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ABSTRACT
This article introduces an Ordinary Differential Equation (ODE) notion for survival analysis. The ODE notion
not only provides a unified modeling framework, but more importantly, also enables the development of a
widely applicable, scalable, and easy-to-implement procedure for estimation and inference. Specifically, the
ODE modeling framework unifies many existing survival models, such as the proportional hazards model,
the linear transformation model, the accelerated failure time model, and the time-varying coefficient model
as special cases. The generality of the proposed framework serves as the foundation of a widely applicable
estimation procedure. As an illustrative example, we develop a sieve maximum likelihood estimator for a
general semiparametric class of ODE models. In comparison to existing estimation methods, the proposed
procedure has advantages in terms of computational scalability and numerical stability. Moreover, to address
unique theoretical challenges induced by the ODE notion, we establish a new general sieve M-theorem for
bundled parameters and show that the proposed sieve estimator is consistent and asymptotically normal,
and achieves the semiparametric efficiency bound. The finite sample performance of the proposed estimator
is examined in simulation studies and a real-world data example. Supplementary materials for this article are
available online.
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1. Introduction

Survival analysis is an important branch of statistical modeling,
where the primary outcome of interest is the time to a certain
event. In practice, event times may not be observed due to a
limited observation time window or missing follow-up during
the study, which is referred to as censored data. Many statistical
models have been developed to deal with censored data in the
literature. For example, the Cox proportional hazard model is
probably the most classical semiparametric model for handling
censored data (Cox 1975), and it assumes that the covariates
have a constant multiplicative effect on the hazard function.
Although easy to interpret, the constant hazard ratio assumption
is often considered as overly strong for real-world applications.
As a result, many other semiparametric models have been pro-
posed as attractive alternatives, such as accelerated failure time
(AFT) models, transformation models, and additive hazards
models. See Aalen (1980), Buckley and James (1979), Gray
(1994), Bennett (1983), Cheng, Wei, and Ying (1995), Fine, Ying,
and Wei (1998), and Chen, Jin, and Ying (2002) for a sample
of references. Given different assumptions made in these semi-
parametric models, different estimation and inference proce-
dures have also been developed accordingly, such as maximum
partial likelihood based estimators (MPLE) (Zucker and Karr
1990; Gray 1994; Bagdonavicius and Nikulin 2001; Chen, Jin,
and Ying 2002), least square and rank-based methods (Buckley
and James 1979; Tsiatis 1990; Lai and Ying 1991; Jin et al. 2003;
Jin, Lin, and Ying 2006), nonparametric maximum likelihood
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estimators (NPMLE) (Murphy, Rossini, and van der Vaart 1997;
Zeng and Lin 2007b), and sieve maximum likelihood estimators
(MLE) (Huang 1999; Shen and Wong 1994; Ding and Nan 2011;
Zhao, Wu, and Yin 2017).

In this article, we introduce a novel Ordinary Differential
Equation (ODE) notion and show that it provides a unified
view of aforementioned survival models and, more importantly,
facilitates the development of a scalable and easy-to-implement
estimation and inference procedure, which can be applied to a
wide range of ODE survival models. We note that the proposed
approach is founded upon well-established numerical solvers
and sensitivity analysis tools for ODEs, and it overcomes vari-
ous practical limitations of existing estimation methods when
applied to different survival models for large-scale studies.

Specifically, the proposed framework models the dynamic
change of the cumulative hazard function through an ODE. Let
T be the event time and X be covariates. Denote the conditional
cumulative hazard function of T given X = x as �x(t). Then
�x(t) is characterized by the following ODE with a fixed initial
value {

�′
x(t) = f (t, �x(t), x)

�x(t0) = c(x)
, (1)

where the derivative is with respect to t, f (·) and c(·) are func-
tions to be specified, and t0 is a predefined initial time point. In
particular, function c(·) determines the probability of an event
occurring after t0; for instance, �x(0) = 0 corresponds to the
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case when no event occurs before time 0. Further, function f (·)
determines how covariates x affect the hazard function at time
t given an individual’s own cumulative hazard. Thus, different
specifications of the function f (·) lead to different ODE models.

Next, we comment on both benefits of the ODE approach
in terms of modeling and computation and new theoretical
challenges induced by the ODE notion.

• First, the ODE modeling framework is general enough
to unify many aforementioned existing survival models
through different specifications of the function f (·), which
serves as the foundation of a widely applicable estimation
procedure that will be developed later. For example, the
ODE (1) is equivalent to the Cox model when f (·) takes
the form α(t) exp(xTβ) for some function α(·), and it is
equivalent to the AFT model when f (·) takes the form
q(�x(t)) exp(xTβ) for some function q(·). Similarly, we can
obtain many more models such as the time-varying variants
of the Cox model, the linear transformation model, and
the additive hazards model to name a few (see Section 2
for details). We note that the ODE notion can provide new
and sometimes more explicit interpretations in terms of the
hazard by rewriting the existing models in the ODE form.
In addition, the generality of the proposed framework offers
an opportunity for designing more flexible model structures
and model diagnostics.

• Second, and also more importantly, introducing the ODE
notion facilitates the development of a general and easy-to-
implement procedure for estimation and inference in large-
scale survival analysis. In this article, we illustrate the pro-
posed procedure by using a general class of ODE models as
an example. In particular, this general class includes the most
flexible linear transformation model, where both the trans-
formation function and the error distribution are unspeci-
fied. Since the f (·) function for the general model contains
both finite-dimensional and infinite-dimensional parame-
ters, we propose a spline-based sieve MLE that directly max-
imizes the likelihood in a sieve space. We provide an easy-to-
implement gradient-based optimization algorithm founded
upon local sensitivity analysis tools for ODEs (Dickinson
and Gelinas 1976), where numerical ODE solvers are used
to compute the log-likelihood function and its gradients.
Since efficient implementations of both ODE solvers and
splines are available in many software, the resultant algo-
rithm is easy to carry out in practice. It is worth noting
that, in comparison to existing estimation methods, the pro-
posed procedure has advantages in various aspects, such as
scalability against MPLE for the time-varying Cox model,
optimization-parameter efficiency against NPMLE, statis-
tical efficiency and numerical stability against rank-based
methods for the linear transformation model. We demon-
strate these advantages through extensive simulation studies.
For example, when the sample size is 8000, it takes the
proposed ODE approach about 6 sec to estimate the semi-
parametric ODE-AFT model while the rank-based method
needs 350 sec.

• Finally, we note that the ODE notion brings new challenges
to asymptotic distributional theory. While many asymptotic
distributional theories for M-estimation in semiparametric

models have been developed (see Huang 1999; Shen 1997;
Ai and Chen 2003; Wellner and Zhang 2007; Zhang, Hua,
and Huang 2010; He, Xue, and Shi 2010; Ding and Nan 2011
for a sample of references), they cannot be directly applied
to our setting. Among them, the proposed theory in Ding
and Nan (2011) considers bundled parameters where the
infinite-dimensional parameter is an unknown function of
the finite-dimensional Euclidean parameter and has been
applied to the AFT model, and recently, to the accelerated
hazards model in Zhao, Wu, and Yin (2017). However, for
the general class of ODE models, the estimation criterion is
parameterized with more general bundled parameters where
the nuisance parameter is an unknown function of not only
finite-dimensional regression parameters of interest but also
other infinite-dimensional nuisance parameters. To accom-
modate this different and challenging scenario induced by
the ODE notion, we develop a new sieve M-theorem for more
general bundled parameters. By applying it to the general
class of ODE models along with ODE related methodolo-
gies (Walter 1998), we show consistency, asymptotic normal-
ity, and semiparametric efficiency for the estimated regres-
sion parameters. The proposed theory can also be extended
to develop the asymptotic normality of estimators for other
ODE models.

The rest of the article is organized as follows. We introduce
the ODE framework and present a general class of ODE mod-
els as special cases in Section 2. We provide the estimation
procedure in Section 3 and establish theoretical properties in
Section 4. Simulation studies and a real-world data example are
presented in Sections 5 and 6, respectively.

2. The ODE Framework

To characterize the conditional distribution of T given X, the
conditional hazard function, denoted as λx(t) = �′

x(t), pro-
vides a popular modeling target as it describes the instantaneous
rate at which the event occurs given survival. In this article,
we view the hazard function as the dynamic change of the
cumulative hazard function and quantify them using an ODE.

In our ODE framework, the hazard function depends not
only on the time and covariates but also on the cumulative haz-
ard as shown in (1), where function f (·) specifies the dynamic
change of �x(t) and covariates x serve as additional parameters
in terms of the ODE. The initial value in (1) implies that, for
an individual with covariates x, the probability for an event to
occur after t0 is controlled by exp(−c(x)). For example, it is
often the case that time 0 is defined prior to the occurrence
of events, which implies that an event always occurs after time
0, that is, the survival function Sx(0) = 1, and it follows that
�x(0) = 0. We use this initial value in the ODE framework
hereafter for simplicity, while the estimation method and the
theoretical properties established later can be extended to the
general case where c(x) can be a function of covariates. Under
certain smoothness conditions (Walter 1998, p. 108), the initial
value problem (1) has exactly one solution, which uniquely
characterizes the conditional distribution of the event time.

Next, we present a general class of ODE models as an instan-
tiation of the ODE framework. Suppose there are two groups of
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covariates denoted by X ∈ Rd1 and Z ∈ Rd2 , respectively. We
consider ODE models in the form of

�′
x,z(t) = α(t) exp(xTβ + zTη(t))q(�x,z(t)), (2)

where α(·) and q(·) are two unknown positive functions, and
given an individual’s own cumulative hazard, both covari-
ates x and z have multiplicative effects on the hazard, one
with time-independent coefficients β ∈ Rd1 and the other
with time-varying coefficients η(t) ∈ Rd2 . Here η(·) =
(η1(·), . . . , ηd2(·))T .1 We note that this general class of ODE
models is a specific example; other examples beyond this class
are included in Remark 2 to further illustrate the flexibility
of the proposed ODE framework. In particular, this general
class covers many existing models as special cases. As shown
below, model (2) reduces to the time-varying Cox model when
q(·) = 1, to the linear transformation model when covariates
z are not considered, and further reduces to the AFT model
if α(·) = 1. In the following sections, we will also show that
by rewriting many existing models under the format (1), the
ODE framework brings them new interpretations in terms of
the hazard function.

2.1. Cox Model and Time-Varying Cox Model

The Cox proportional hazard model assumes that the covari-
ates have a multiplicative effect on the hazard function, that
is, λx(t) = α(t) exp(xTβ), where α(t) is a baseline hazard
function and exp(xTβ) is the relative risk, and extensions of the
Cox model allow for time-varying coefficients (Zucker and Karr
1990; Gray 1994). Here we write the Cox model with both time-
independent and time-varying effects as a simple ODE, whose
right-hand side does not depend on the cumulative function,
that is

�′
x,z(t) = α(t) exp(xTβ + zTη(t)), (3)

which allows covariates x to have time-independent effects and
covariates z to have time-varying effects on the hazard function.
The baseline hazard function α(t) and time-varying effects η(t)
can be specified in a parametric model or left unspecified in a
semiparametric model.

2.2. Accelerated Failure Time Model

The AFT model assumes that the log transformation of T is
linearly correlated with covariates, that is, log T = −XTβ + ε.
In the proposed ODE framework, the AFT model can be written
as

�′
x(t) = q(�x(t)) exp(xTβ), (4)

where the function q(·) uniquely determines the distribution of
the error ε in the following way. Let Hq(u) = ∫ − ln u

0 q−1(v)dv
and Gq(u) = H−1

q (u), then Gq is the survival function of
δ = exp(ε) as shown in Bagdonavicius and Nikulin (2001). For
example, if q(t) = vk

1
v t1− 1

v , then δ follows a Weibull distribu-
tion with Gq(t) = exp(−ktv). When the error distribution is

1Throughout this article, we bold vectors only when each element is a func-
tion.

unknown (as in a semiparametric AFT model), we can leave the
function q(·) unspecified.

The ODE (4) provides a new and clear interpretation on
how covariates affect the hazard for the AFT model. Specifically,
it implies that given an individual’s own cumulative hazard,
covariates x have a multiplicative constant effect on the hazard
function. Further, besides the direct effects of covariates, if q(·)
is a monotonic increasing function, then an individual with
a higher cumulative hazard at a particular time would have a
higher “baseline” hazard. Note that although we can also present
the hazard directly as a function of covariates and time, that
is, λx(t) = λδ(t exp(xTβ)) exp(xTβ), the covariate effects are
entangled with the baseline hazard λδ in this representation,
which is more difficult to interpret.

2.3. Linear Transformation Model

As an extension of the AFT model, the linear transformation
model assumes that, after a monotonic increasing transforma-
tion ϕ(·), the event time T is linearly correlated with covariates,
that is, ϕ(T) = −XTβ + ε. In the proposed ODE framework, it
can be written as

�′
x(t) = q(�x(t)) exp(xTβ)α(t), (5)

where q(·) corresponds to the distribution of ε in the same way
as in the AFT model, and α(·) is uniquely determined by the
equation ϕ(t) = log

∫ t
0 α(s)ds. In comparison to model (4),

the hazard function at time t depends not only on the current
cumulative hazard and covariates, but also on the current time
t directly.

Different specifications of ϕ(·) and ε have been proposed in
the literature for the linear transformation model. We consider
the case where both the transformation and the error distri-
bution are unknown. This specification is especially preferred
when parametric assumptions on the transformation function
or the error distribution cannot be properly justified. How-
ever, when both q(·) and α(·) are unknown, they may not
be identifiable. The equivalent linear regression representation,
ϕ(T) = −xTβ + ε, allows us to see the identifiability issue
clearly. Note that, when no covariate is associated with sur-
vival, that is, β = 0, nonidentifiability issue arises because
parameters (ϕ, ε) and (f (ϕ), f (ε)) give the same event time
distribution for any arbitrary function f . Therefore, we con-
sider β �= 0, in which case Horowitz (1996) showed that the
model parameters are identifiable up to a scale and a location
normalization under certain regularity conditions. Following
that result, we have developed Proposition 1 that characterizes
the identifiability of parameters in (5), while Proposition 2 pro-
vides necessary and sufficient degeneration conditions for AFT
and Cox models. The proofs are given in the supplementary
materials.

Proposition 1. Suppose at least one of the covariates in x is
continuous and this covariate has a nonzero β coefficient,
which without loss of generality is assumed to be positive.
Let (q(·), β , α(·)) specify the survival distribution through (5).
Then for any other (q̃(·), β̃ , α̃(·)) that gives the same survival
distribution, if and only if there exist positive constants c1



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 2409

and c2 such that β̃ = c1β ,
∫ t

0 α̃(s)ds = c2(
∫ t

0 α(s)ds)c1 , and∫ t
0 q̃−1(s)ds = c2(

∫ t
0 q−1(s)ds)c1 for any t > 0.

Proposition 2. Suppose the conditions in Proposition 1 hold,
then the linear transformation model in (5) coincides with the
Cox model if and only if there exist positive constants c1 and c2
such that q(u) = c2u1−c1 , and it coincides with the AFT model
if and only if there exist positive constants c1 and c2 such that
α(t) = c2tc1−1 for t > 0.

Remark 1. Note that the original forms of the AFT model
and the linear transformation model do not directly take time-
varying coefficients. Existing works on the linear transformation
model that consider varying coefficients choose to model them
as a function of certain covariates rather than a function of
time (Chen and Tong 2010; Qiu and Zhou 2015). In contrast,
the equivalent ODE forms of the AFT model in (4) and the
linear transformation model in (5) can naturally accommodate
time-varying coefficients. For example, we can consider the gen-
eralization in (2), where given an individual’s own cumulative
hazard covariates z have time-varying multiplicative effects η(t)
on the hazard. In particular, this generalization is equivalent to
a covariate-dependent transformation model

ϕZ(T) = −XTβ + ε,

where ϕz(t) = log
∫ t

0 α(s) exp(z�η(s))ds, that is, covariates z
have multiplicative time-varying effect η(t) on the gradient of
exp(ϕz(t)).

Remark 2. The proposed ODE framework is general enough
to cover other existing models as well. For example, both the
additive hazard model (Aalen 1980; Mckeague and Sasieni
1994) and the additive-multiplicative hazard model (Lin and
Ying 1995) can be viewed as a specific ODE model, that is,
�′

x,z(t) = r1(xTβ)+α(t)r2(zTη), where r1(·) and r2(·) are some
known link functions. Subsequently, the generalized additive
hazards model and the generalized additive-multiplicative
hazards model (Bagdonavicius and Nikulin 2001) can be written
as �′

x(t) = q(�x(t))(r1(x) + α(t)r2(x)). The generalized
Sedyakin’s model (Bagdonavicius and Nikulin 2001), which was
proposed as an extension of the AFT model, can also be viewed
as a special case of (1) with �′

x(t) = f (�x(t), x).

Remark 3. Further, the proposed ODE framework and the
estimation method in Section 3 can also be extended to deal with
time-varying covariates. Suppose the covariate is a stochastic
process X(t), t ≥ 0 and TX(·) is the failure time under X(·).
Denote the conditional survival, the hazard function, and the
cumulative function by Sx(·)(t) = P{TX(·) ≥ t|X(s) = x(s), 0 ≤
s ≤ t}, λx(·)(t) = − S′

x(·)(t)
Sx(·)(t) , and �x(·)(t) = − log(Sx(·)(t)),

respectively. Then the ODE (1) can be extended to �′
x(·)(t) =

f (t, �x(·)(t), x(t)). This extension also covers many existing
models as special cases. For example, the linear transformation
model with time-varying covariates (Zeng and Lin 2006) can be
written as �′

x(·)(t) = q(�x(·)(t)) exp(x(t)Tβ)α(t), and the Cox
model with time-varying covariates can be viewed as a special
case with q(·) ≡ 1. For presentation simplicity, we focus on
models in the form of (2) in this article.

2.4. Related Estimation Methods and their Limitations

The maximum partial likelihood estimator (MPLE) (Cox 1975)
was first proposed for the Cox model, and the asymptotic prop-
erty of MPLE was established by Andersen and Gill (1982)
via the counting process martingale theory. For time-varying
Cox models, many different estimation methods have been
developed while relying on maximizing the partial likelihood
(Zucker and Karr 1990; Gray 1994). However, evaluating the
partial likelihood for an uncensored individual requires access
to all other observations who were in its risk set. This prevents
parallel computing for partial likelihood-based methods, which
is a drawback when analyzing large-scale data.

For the linear transformation model, different specifications
of the transformation and the error distribution along with
different estimation methods have been proposed. For example,
Cheng, Wei, and Ying (1995), Fine, Ying, and Wei (1998), Shen
(1998), Chen, Jin, and Ying (2002), and Bagdonavicius and
Nikulin (1999) have considered an unknown transformation
with a known error distribution, which includes the Cox model
and the proportional odds model (Bennett 1983) as special
cases. The corresponding modified MPLE (Chen, Jin, and Ying
2002; Bagdonavicius and Nikulin 1999), sieve MLE (Shen 1998),
and NPMLE (Murphy, Rossini, and van der Vaart 1997; Zeng
and Lin 2007b) have also been developed. However, due to the
large number of nuisance parameters, it is difficult to obtain
NPMLE in practice, especially in large-scale applications. Alter-
natively, Cai, Tian, and Wei (2005) considered a parametric Box-
Cox transformation with an unknown error distribution, which
includes the semiparametric AFT model as a special case, and
least square and rank-based methods have been proposed to
estimate the regression parameters (Buckley and James 1979; Lai
and Ying 1991; Tsiatis 1990; Jin et al. 2003; Jin, Lin, and Ying
2006). Nevertheless, they are not asymptotically efficient and
may suffer additional numerical errors resulting from discrete
objective functions. Subsequently, under the AFT model, Zeng
and Lin (2007a) and Lin and Chen (2012) proposed efficient
estimators based on a kernel-smoothed profile likelihood, and
Ding and Nan (2011) developed an efficient sieve MLE. When
both the transformation function and the error distribution
are unknown, a partial rank-based method has been proposed
(Song et al. 2006; Khan and Tamer 2007), and its computation is
analogous to that of the partial likelihood, where the rank of an
uncensored individual is determined by all other individuals in
its risk set, and thus, the computational challenge for large-scale
applications still remains.

As evident from the above discussion, many existing esti-
mation methods suffer from important limitations in practice.
In Section 3, we propose a scalable, easy-to-implement and
efficient estimation method that can be applied to a wide range
of models.

3. Maximum Likelihood Estimation

In this section, we propose a general estimation procedure that
can be applied to a wide range of ODE models. Here we use the
ODE model in (2) as an illustrative example, and the proposed
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estimation method can also be applied to other models such as
those mentioned in Remark 2.

We denote the event time as T, the censoring time as C. Let
Y = min{T, C} and 
 = 1(T ≤ C), where 1(·) denotes the
indicator function. Our data consist of n independent and iden-
tically distributed observations {Yi, 
i, Xi, Zi}, i = 1, . . . , n.
Since α(·) and q(·) in (2) are positive, we set γ (·) = log α(·) and
g(·) = log q(·). Under the conditional independence between T
and C given covariates (X, Z), the log-likelihood function of the
parameters (β , γ (·), η(·), g(·)) is given by

ln(β , γ (·), g(·), η(·)) = 1
n

n∑
i=1

[
i{γ (Yi) + XT
i β + ZT

i η(Yi)

+ g(�i(Yi; β , γ , g, η))}
− �i(Yi; β , γ , η, g)], (6)

where �i(t; β , γ , η, g) denotes the solution of ODE (2) parame-
terized by (β , γ , η, g) given covariates X = Xi and Z = Zi. The
log-likelihood function (6) includes both finite-dimensional
parameter β and infinite-dimensional parameters γ , η, g.

We propose a sieve MLE that maximizes the log-likelihood
over a sequence of finite-dimensional parameter spaces that
are dense in the original parameter space as the sample size
increases. The sieve space can be chosen as linear spans of many
types of basis functions with desired properties (Chen 2007). In
particular, we construct the sieve space using polynomial splines
due to their capacity in approximating complex functions and
the simplicity of their construction. Under suitable smoothness
conditions, γ0(·), η0(·), and g0(·), the true parameters associated
with the data generating distribution, can be well approximated
by some functions in the space of polynomial splines as defined
in Schumaker (2007, p. 108, Definition 4.1). Further, there exists
a group of spline bases such that functions in the space of
polynomial splines can be written as linear combinations of the
spline bases (Schumaker 2007, p. 117, Corollary 4.10). Different
groups of spline bases may be used for the estimation of different
parameters (γ , η) and g because of their different domains.

Specifically, we construct the proposed sieve estimator as fol-
lows. Let B ⊂ Rd1 be the parameter space of β . Let {B1

j , 1 ≤ j ≤
q1

n} and {B2
j , 1 ≤ j ≤ q2

n} be two groups of spline bases that are
used for the estimation of parameters (γ , η) and g, respectively.
Here the number of spline bases, qi

n, should grow sublinearly
in rate O(nvi) for some vi ∈ (0, 0.5), i = 1, 2 for convergence
guarantee (see Section 4 for rigorous definitions). Overall, we
wish to find d2 + 1 members (γ , η1, . . . , ηd2) from the space
of polynomial splines associated with {B1

j }, one member g from
that associated with {B2

j }, along with β ∈ B to maximize the
log-likelihood function (6). Let Zi0 = 1, Zi = (Zi1, . . . , Zid2)

T .
Then the objective function can be written as

ln(β , a, b) = 1
n

n∑
i=1

⎡
⎣
i{XT

i β +
d2∑

l=0

q1
n∑

j=1
al

jB
1
j (Yi)Zil

+
q2

n∑
j=1

bjB2
j (�i(Yi; β , a, b))} − �i(Yi; β , a, b)

⎤
⎦ ,

(7)

where a =
(

al
j

)
j=1,...,q1

n,l=0,...,d2
and b = (

bj
)

j=1,...,q2
n

are the

coefficients of the spline bases, and �i(t; β , a, b) is the solution
of ⎧⎪⎪⎨

⎪⎪⎩
�′

i(t) = exp(XT
i β + ∑d2

l=0
∑q1

n
j=1 al

jB
1
j (t)Zil

+∑q2
n

j=1 bjB2
j (�i(t))),

�i(0) = 0.

(8)

The proposed sieve estimators are given by β̂n = β̂ , η̂n(·) =(∑q1
n

j=1 â1
j B1

j (·), . . . ,
∑q1

n
j=1 âd2

j B1
j (·)

)
, γ̂n(·) = ∑q1

n
j=1 â0

j B1
j (·),

and ĝn(·) = ∑q2
n

j=1 b̂jB2
j (·), where (β̂ , â, b̂) maximizes the

objective function (7).
Note that the objective function (7) contains the solution of

a parameterized ODE (i.e., (8)), and this is different from most
traditional optimization problems. In particular, it is nontrivial
to evaluate the objective function and its gradient with respect
to parameters when there is no closed-form solution for the
ODE. To address this optimization challenge, we develop a
gradient-based optimization algorithm by taking advantage of
local sensitivity analysis (Dickinson and Gelinas 1976; Petzold
et al. 2006) and well-implemented ODE solvers. Specifically, we
evaluate the objective function and its gradient as follows:

1. we numerically calculate �i(Yi; β , a, b) by solving (8) given
the current parameter estimates β , a, b and covariates Xi, Zi,
the initial value at t0 = 0, and the evaluating time t = Yi;

2. we evaluate the derivative of �i(Yi; β , a, b) with respect to the
parameters β , a, and b through solving another ODE which is
derived by local sensitivity analysis, and calculate the gradient
of the objective function by the chain rule.

We summarize the results of the local sensitivity analysis in
the following, and provide detailed derivations in the supple-
mentary materials. The local sensitivity analysis is a technique
that studies the rate of change in the solution of an ODE system
with respect to the parameters. There are two ways to obtain the
sensitivity: forward sensitivity analysis and adjoint sensitivity
analysis. Both of them require solving another ODE with some
fixed initial value. For example, we consider to compute the
gradient of �(y; θ) with respect to its parameter θ , where �(t; θ)

is the solution of (8) and θ consists of parameters β , a, and b in
our case. For presentation simplicity, we denote the right-hand
side of (8) by the function f (t, �; θ), that is

f (t, �; θ) = exp(XTβ +
d2∑

l=0

q1
n∑

j=1
al

jB
1
j (t)Zj +

q2
n∑

j=1
bjB2

j (�)),

and its partial derivative with respect to θ and � by f ′
θ and f ′

�,
respectively. In forward sensitivity analysis, it can be shown that
the partial derivative of �(y; θ) with respect to θ is given by
the solution of (9) at t = y, that is, �′

θ (y; θ) = F1(y) with F1
satisfying

{
F′

1(t) = f ′
θ (t, �; θ) + f ′

�(t, �; θ)F1,
F1(0) = 0. (9)

In the alternative adjoint sensitivity analysis, we can show that
the partial derivative can also be obtained by evaluating the
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solution of (10) at t = 0, that is, �′
θ (y; θ) = F2(0) with F2

satisfying
{

(κ(t); F′
2(t)) = (−κ · f ′

�(t, �; θ); −κ · f ′
θ (t, �; θ)),

(κ(t); F2(t))|t=y = (1; 0). (10)

Thus, after plugging the form of f (t, �; θ) into either (9) or (10),
we can obtain the gradients through solving the corresponding
ODE. In Remark 4, we compare the computational complexity
of forward and adjoint sensitivity analyses and provide a general
guidance on which sensitivity analysis to use when computing
gradients under survival ODE models.

It is worth noting that the proposed estimation method can
be easily implemented using existing computing packages. For
example, the “Optimization Toolbox” in MATLAB contains
“fminunc” for unconstrained optimization and “fmincon” for
constrained optimization; both require initialization and the
objective function. In our implementation, we also provide eval-
uation of the gradient for faster and more reliable computations.
In particular, we compute both the objective function and the
gradient by well-implemented ODE solvers in MATLAB. In
addition, we construct the sieve space using B-splines for its
numerical simplicity, whose implementation is available in the
“Curve Fitting Toolbox.”

Remark 4. In general, forward sensitivity analysis is computa-
tionally more efficient when the dimension of the ODE system
is relatively large and the number of parameters is small, while
adjoint sensitivity analysis is best suited in the complementary
scenario. See Dickinson and Gelinas (1976) and Petzold et al.
(2006) for more details. For a general ODE model such as (1)
where the size of the ODE system is 1 and the number of
parameters increases as the sample size n grows, we can use the
adjoint sensitivity analysis along with parallel computing for n
independent individuals. Alternatively, if the memory permits,
we can combine ODEs for n individuals into a large ODE system
with n dimensions, which is larger than the number of parame-
ters, and then the forward sensitivity analysis is preferred.

Remark 5. Moreover, we introduce a computational trick for the
general class of ODE models in (2) that can significantly accel-
erate the evaluation of the objective and gradients, where we
need to solve ODEs for n independent individuals. Specifically,
the trick transforms the problem of solving n different ODEs
at their respective observed times into a problem of solving a
single ODE at n different time points. More generally, this trick
can be applied to any ODE model where the right-hand side is
separable in the way that f (t, �x; θ , x) = f1(t; θ , x)f2(�x; θ) with
two functions f1 and f2. We refer to the supplementary materials
for more details about this computational trick.

Remark 6. The proposed sieve MLE can also be applied to many
existing models. For example, for the time-varying Cox model
where q(·) = 1, we can remove the function g(·) from the objec-
tive function (6). For the semiparametric AFT model where Z
is not considered and α(·) = 1, we can just keep parameters
β and g(·) in (6). For the linear transformation model, if either
q(·) or α(·) is specified, we can replace the corresponding term
in (6) with the specified finite-dimensional parametric form.
Also note that in comparison to existing estimation methods

in Section 2.4, the proposed estimation method allows parallel
computing, which is especially important for large-scale appli-
cations. Specifically, since the log-likelihood of each individual
only depends on its own observations, the evaluation for inde-
pendent data points can be carried out simultaneously. Further,
compared with the NPMLE where the number of optimization
parameters is linear in n (Murphy, Rossini, and van der Vaart
1997; Zeng and Lin 2007b), the number of optimization param-
eters used in sieve MLE increases more slowly with the sample
size.

Remark 7. The objective function (7) is convex with respect to β

and a for the (time-varying) Cox model, where the parameter b
is not included, and the global optimum can be achieved quickly.
For the general case, the objective function is nonconvex and
the optimization algorithm may converge to a local optimum.
Nevertheless, based on our extensive simulation studies, the
algorithm generally performs well with appropriately chosen
initialization, such as initializing the algorithm with the esti-
mates from the Cox model.

Remark 8. Note that different identifiability conditions are
required for different survival models. Thus, we need to add
corresponding constraints in the optimization algorithm.

• For the general ODE model (2) where both covariates X
(with time-independent effects) and Z (with at least one
nonzero time-varying effect) are considered, two groups of
parameters (β , γ , g, η) and (β̃ , γ̃ , g̃, η̃) give the same survival
distribution if and only if β = β̃ , γ = γ̃ + c, g = g̃ − c, and
η = η̃ for some constant c. To guarantee the identifiability,
we can constrain either the value of γ (·) at a fixed time point
t∗ or the norm of γ (·), in which the former leads to a linear
constraint on the coefficients of spline bases.

• For the linear transformation model where the time-varying
effects are not considered and at least one component of X has
a nonzero coefficient, parameters (β , γ , g) are identifiable up
to two scaling factors as shown in Proposition 1. To guarantee
identifiability, we can put constraints on β and γ . For β ,
we can either constrain the first element of β to be 1 (Song
et al. 2006; Khan and Tamer 2007), which can be naturally
achieved by arranging covariates if we know which covariate
has a nonzero effect, or set ‖β‖ = 1. For γ , we can add
a similar constraint as that for the general ODE model (2).
Alternatively, we can put constraints on γ and g by setting∫ t∗

0 exp(γ (s))ds = c1 and
∫ t∗

0 exp(−g(s))ds = c2, with some
positive constants c1 �= c2 > 0 and a fixed time point t∗. In
our implementation, we choose to use two linear constraints,
that is, set the first element of β to 1 and γ (t∗) = 0 for
simplicity in optimization.

4. Theoretical Properties

In this section, we study the theoretical properties of the
proposed sieve MLE. Although many works have investigated
asymptotic distributional theories for M-estimation with
bundled parameters (Ai and Chen 2003; Chen, Linton, and
Van Keilegom 2003; Ding and Nan 2011), their results cannot
be directly applied to our setting. In particular, the nuisance
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parameters in existing works often take the form of an unknown
function of only some finite-dimensional Euclidean parameters
of interest. However, our work focuses on a more general sce-
nario, where the nuisance parameter is an unknown function of
not only the Euclidean parameters but also some other infinite-
dimensional nuisance parameters. To deal with theoretical
challenges due to the additional functional nuisance parameters,
we develop a new sieve M-theorem for the asymptotic theory of
a general family of semiparametric M-estimators. Moreover, we
apply the proposed general theorem to establish the asymptotic
normality and semiparametric efficiency of the proposed sieve
MLE β̂n when the convergence rate of the sieve estimator of
the nuisance parameter can be slower than

√
n. We present

regularity conditions and main theorems in this section and
give all the proofs in the supplementary materials.

For the simplicity of notation, we focus on model (2) without
covariates Z, that is, the linear transformation model (5), and
the results can be similarly extended to the general case with
additional regularity conditions on Z (see Remark 11). Recall
that we have set γ (·) = log α(·) and g(·) = log q(·) to ensure
the positivity of α(·) and q(·) in (5). Then we reformulate the
ODE model as follows,{

�′(t) = exp(xTβ + γ (t) + g(�(t)))
�(0) = 0 . (11)

Note that the parameter β is identifiable when time-varying
effects are considered, but in (11) it is identifiable only up to
a scaling factor when both γ and g are unknown as shown
in Proposition 1. To guarantee the identifiability, we constrain
the first element of β to be 1 and γ (t∗) = c with some
constant c for simplicity in optimization. Specifically, denote
X = (X(1), X(−1)), β = (1, β̄T)T , γ̄ (·) = γ (·) − γ (t∗) with
γ̄ (t∗) ≡ 0, and X̄(1) = X(1)+γ (t∗), then we have XTβ+γ (t) =
X̄(1) + XT

(−1)β̄ + γ̄ (t). We substitute β̄ , γ̄ , and X̄(1) by β , γ ,
and X(1), respectively for notational simplicity hereafter, and the
ODE (11) is then equivalent to

{
�′(t) = exp(x(1) + xT

(−1)β + γ (t) + g(�(t)))
�(0) = 0 , (12)

with γ (t∗) ≡ 0. Before stating the regularity conditions, we
first introduce some notations. We denote the solution of (12)
by �(t, x, β , γ , g) to explicitly indicate that the solution of (12)
depends on covariates x and parameters (β , γ , g). We denote
the true parameters associated with the data generating distri-
bution by (β0, γ0, g0) and simplify �(t, x, β0, γ0, g0) as �0(t, x).
In addition, some commonly used notations in the empirical
process literature will be used in this section as well. Let Pf =∫

f (x)Pr(dx), where Pr is a probability measure, and denote the
empirical probability measure as Pn.

Then we assume the following regularity conditions.

(C1) The true parameter β0 is an interior point of a compact set
B ⊂ Rd.

(C2) The density of X is bounded below by a constant c > 0
over its domainX , which is a compact subset of Rd+1, and
P(X(−1)XT

(−1)) is nonsingular.
(C3) There exists a truncation time τ < ∞ such that, for some

positive constant δ0, Pr(Y > τ |X) ≥ δ0 almost surely
with respect to the probability measure of X. Then there

is a constant μ = supx∈X �0(τ , x) ≤ − log δ0 such that
�0(τ , X) = − log Pr(T > τ |X) ≤ μ almost surely with
respect to the probability measure of X.

(C4) Let Sp([a, b]) be the collection of bounded functions f on
[a, b] with bounded derivatives f (j), j = 1, . . . , k, where
the kth derivative f (k) satisfies the m-Hölder continuity
condition:

|f (k)(s) − f (k)(t)| ≤ L|s − t|m for s, t ∈ [a, b],
where k is a positive integer and m ∈ (0, 1] with p = m+k,
and L < ∞ is a constant. The true function γ0(·) belongs
to �p1 = {γ ∈ Sp1([0, τ ]) : γ (t∗) = 0} with p1 ≥ 2 and
the true function g0(·) belongs to Sp2([0, μ + δ1]) = Gp2

with some positive constant δ1 and p2 ≥ 3.
(C5) Denote R(t) = ∫ t

0 exp(γ0(s))ds, V = X(1) + XT
(−1)β0, and

U = eV R(Y). There exists η1 ∈ (0, 1) such that for all
u ∈ Rd with ‖u‖ = 1,

uTvar(X(−1) | U, V)u ≥ η1uTP(X(−1)XT
(−1) | U, V)u
almost surely.

(C6) Let ψ(t, x, β , γ , g) = x(1) + xT
(−1)β + γ (t) + g(�(t, x,

β , γ , g)) and denote its functional derivatives with respect
to γ (·) and g(·) along the direction v(·) and w(·) at the true
parameter by ψ ′

0γ (t, x)[v] and ψ ′
0g(t, x)[w], respectively,

whose rigorous definitions are given by (S19)–(S20) in the
supplementary materials. For any v(·) ∈ �p1 and w(·) ∈
Gp2 , there exists η2 ∈ (0, 1) such that

(P{ψ ′
0γ (Y , X)[v]ψ ′

0g(Y , X)[w] | 
 = 1})2

≤ η2P{(ψ ′
0γ (Y , X)[v])2 | 
 = 1}

P{(ψ ′
0g(Y , X)[w])2 | 
 = 1}

almost surely.

Conditions (C1)–(C3) are common regularity assumptions
in survival analysis. Condition (C4) requires p2 ≥ 3 to control
the error rates of the spline approximation for the true function
g0 and its first and second derivatives. Moreover, together with
p1 ≥ 2, (C4) will also be used to verify the assumptions (A4)–
(A6) for the general M-theorem (Theorem 3) when we apply
it to derive the asymptotic normality of the proposed sieve
MLE (Theorem 2). A similar condition to (C5) was imposed
by Wellner and Zhang (2007) for the panel count data, by Ding
and Nan (2011) for the linear transformation model with a
known transformation, and by Zhao, Wu, and Yin (2017) for the
accelerated hazards model. When the transformation function
is known, condition (C5) is equivalent to the assumption C7 in
Ding and Nan (2011) and can be verified in many applications as
shown in Wellner and Zhang (2007). For the general case where
both the transformation function and the error distribution are
unspecified, condition (C6) is assumed to avoid strong collinear-
ity between ψ ′

0γ (Y , X)[v] and ψ ′
0g(Y , X)[w].

Note that the parameter g(·) takes �(t, x, β , γ , g) as its
argument in (12), which involves the other parameters β

and γ (·). Thus, β , γ (·) and g(·) are bundled parameters. For
any g(·) ∈ Gp2 , we directly consider the composite function
g(�(t, x, β , γ , g)) as a function from T × X × B × �p1 to R.
And we define the collection of functions
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Hp2 = {ζ(·, β , γ ) : ζ(t, x, β , γ )

= g(�(t, x, β , γ , g)), t ∈ [0, τ ], x ∈ X , β ∈ B, γ ∈ �p1 ,
g ∈ Gp2 such that sup

t∈[0,τ ],x∈X
|�(t, x, β , γ , g)| ≤ μ + δ1},

with δ1 given in condition (C4). For any ζ(·, β , γ ) ∈ Hp2 , we
define its norm as

‖ζ(·, β , γ )‖2 =
[∫

X

∫ τ

0
[ζ(t, x, β , γ )]2d�0(t, x)dFX(x)

]1/2
,

where FX(x) is the cumulative distribution function of X.
Denote the parameter θ = (β , γ (·), ζ(·, β , γ )) and the true
parameter θ0 = (β0, γ0(·), ζ0(·, β0, γ0)) with ζ0(t, x, β0, γ0) =
g0(�(t, x, β0, γ0, g0)). Denote the parameter space by � =
B × �p1 × Hp2 . For any θ1 and θ2 in �, we define the distance

d(θ1, θ2) = (‖β1 − β2‖2 + ‖γ1 − γ2‖2
2 + ‖ζ1(·, β1, γ1)

− ζ2(·, β2, γ2)‖2
2
)1/2 ,

where ‖ · ‖ is the Euclidean norm and ‖γ ‖2 = (
∫ τ

0 (γ (t))2dt)1/2

is the L2 norm.
Next, we construct the sieve space as follows. Let 0 = t0 <

t1 < · · · < tK1
n

< tK1
n+1 = τ be a partition of [0, τ ] with

K1
n = O(nν1) and max1≤j≤K1

n+1 |tj − tj−1| = O(n−ν1) for some
ν1 ∈ (0, 0.5). Let TK1

n
= {t1, . . . , tK1

n
} denote the set of partition

points and Sn(TK1
n
, K1

n , p1) be the space of polynomial splines
of order p1 as defined in Schumaker (2007, p. 108, Definition
4.1). Similarly, let TK2

n
be a set of partition points of [0, μ]

with K2
n = O(nν2) and max1≤j≤K2

n+1 |tj − tj−1| = O(n−ν2)

for some ν2 ∈ (0, 0.5), and Sn(TK2
n
, K2

n , p2) be the space of
polynomial splines of order p2. According to Schumaker (2007,
p. 117, Corollary 4.10), there exist two sets of B-spline bases
{B1

j , 1 ≤ j ≤ q1
n} with q1

n = K1
n + p1 and {B2

j , 1 ≤ j ≤ q2
n}

with q2
n = K2

n + p2 such that for any s1 ∈ Sn(TK1
n
, K1

n , p1) and

s2 ∈ Sn(TK2
n
, K2

n , p2), we can write s1(t) = ∑q1
n

j=1 ajB1
j (t) and

s2(t) = ∑q2
n

j=1 bjB2
j (t). Let �

p1
n = {γ ∈ Sn(TK1

n
, K1

n , p1) : γ (0) =
0}, Gp2

n = Sn(TK2
n
, K2

n , p2), and

Hp2
n = {ζ(·, β , γ ) : ζ(t, x, β , γ ) = g(�(t, x, β , γ , g)),

g ∈ Gp2
n , t ∈ [0, τ ], x ∈ X , β ∈ B, γ ∈ �

p1
n }.

Let �n = B × �
p1
n × Hp2

n be the sieve space. It is not difficult
to see that �n ⊂ �n+1 ⊂ · · · ⊂ �. We consider the sieve
estimator θ̂n = (β̂n, γ̂n(·), ζ̂n(·, β̂n, γ̂n)), where ζ̂n(t, x, β̂n, γ̂n) =
ĝn(�(t, x, β̂n, γ̂n, ĝn)), that maximizes the log-likelihood (6)
(without covariates Z and parameter η) over the sieve space
�n. The consistency and convergence rate of the sieve MLE θ̂n
are then established in the following theorem.

Theorem 1 (Convergence rate of θ̂n). Let ν1 and ν2 satisfy
the restrictions max{ 1

2(2+p1)
, 1

2p1
− ν2

p1
} < ν1 < 1

2p1
,

max{ 1
2(1+p2)

, 1
2(p2−1)

− 2ν1
p2−1 } < ν2 < 1

2p2
, and 2 min{2ν1, ν2} >

max{ν1, ν2}. Suppose conditions (C1)–(C6) hold, then we have

d(θ̂n, θ0) = Op(n− min{p1ν1,p2ν2, 1−max{ν1,ν2}
2 }).

Theorem 1 gives the convergence rate of the proposed esti-
mator θ̂n to the true parameter θ0, and its proof is provided in
the supplementary materials by verifying the conditions in Shen
and Wong (1994, Theorem 1). Note the subscripts 1 and 2 corre-
spond to the space of the spline approximation for two infinite-
dimensional parameters γ and g, respectively. The restrictions
on ν1 and ν2 are feasible for p1 and p2 not far away from each
other. For example, if p1 = p2 = p and ν1 = ν2 = ν,
the restriction on ν is equivalent to 1

2(1+p)
< v < 1

2p , and

the convergence rate becomes d(θ̂n, θ0) = Op(n− min{pν, 1−ν
2 }),

which is the same as the case when there is only one infinite-
dimensional parameter (Ding and Nan 2011; Zhao, Wu, and Yin
2017). Further, if ν = 1

1+2p , we have d(θ̂n, θ0) = Op(n− p
1+2p ),

which achieves the optimal convergence rate in the nonpara-
metric regression setting.

Although the convergence rate for the nuisance parameter is
slower than the typical rate n1/2, we will show that the sieve MLE
of the regression parameter, that is, β̂n, is still asymptotically
normal and achieves the semiparametric efficiency bound. First,
we introduce two additional regularity conditions which are
stated below.

(C7) There exist v∗ = (v∗
1, . . . , v∗

d)
T and w∗ = (w∗

1, . . . , w∗
d)

T ,
where v∗

j ∈ �2 and w∗
j ∈ G2 for j = 1, . . . , d, such that

P{
A∗(U, X)ψ ′
0γ (Y , X)[v]} = 0 and P{
A∗(U, X)ψ ′

0g
(Y , X)[w]} = 0 hold for any v ∈ �p1 and w ∈ Gp2 .
Here U and V are defined the same as in condition (C5)
and

A∗(t, X) = −
(

g′
0(�̃0(t)) exp(g0(�̃0(t)))t + 1

)
X(−1)

+ g′
0(�̃0(t)) exp(g0(�̃0(t)))∫ t

0
v∗(R−1(se−V))ds + v∗(R−1(te−V))

+ g′
0(�̃0(t)) exp(g0(�̃0(t)))

∫ �̃0(t)

0
exp(−g0(s))w∗(s)ds + w∗(�̃0(t)),

where �̃0(t) is the solution of �̃′
0(t) = exp(g0(�̃0)) with

�̃0(0) = 0.
(C8) Let l∗(β0, γ0, ζ0; W) = ∫

A∗(t, X)dM(t), where M(t) =

1(U ≤ t) − ∫ t

0 1(U ≥ s)d�̃0(s) is the event count-
ing process martingale. The information matrix I(β0) =
P(l∗(β0, γ0, ζ0; W)⊗2) is nonsingular. Here for a vector a,
a⊗2 = aaT .

The additional condition (C7) essentially requires the exis-
tence of the least favorable direction that is used to establish
the semiparametric efficiency bound. The directions v∗ and w∗
may be found through the equations in (C7). We illustrate how
to construct v∗ and w∗ for the Cox model and the linear trans-
formation model with a known transformation, respectively, in
Remark 10. Condition (C8) is a natural assumption that requires
the information matrix to be invertible. The following theorem
establishes the asymptotic normality and semiparametric effi-
ciency of the sieve MLE β̂n of the regression parameter for the
general linear transformation model.
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Theorem 2 (Asymptotic normality of β̂n). Suppose the condi-
tions in Theorem 1 and (C7)–(C8) hold, then we have

√
n(β̂n − β0) = √

nI−1(β0)Pnl∗(β0, γ0, ζ0; W) + op(1)

→d N(0, I−1(β0))

with I(β0) given in condition (C8) and →d denoting conver-
gence in distribution.

Theorem 2 states that β̂n is asymptotically normal with vari-
ance as the inverse of the information matrix. In practice, the
information matrix can be approximated by the estimated infor-
mation matrix of all parameters including the coefficients of
spline bases.

We note that the existing sieve M-theorem for bundled
parameters (Ding and Nan 2011; Zhao, Wu, and Yin 2017)
cannot be directly applied to prove Theorem 2, because it
does not allow the infinite-dimensional nuance parameter to
be a function of other infinite-dimensional nuance parameters.
Therefore, to study the asymptotic distribution of β̂n, we first
establish a new general M-theorem for bundled parameters
where the infinite-dimensional nuisance parameter is a function
of not only the Euclidean parameter of interest but also other
infinite-dimensional nuisance parameters. The established
M-theorem under such a general scenario then enables us
to prove Theorem 2 by verifying its assumptions for the
linear transformation model. The details are provided in
the supplementary materials. Since the new M-theorem can
be useful for developing the asymptotic normality of sieve
estimators for other ODE models, we state it below for readers
of interest.

We first introduce the general setting and notation for
the proposed sieve M-theorem. Let m(θ ; W) be an objective
function of unknown parameters θ = (β , γ (·), ζ(·, β , γ ))

given a single observation W, where β is the finite-dimensional
parameter of interest, γ (·) = (γ1(·), . . . , γd2(·)) denotes
infinite-dimensional nuisance parameters, and ζ(·, β , γ ) is
another infinite-dimensional nuisance parameter that can be
a function of β and γ . Here “·” represents some components of
W. Given i.i.d. observations {Wi}n

i=1, the sieve estimator θ̂n =
(β̂n, γ̂ n(·), ζ̂n(·, β̂n, γ̂ n)) maximizes the objective function,
Pnm(θ ; W), over certain sieve space. For example, θ̂n becomes
the sieve MLE if m is the log-likelihood function. We denote the
derivative of m with respect to β as m′

β , the functional derivative
of m with respect to γj along the direction v(·) as m′

γj [v] for
1 ≤ j ≤ d2, and the functional derivative of m with respect to ζ

along the direction h(·) as m′
ζ [h], whose rigorous definitions are

given in the supplementary materials. The following theorem
then establishes the asymptotic normality of the sieve estimator,
β̂n, under the above general setting.

Theorem 3 (A general M-theorem for bundled parameters).
Under assumptions (A1)–(A6) in the supplementary materials,
we have

√
n(β̂n − β0) = A−1√nPnm∗(β0, γ 0(·), ζ0(·, β0, γ 0); W)

+ op(1) →d N(0, A−1B(A−1)T),

where

m∗(β0, γ 0(·), ζ0(·, β0, γ 0); W)

= m′
β(β0, γ 0(·), ζ0(·, β0, γ 0); W)

−
d2∑

j=1
m′

γj(β0, γ 0(·), ζ0(·, β0, γ 0); W)[v∗
j ]

− m′
ζ (β0, γ 0(·), ζ0(·, β0, γ 0); W)[h∗(·, β0, γ 0)],

B = P{m∗(β0, γ 0(·), ζ0(·, β0, γ 0); W)

m∗(β0, γ 0(·), ζ0(·, β0, γ 0); W)T},

with v∗
j = (v∗

j1, . . . , v∗
jd1

)T , h∗ = (h∗
1, . . . , h∗

d)
T and A given in

the assumption (A3).

Remark 9. The assumptions needed in Theorem 3 are similar
to those in Ding and Nan (2011) (see the supplementary mate-
rials for details). However, our proposed theorem significantly
differs from the main theorem in Ding and Nan (2011), because
the latter considers ζ(·, β) to be a function of only the finite-
dimensional parameter β , while we consider a more general
scenario of bundled parameters, where the nuisance parame-
ter ζ(·, β , γ ) can be a function of both the finite-dimensional
parameter β and other infinite-dimensional nuisance parame-
ters γ . The proposed theorem nontrivially extends the asymp-
totic distributional theories for M-estimation under this general
scenario.

Remark 10. We note that to find the least favorable directions
v∗ and w∗ required in (C7), we may solve the equations in
(C7), which can be simplified to equations (S37) and (S39)
provided in the supplementary materials. For illustration, we
provide explicit constructions of the least favorable directions
for the Cox model and for the linear transformation model with
a known transformation, respectively. Specifically, for the Cox
model, we have g0 ≡ 0 and v∗ can be derived as

v∗(t) = P{1(Y ≥ t)eXTβ0 X}
P{1(Y ≥ t)eXTβ0} ;

for the linear transformation model where γ0 is known, w∗ can
be obtained as

w∗(t) = φφφ(t) − g′
0(t)

∫ t

0
φφφ(s)ds,

where

φφφ(t) =
(

g′
0(t) exp(g0(t))�̃−1

0 (t) + 1
) P{1(�0(Y , X) ≥ t)X}

P{1(�0(Y , X) ≥ t)}
with �̃0 defined in (C7).

Given the above constructions of the least favorable direc-
tions, we can further simplify the nonsingularity condition of
the information matrix in (C8). For the Cox model, the infor-
mation matrix can be derived as I(β0) = ∫ ∞

0 P
(
[−X + μ(t)]⊗2

1(U ≥ t)
)

dt, where μ(t) = P{1(U ≥ t)eXTβ0 X}/P{1(U ≥
t)eXTβ0} with U defined in (C5). Respectively, for the linear
transformation where γ0 is known, the information matrix can
be derived as I(β0) = ∫ ∞

0 m2(t) · var(X|U ≥ t) · P(U ≥ t) ·
exp(g0(�̃0(t)))dt, where m(t) = g′

0(�̃0(t)) exp(g0(�̃0(t)))t+1.
The nonsingularity condition requires the integral of a covari-
ance matrix to be positive definite.
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Remark 11. Moreover, for the general class of ODE models
that include covariates Z with time-varying coefficients η(·)
in (2), we have further established the same convergence rate
of the sieve estimator −θ̂n in Theorem 4 and the asymptotic
normality of β̂n in Theorem 5 in the supplementary materials.
In particular, the conditions (C1)-(C8) have been revised to
(C1′)–(C8′) with additional regularity conditions on covariates
Z. We refer to the supplementary materials for the full list of
conditions, rigorous statements of theorems, and their proofs.

5. Simulation Studies

In this section, we use simulation studies to show the finite
sample performance of the sieve MLE under the time-varying
Cox model and the general linear transformation model.

5.1. Time-Varying Cox model

We generate event times from the model

�′
x(t) = α(t) exp(β1x1 + β2x2 + β3x3 + β4x4 + η(t)x5),

where (x1, x2, x3, x4, x5) follows a multivariate normal distribu-
tion with mean 0 and autoregressive covariance truncated at ±2,
β1 = β4 = 1, and β2 = β3 = −1. Let η(t) = sin( 3

4π t) be a
time-varying coefficient for x5 and the coefficients of all other
covariates be time-independent. The baseline hazard α(t) is set
to 0.5. The censoring times are generated from an independent
uniform distribution U(0, 3), which leads to a censoring rate
around 50%. The sample size N varies from 1000 to 8000. We
fit both the log-transformed baseline hazard function log α(t)
and time-varying coefficient η(t) by cubic B-splines and set
the number of knots Kn = �N′ 1

5 �, that is, the largest integer
smaller than N′ 1

5 , where N′ is the number of distinct observation
time points. The interior knots are located at the Kn quantiles
of the N′ distinct observation time points. We compare the
estimation accuracy and the computing time of the proposed
sieve MLE with those of the partial likelihood-based estimator
implemented in the “coxph” function in R with the “tt” argument
set as the same cubic B-spline transformation of time.

Table 1 summarizes the estimates of regression coefficients
β1 and β2 based on 1000 replications. The estimates of the
other two regression coefficients β3 and β4 perform similarly,
and the results are included in the supplementary materials.
For the time-varying coefficient η(t), we report the integrated
mean square error (IMSE), which is the weighted sum of mean
square error (MSE) of pointwise estimates over simulated time
points from 0 to 2. As one can see, the mean and standard
deviation of IMSE of the proposed sieve estimator decrease
as the sample size increases. Remarkably, they are consistently
smaller than those of the partial likelihood-based estimator.
For time-independent coefficients, the proposed sieve estimator
performs as well as the partial likelihood-based estimator. The
mean of the standard error estimator, which is obtained by
inverting the estimated information matrix of all parameters
including the coefficients of spline bases, is approximate to the
sample standard error, and the corresponding 95% confidence
interval achieves a proper coverage proportion. From the left
and middle panels of Figure 1, we can see that the means of

the estimated α(t) and η(t) are close to the true functions, and
the 95% pointwise confidence bands cover the true functions
well.

It is also worth noting that, in comparison to the partial
likelihood-based estimation method whose relative comput-
ing time with respect to that with the smallest sample size
increases quickly as the sample size grows, the proposed estima-
tion method is computationally more efficient, especially when
the sample size is large (see the right panel of Figure 1). When
the number of knots increases with the sample size, the compu-
tation time of the proposed method grows at a rate slightly larger
than the linear rate (but far below the quadratic rate).

5.2. Linear Transformation Model

We generate event times from the model �′
x(t) = q(�x(t))

exp(β1x1 + β2x2 + β3x3)α(t). The covariates are independent
normal with mean 0 and standard deviation 0.5 truncated at
±2. We consider four different settings for q(·) and α(·): (a) a
constant q(t) = 1 and a monotonic increasing α(t) = t3, in
which case the Cox model is correctly specified; (b) a monotonic
decreasing q(t) = e−t and a constant α(t) = 2; (c) a monotonic
decreasing q(t) = 2/(1 + t) and a constant α(t) = 1; 4) an
increasing q(t) = log(1 + t) + 2 and an increasing α(t) =
log(1 + t). In each setting, we generate the censoring time from
an independent uniform distribution U(0, c), where c is chosen
to achieve approximately 25%–30% censoring rates. The sample
size N varies from 1000 to 8000.

In setting (1), we compare the proposed sieve MLE for the
ODE-Cox model, where the function q(·) is set to 1, with the
partial-likelihood based estimator implemented using the R
package survival. We fit log α(·) by cubic B-splines with �N′ 1

5 �
interior knots that are located at the quantiles of the distinct
observation time points. In setting (2), we compare the pro-
posed sieve MLE for the ODE-LT model, where the function
q(·) is set to e−t , with the NPMLE for the equivalent logarithmic
transformation model considered in Zeng and Lin (2007b).
We fit log α(·) by cubic B-splines with the same placement of
interior knots. In setting (3), we compare the proposed sieve
MLE for the ODE-AFT model, where the function α is set to
1, with the rank-based estimation approach implemented using
the R package aftgee. We fit log q(t) by cubic B-splines with �N

1
7 �

interior knots that are located at the quantiles of the estimated
cumulative hazards under the Cox model. In setting (4) (as
well as settings (1)–(3)), we fit the general linear transformation
model (ODE-Flex) where both q(·) and α(·) are unspecified, and
compare the sieve MLE with the smoothed partial rank (SPR)
method in Song et al. (2006). Both methods constrain β1 = 1
for identifiability guarantee. For the sake of space, the results of
the setting 4) are provided in the supplementary materials.

Tables 2 and 3 summarize the estimates of regression coef-
ficients with the sample size N = 4000 based on 1000 repli-
cations. Full results for the other sample sizes are provided in
the supplementary materials. Table 2 indicates that when any of
the Cox model, the logarithmic transformation model, or the
AFT model is correctly specified, the sieve estimator for the
corresponding correctly specified ODE model achieves similar
performance as the partial-likelihood based estimator for the
Cox model, the NPMLE for the logarithmic transformation
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Table 1. Simulation results under time-varying Cox model.

N Method β1 = 1 β2 = −1 IMSE(η(t))

Bias SE ESE CP Bias SE ESE CP Mean SD

1000 ODE 0.008 0.070 0.070 0.958 −0.012 0.076 0.078 0.955 0.053 0.041
Cox-MPLE 0.006 0.070 0.068 0.952 −0.010 0.075 0.075 0.950 0.0109 0.094

2000 ODE 0.004 0.048 0.048 0.958 −0.004 0.053 0.054 0.957 0.029 0.021
Cox-MPLE 0.002 0.048 0.048 0.956 −0.003 0.053 0.053 0.959 0.053 0.041

4000 ODE 0.003 0.033 0.034 0.952 −0.003 0.038 0.038 0.938 0.016 0.011
Cox-MPLE 0.003 0.033 0.034 0.950 −0.002 0.038 0.037 0.936 0.026 0.020

8000 ODE 0.000 0.024 0.024 0.962 −0.001 0.026 0.026 0.938 0.009 0.006
Cox-MPLE 0.000 0.023 0.024 0.959 −0.001 0.026 0.026 0.936 0.013 0.009

Bias is the difference between the mean of estimates and the true value, SE is the sample standard error of the estimates, Mean is the mean of IMSE, and SD is the standard
deviation of IMSE. ESE is the mean of the standard error estimators by inverting the estimated information matrix of all parameters, including the coefficients of spline
bases, and CP is the corresponding coverage proportion of 95% confidence intervals.

Figure 1. True α0(t) and mean of α̂(t) (left); true η(t) and mean of η̂(t) (middle) with the sample size N = 8000; log-log plot of mean relative computation time (right)
with respect to the sample size under the time-varying Cox model.

Table 2. Estimates of regression coefficients under correctly-specified ODE-Cox with q(·) ≡ 1, ODE-LT with q(t) = e−t , and ODE-AFT with α(·) ≡ 1.

β1 = 1 β2 = 1 β3 = 1

Method Bias SE ESE CP Bias SE ESE CP Bias SE ESE CP

(1) MPLE 0.002 0.076 0.075 0.934 −0.003 0.075 0.075 0.941 −0.001 0.074 0.075 0.954
ODE-Cox 0.003 0.076 0.076 0.936 −0.002 0.075 0.076 0.942 0.000 0.074 0.076 0.955

(2) NPMLE 0.004 0.117 0.115 0.949 −0.001 0.114 0.115 0.951 0.003 0.113 0.115 0.960
ODE-LT 0.005 0.117 0.115 0.950 −0.000 0.114 0.115 0.951 0.003 0.113 0.115 0.961

(3) Rank-based 0.004 0.105 0.102 0.944 −0.001 0.102 0.102 0.950 0.002 0.100 0.103 0.954
ODE-AFT 0.000 0.102 0.097 0.944 −0.005 0.100 0.097 0.944 −0.002 0.097 0.097 0.950

NOTE: Bias, SE, ESE and CP contain the same meanings as those in Table 1. Setting (1): the Cox model is correctly specified. Setting (2): the logarithmic transformation model
is correctly specified. Setting (3): the AFT model is correctly specified.

Figure 2. The log-log plots of mean relative computing time with respect to the sample size under the ODE-LT, the ODE-AFT model, and the ODE-Flex model are provided
from left to right, respectively.

model, or the rank-based estimator for the AFT model. How-
ever, the relative computing time of the proposed ODE approach
increases linearly as the sample size grows while that of the

NPMLE for the logarithmic transformation model or the rank-
based method for the AFT model increases in a quadratic rate
as shown in Figure 2.
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Figure 3. The solid blue curves are the true q(·) (upper row) and α(·) (lower row). The solid red curves are the means of corresponding estimated q̂(·) and α̂(·) under
the general linear transformation model. The dashed yellow curves represent 95% pointwise confidence bands over 1000 replications. From left to right, the four columns
correspond to settings (1)–(4), respectively.

Table 3. Estimates of regression coefficients under the general linear transforma-
tion model ODE-Flex with both q(·) and α(·) unspecified.

β2 = 1 β3 = 1

Setting Bias SE ESE CP Bias SE ESE CP

(1) 0.008 0.106 0.107 0.947 0.012 0.104 0.107 0.959
(2) −0.019 0.161 0.151 0.927 −0.016 0.159 0.151 0.938
(3) −0.014 0.134 0.131 0.941 −0.012 0.131 0.132 0.945
(4) 0.001 0.092 0.090 0.939 0.005 0.091 0.090 0.954

NOTE: Bias, SE, ESE, and CP contain the same meanings as those in Table 1.

For the general linear transformation model, we find that the
proposed ODE-Flex method has advantages against the existing
SPR method in terms of estimation accuracy, numerical stability,
and computational efficiency. We refer to the supplementary
materials for detailed results and comparison with SPR. From
Table 3, we can see that the bias of the ODE-Flex estimator is
nearly negligible in all settings. The standard error estimators
are close to the sample standard errors, and the corresponding
95% confidence intervals achieve a reasonable coverage pro-
portion. When the Cox model, the logarithmic transformation
model, or the AFT model is correctly specified, their estimators
(in Table 2) achieve smaller standard errors than those for ODE-
Flex (in Table 3), which is expected because both q(·) and α(·)
are unspecified in ODE-Flex. Figure 3 shows the mean of α̂(·)
and q̂(·), respectively. As one can see, the means of α̂(·) and
q̂(·) under the general linear transformation model are all close
to the true functions. Moreover, the relative computing time of
ODE-Flex increases in a much smaller rate than that of SPR as
the sample size grows as shown in the right panel of Figure 2.

Note we have also considered other alternative knots place-
ments (see the supplementary materials) and our numerical

results suggest that knot selection does not appear critical for
the proposed method.

6. Data Example

In this section, we apply the proposed method to a kidney post-
transplantation mortality study. End-stage renal disease (ESRD)
is one of the most deadly and costly diseases in the United
States. From 2004 to 2016, ESRD incident cases increased from
345.6 to 373.4 per million people, with Medicare expenditures
escalating from 18 to 35 billion dollars (Saran et al. 2017).
Kidney transplantation is the renal replacement therapy for the
majority of patients with ESRD. Successful kidney transplanta-
tion is associated with improved survival, improved quality of
life, and health care cost savings when compared to dialysis.
However, despite aggressive efforts to increase the number of
donor kidneys, the demand far exceeds the supply of donor
kidneys for transplantation and hence, the donor waiting list
is very long. Currently about 130,000 patients are waiting for
lifesaving organ transplants in the United States among whom
100,000 await kidney transplants and fewer than 15% of patients
will receive transplants in their lifetime. To optimize the organ
allocation, further research is essential to determine the risk
factor associated with post-transplant mortality.

To better understand this problem, we considered the data
obtained from the Organ Procurement and Transplantation
Network (OPTN). There were 146,248 patients who received
transplants between 1990 and 2008. Failure time (recorded in
years) was defined as the time from transplantation to graft
failure or death, whichever occurred first, where graft failure
was considered to occur when the transplanted kidney ceased
to function. Patient survival was censored at the end of study
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Figure 4. Estimated baseline hazard α̂(t) using the proposed sieve MLE method for the kidney transplantation data.

Table 4. Summary of estimates for time-independent effects in kidney post-
transplantation mortality study.

Variables DCD Polycystic Diabetes Hypertension

EST −0.081 −0.511 0.333 −0.146
ESE 0.038 0.021 0.012 0.014
95% CI [−0.156, −0.007] [−0.553, −0.469] [ 0.310, 0.357] [−0.172, −0.119]
p-value 0.033 < 0.001 < 0.001 < 0.001

EST is the estimated time-independent effect, ESE is the estimated standard error
by inverting the estimated information matrix of all parameters including the
coefficients of spline basis, and CI is the confidence interval.

(2008). The median follow-up time was around 6 years and the
censoring rate was 62%. Covariates included in this study were
age at transplantation, race, gender, cold ischemic time, dona-
tion after cardiac death (DCD), BMI, expanded criteria donor
(ECD), dialysis time, comorbidity conditions such as glomeru-
lonephritis, polycystic kidney disease, diabetes, and hyperten-
sion. Detecting and accounting for time-varying effects are par-
ticularly important in the context of kidney transplantation,
as nonproportional hazards have already been reported in the
literature (Wolfe et al. 1999; He et al. 2017). Also, analyses with
time-varying effects provide valuable clinical information that
could be obscured otherwise.

However, existing statistical softwares become computa-
tionally infeasible when fitting a time-varying effects model
on a dataset as large as what we have here. Thus, to estimate
the potential time-varying effects, we fit the time-varying
Cox model using the proposed sieve MLE, which is com-
putationally scalable. Specifically, based on previous studies,
DCD, Polycystic, Diabetes and Hypertension are modeled
with time-independent effects, and the remaining variables
are estimated with time-varying effects. The time-varying
effects are all implemented by cubic B-splines with five interior
knots, which is chosen based on the Bayesian information
criterion. Figure 4 shows the estimated baseline hazard function.
We can see that the post-transplant mortality is high in the
short term after surgery, with a weakening association over
time. Table 4 summarizes the estimated time-independent
effects, and Figure 5 shows examples of fitted time-varying
effects with 95% pointwise confidence intervals, where the
standard error estimators were obtained by inverting the

estimated information matrix of all parameters including time-
independent coefficients and the coefficients of spline bases.
As one can see, the effects of baseline age varied over time,
resulting in an eventually strengthened association. Specifically,
compared with the reference group (age at transplantation
between 19 and 39), patients 40–49 years of age had a protective
effect in the short term after transplantation. We can also see that
the high cold ischemic time is a risk factor for mortality in the
short run, with a weakening association over time. Thus, special
care should be dedicated to improve the short-term outcome.
As expected, longer waiting times on dialysis (greater than 5
years) negatively impact post-transplant survival, especially
in the short run. Male gender was not significantly associated
with mortality immediately after the renal transplantation but
became a risk factor in the long run. As can be seen in Figure 5,
underweight shows a protective effect in the short run, and then
a slightly weakening association over time, which confirms the
previous finding of Lafranca et al. (2015). The results regarding
high BMI should be interpreted with caution. Although higher
levels of BMI in the general population are typically associated
with high mortality, in chronic kidney diseases, such as patients
with kidney dialysis and kidney transplantation, higher BMI has
been associated with better survival, which has been labeled as
reverse epidemiology (Dekker et al. 2008; Kovesdy et al. 2010).
Our results show that both overweight and obesity improved
survival in the short term after kidney transplantation, but
obesity became a risk factor after long-term exposure. One
possible explanation is that BMI is a complex marker of
visceral and nonvisceral adiposity and also of nutritional status
including muscle mass (Kovesdy et al. 2010), and the improved
short-term outcome associated with higher BMI may be related
to differential benefits by one or more of these components.
Our findings indicate a need to critically reassess the role
of BMI in the risk stratification of kidney transplantation. A
further assessment (such as subgroup analysis) of high BMI that
differentiates between visceral adiposity, nonvisceral adiposity
and higher muscle mass may improve risk stratification in
kidney transplant recipients. In addition, our results show
that graft survival for patients with Glomerulonephritis is
better than patients with other primary diseases. Regarding
racial disparities, the long-term survival outcomes for African
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Figure 5. Estimated time-varying effects using the proposed sieve MLE method for the kidney transplantation data.

Americans continue to lag behind non-African Americans.
Finally, as expected, the effect of expanded criteria donor (ECD)
is not as good as optimal donor. When a suboptimal organ
becomes available, patients and physicians must decide whether
to accept the offer and special care must be dedicated to improve
the survival benefit.

7. Discussion

In this article, we have proposed a novel ODE framework for
survival analysis, which unifies the current literature, along with
a general estimation procedure which is scalable and easy to
implement. The ODE framework provides a new perspective
for modeling censored data, which further allows us to use
well-developed numerical solvers and local sensitivity analysis

tools for ODEs in parameter estimation. Although we have only
focused on one class of ODE models in this article, the ODE
framework and the estimation method offer new opportunities
for investigating more flexible model structures.

We note that a few recent works also use ODEs for survival
analysis. Specifically, Tang et al. (2022) model the cumulative
hazard as in the ODE (1) with the function f (·) being a neural
network to improve feature representation. The method pro-
posed in Tang et al. (2022) can be viewed as a neural-network-
based extension of the general framework studied in this work,
which demonstrates that the proposed ODE framework can be
used to build flexible models. Groha, Schmon, and Gusev (2020)
propose a neural-network-based ODE approach to model the
Kolmogorov forward equation that characterizes the transition
probabilities for multi-state survival analysis. Both the afore-
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mentioned works focus on developing flexible models with pow-
erful representation learning via neural networks to improve
prediction performance. In this article, instead, we focus on
estimation and inference for a general class of semiparametric
ODE models, in which case the effects of certain covariates are
often of interest. More importantly, we revisit the rich litera-
ture of survival analysis and provide a unified view of many
existing survival models, which is the key insight that differen-
tiates this work and the aforementioned ones. This unification
merit serves as the foundation of the proposed widely applicable
estimation procedure. We also establish the consistency and
semiparametric efficiency of the proposed sieve estimator for a
general class of semiparametric ODE models, with a new general
sieve M-theorem.

The proposed general theory derives the asymptotic distri-
bution of bundled parameters, where the nuisance parameter is
a function of not only the regression parameters of interest but
also other infinite-dimensional nuisance parameters. Though
we have only illustrated the efficient estimation in the linear
transformation model as an example to motivate such a theoret-
ical development, the proposed general theory can be extended
to other models.

In addition, an interesting application of the unified ODE
framework is to check the model specification. In particular, the
estimation and inference for a general ODE model can help test
whether a nested model is appropriate for a dataset. For example,
Proposition 2 implies that the function q(·) or α(·) in the linear
transformation model (5) should be a power function when it
coincides with the Cox or the AFT model. Though we have
established the consistency of the functional parameters q(·)
and α(·) in the nonparametric linear transformation model, it is
worthwhile to further investigate their asymptotic distributional
theory for model diagnostics as future work. As a preliminary
study, we have explored a heuristic parametric approach for
model diagnostics and provided its finite sample performance
in the supplementary materials.

Finally, we note that a few recent works have tried to address
the computation burden of certain estimation methods for spe-
cific models on massive time-to-event data. In particular, Wang
et al. (2019) proposed an efficient divide-and-conquer (DAC)
algorithm for the sparse Cox model. Kawaguchi et al. (2020)
developed an algorithm for reducing the computation cost of fit-
ting the Fine-Gray (Fine and Gray 1999) proportional subdistri-
butional hazards model by exploiting its special structure. Zuo
et al. (2021) proposed a subsampling procedure to approximate
the full-data estimator for the additive hazard model. Note that
most of these methods are tailored for a specific model while our
method can be applied more broadly. Further, our estimation
procedure and these methods are not competitors. In contrast,
some of the techniques used in these methods, such as DAC, can
be naturally integrated into the proposed estimation procedure,
which is an interesting future direction to be explored.

Supplementary Materials

The supplementary materials contain the detailed derivation of the local
sensitivity analysis and the optimization algorithm, the proposed general
M-theorem for bundled parameters (Theorem 3), the proofs of Theo-
rems 1–3 and Propositions 1–2, the convergence rate and the asymptotic
normality of the proposed sieve estimator for the general class of ODE

models in the presence of covariates Z with time-varying coefficients, and
additional simulation results.
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