMTW of the SMGP and swLDA methods
for the single-channel simulation study under five scenarios with σ 2

x = 10, ρt =
(0.5, 0) in the upper panel and σ 2

x = 20, ρt = (0.5, 0) in the lower panel.

σ 2
x = 10 SMGP swLDA

Scenarios ISWR IMWR ESWR EEWR

True generative 0.89 (0.07) 0.96 (0.05) 0.53 (0.08) 0.75 (0.07)
Misspecified noise 0.86 (0.07) 0.94 (0.06) 0.48 (0.07) 0.78 (0.06)
Shorter window 0.91 (0.07) 0.96 (0.04) 0.64 (0.07) 0.79 (0.07)
Longer window 0.86 (0.06) 0.96 (0.06) 0.46 (0.07) 0.72 (0.09)
Misspecified signal 0.86 (0.07) 0.96 (0.04) 0.49 (0.07) 0.76 (0.07)

σ 2
x = 20 SMGP swLDA

Scenarios ISWR IMWR ESWR EEWR

True generative 0.86 (0.07) 0.94 (0.07) 0.47 (0.07) 0.79 (0.08)
Misspecified noise 0.82 (0.08) 0.91 (0.08) 0.41 (0.07) 0.81 (0.07)
Shorter window 0.88 (0.08) 0.95 (0.05) 0.55 (0.08) 0.84 (0.06)
Longer window 0.82 (0.07) 0.93 (0.08) 0.41 (0.08) 0.77 (0.08)
Misspecified signal 0.83 (0.08) 0.94 (0.07) 0.43 (0.07) 0.81 (0.07)

NOTE: The split threshold of the SMGP method was ζ0 = 0.5. Point estimates and
standard errors averaged over 100 datasets were reported.

frequentist filtering methods to estimate amplitude and latency
of P300 ERP responses, their results were based on single-trial
(sequence) EEG signals, and both methods discarded the spa-
tial dependence among channels. Our SMGP method handles
multi-channel, multi-sequence, overlapping EEG signals, pro-
duces mean P300 ERP estimates with 95% credible bands, and
achieves comparable prediction accuracy. When we compare
the ERP function estimates of channel Pz for the three methods,
they share a small negative drop in amplitude around 100 ms
poststimulus, followed by a major positive peak between 200
ms and 450 ms poststimulus. Then, the ERP function estimates
gradually decline to zero. The identification of channel-specific
SMTW provides statistical evidence for the scientific findings of
P300 ERP responses.

In terms of channel ranking and selection, the study by
McCann et al. (2015) pointed out that the difference in P300
ERP-BCI communication efficiency was subtle with five or
more channels. Both studies performed channel ranking and
selection from the same cohort of participants. They identified
Cz, Pz, PO7, PO8, and Oz as the top selected channels, which
overlapped with our identification of PO7, PO8, Oz, and Cz.
These shared selection results provide statistical evidence for
spatial distributions of P300 ERP responses. In particular, the
finding that channels PO8, PO7, and Oz appear the most fre-
quently supports the finding that the performance of a P300
speller is associated with eye gaze (Brunner et al. 2010). Finally,
the participant-specific channel selection helps establish user-
specific profiles for efficient brain-computer communications.
Thus, we can incorporate user-specific channel selection to
design the EEG cap, which increases the implementation speed.

Potential future directions would improve our work. First,
we could modify the stimulus presentation paradigm from the
current RCP design to the checkerboard design (Townsend et al.
2010). The checkerboard design avoids the refractory effect
(Martens et al. 2009) in the RCP design, where participants
might miss or fail to produce the second regular P300 ERP
response when two target stimuli are too close. Second, we
could measure the participant-specific brain connectivity under
the no-control (NoC) condition to specify the prior spatial

covariance matrix. For Participant A, we could assume a multi-
block compound symmetry structure to estimate within-block,
intra-block correlation parameters, and the scalar parameter σ 2.
Third, it is also of interest to adjust the potential confounders
in the model for single participant analysis, which may include
preferences over certain characters to type and the duration of
BCI use. This analysis requires a new study design to collect
data on those information. In addition, we could develop the
framework of a multi-subject analysis to incorporate the age
effect by modifying the priors.

Overall, the proposed generative modeling approach per-
forms innovative statistical inferences on brain activity and
provides a promising platform to develop the simulation study
framework to test other online P300 ERP-BCI study designs.
The Bayesian framework also incorporates prior information
such as character-to-character relationships to increase the
spelling speed.

Supplementary Materials

The online supplementary materials include details of the MCMC algo-
rithm in Section S1, additional results of the simulation study in Section S2,
additional results of sensitivity analyses in Section S3, and additional results
of Participants B, E, and J in Section S4.
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