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ABSTRACT
We propose a penalized Haar wavelet approach for the classification
of three-dimensional (3D) brain images in the framework of
functional data analysis, which treats each entire 3D brain image as
a single functional input, thus automatically takes into account the
spatial correlations of voxel-level imaging measures. We validate
the proposed approach through extensive simulations and
compare its classification performance with other commonly used
machine learning methods, which show that the proposed method
outperforms other methods in both classification accuracy and
identification of the relevant voxels. We then apply the proposed
method to the practical classification problems for Alzheimer’s
disease using positron emission tomography images obtained from
the Alzheimer’s Disease Neuroimaging Initiative database to
highlight the advantages of our approach.
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1. Introduction

The clinical diagnosis of Alzheimer’s disease (AD), the most common cause of dementia,
uses a variety of tests including patient’s family history, physical examination, mini-men-
tal state examination, and/or neuroimaging. Recently, functional neuroimaging technolo-
gies, such as the single-photon emission computed tomography (SPECT) and the
positron emission tomography (PET), are rapidly becoming powerful tools in the diagno-
sis of AD since these technologies have made it possible to reveal pathophysiological
changes before irreversible anatomical changes are present. For example, 18F-Fluorodeox-
yglucose (FDG) is a widely used radioactive tracer in PET imaging, and FDG-PET pro-
vides useful information about the cerebral glucose metabolic rate. Studies have
demonstrated reduced glucose metabolism in a small number of brain regions such as the
temporal and parietal lobes in AD patients comparing to normal subjects [1,2]. As such
difference becomes noticeable, researchers are increasingly interested in distinguishing
AD patients from normal subjects by utilizing their brain images. As a non-negligible
complementary way in the diagnosis of AD, PET imaging has high specificity and sensi-
tivity, even a long period before the full-blown dementia is developed.
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A large number of brain imaging studies have been performed in patients with AD and
its prodromal stage, mild cognitive impairment (MCI), in an effort to assist in the early
diagnosis of AD. Traditional methods to discriminate between patients with AD and nor-
mal control subjects are mostly based on voxel-wise analysis. However, each image con-
tains as many as millions of voxels, which can be a major cause of practical limitation. To
overcome the curse of dimensionality, dimension reduction techniques have been devel-
oped prior to classification. One common way is to group the voxels into anatomical
regions and average the voxel values within each region of interest (ROI) without taking
into account any heterogeneity among the voxels. Prior knowledge of what specific
regions may be correlated to the disease is generally desirable; however, this knowledge is
not always available in practice. In order to account for the spatial correlation between
voxels as well as to reduce the dimension of imaging data, principal component analysis
(PCA) has been performed in the literature, which reduces the feature space to a smaller
number of principal components (PCs, called eigenimages) while still preserves the largest
portion of variability [3,4]. The PC scores are then used as predictors in, for example, the
logistic regression. However, each PC is usually comprised of weighted contributions of
all voxels within the brain, so PCA is usually less accurate and may blur the true relation-
ship between the progression of disease and voxels as what we will show later in numerical
studies. Recent development in random matrix theory shows that the PCs obtained from
the large-scale sample covariance matrix are not valid [5,6].

There has been a growing interest in developing machine learning classification techni-
ques due to the large number of voxels. Support vector machines (SVMs) are one of these
techniques used for binary classification [7]. They aim to find the hyperplane that maxi-
mizes the distance from the nearest training points while correctly separating two classes.
To avoid the curse of dimensionality and improve the prediction performance, SVMs are
often performed on selected features, including selected voxels [8,9], ROIs [10], or even
PCs [11,12]. In an attempt to incorporate the spatial correlation, Stoeckel and Fung [13]
and Hinrichs et al. [14] presented modified versions of SVMs that are implemented by
setting similar weights to neighbouring voxels at a very local level. Although SVM-like
methods have been shown to achieve high classification accuracy rates, they are not opti-
mized for selecting sensitive and interpretable disease-related brain subregions and fail to
provide estimates for the probability that a given subject has the disease or not. To address
this issue, logistic regression can be implemented, often with a regularization for variable
selection to prevent overfitting. Regularized logistic regression models with the potential
of taking into account the highly correlated predictors in imaging have been proposed for
this purpose. Shen et al. [15] developed an ROI-based regularized logistic regression
model with the elastic net penalty [16], a linear combination of lasso and ridge penalties,
to classify AD subjects from others. The elastic net penalty enables to select groups of
highly correlated ROIs. Their method does not consider correlations between voxels
within each ROI. Casanova et al. [17] discussed regularized logistic regression with the
elastic net penalty in the context of a large-scale regularization problem in which voxels
are used as predictors. For the typical large-p-small-n classification problem, they showed
that it can be solved efficiently using the coordinate descent algorithm [18], and it is pref-
erable to SVMs in terms of classification accuracy. However, they did not evaluate the per-
formance in identifying relevant voxels, and in fact they only implemented the ridge
regression.
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In this paper, we propose a highly effective and computationally efficient regularized
functional logistic regression approach using Haar wavelets, which automatically pre-
serves the spatial correlation information of voxels by viewing each subject’s image as a
realization of 3D functional predictor. Functional logistic regression has been used in the
classification of functional data. For example, Reiss and Ogden [19] considered the prob-
lem by applying functional PCA to images and demonstrated their method in two-dimen-
sional (2D) settings. Reiss et al. [20] and Ciarleglio and Ogden [21] considered the
wavelet-based approach for the image predictors. Zhao et al. [22] proposed a general
wavelet-based lasso approach in functional linear regression, but only in the 1D case. The
general goal of functional data analysis (FDA) is to estimate the coefficient function that
describes the association between an outcome and a functional predictor. In this study,
we are interested in finding out which voxels are most responsive in determining the dis-
ease status. In particular, we assume that only few brain subregions are predictive to the
disease status. Properly regularized FDA with Haar wavelet expansion is able to yield a
sparse coefficient function estimate (taking value zero at most places in the brain) and
also enjoys the advantage of preserving the spatial correlation among voxels. Note that
this desirable property was discussed in detail in Wang et al. [23] for linear models. We
extend their method to logistic regression models with image predictors. To demonstrate
advantages of the proposed approach, we compare it with other classification methods
including regularized voxel-level logistic regression with the elastic net penalty and PCA-
based logistic regression.

The data used in this paper are baseline FDG-PET images of 403 subjects from the Alz-
heimer’s Disease Neurological Initiative (ADNI) database, including 95 AD patients, 206
MCI patients, and 102 normal controls (NC). The rest of this paper is organized as
follows. We present the proposed approach and also describe two other classification
methods in Section 2. Numerical results for analysing the simulated and real data-sets are
presented in Section 3, demonstrating the superior voxel selection and classification per-
formance of the proposed approach. Final conclusions are provided in Section 4.

2. Materials and methods

In this section, we present three logistic regression-based methods for the classification of
brain images and briefly introduce the data-set we use in preparation of this paper. In par-
ticular, we describe how the proposed approach is applied in the functional regression
framework for analysing brain images, and also explain in detail why we choose to use
Haar wavelets.

2.1. Haar-wavelet-based regularized functional logistic regression (HW-RFLR)

Logistic regression is commonly used for a binary response variable Y. Functional logistic
regression is developed to relate the response variable Y to a functional predictor. Here
we treat each subject’s 3D brain image as a functional predictor Xi, where Xi(u, v, w) is the
covariate value, e.g. the FDG-PET image measure, of the voxel located at (u.v.w) for sub-
ject i. Suppose Yi takes values either 0 or 1, indicating the disease status of subject i. We fit
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the following 3D functional logistic regression model

log
pi

1� pi

� �
¼ b0 þ

Z Z Z
Xiðu; v;wÞbðu; v;wÞ dudvdw; i ¼ 1; :::; n; (1)

where pi D P(Yi D 1jXi) for subject i and b(u, v, w) is the 3D regression coefficient func-
tion. In this study, we are particularly interested in the assumption that b(u, v, w) D 0
over large regions, and potential discontinuities of b are allowed.

Choosing proper basis functions to represent b in the above regression model is a criti-
cal step. Among a variety of basis functions, we choose 3D Haar wavelets to decompose b
owing to the following desirable properties. First, the use of Haar wavelets provides a way
of overcoming the issue of multicollinearity caused by large spatial correlation among
neighbouring voxels. Haar wavelets consist of piecewise constant functions. Our estima-
tion procedure tends to estimate b to be zero or non-zero altogether for a cluster of neigh-
bouring voxels instead of a single voxel. Second, as mentioned earlier, we assume that only
few brain subregions are predictive, implying sparsity of the coefficient function. Exact
zero regions can be yielded by the sparsity of wavelet coefficients (see Wang et al. [23],
Appendix B). Third, Haar wavelets can be applied as a signal compression technique.
They provide a good approximation of the original function with only a subset of non-
zero wavelet coefficients, which can be achieved by zeroing out the wavelet coefficients
that are smaller than a prespecified threshold value. The dimensionality can thus be
reduced if we only consider the non-zero subset.

3D Haar wavelets can be obtained by tensor products of 1D Haar wavelets. For simplic-
ity, we assume that 0 � u, v, w � 1. 1D Haar wavelets can be constructed from a mother
wavelet function and a scaling function. The mother wavelet function c(t) is given by

cðtÞ ¼
1 if 0�t< 1=2;

�1 if 1=2�t< 1;

0 otherwise;

8<
:

and the scaling function f(t) is given by

fðtÞ ¼ 1 if 0�t< 1;

0 otherwise:

�

All 1D Haar wavelets are obtained as translated and dilated versions of the above func-
tions:

cj;kðtÞ ¼
ffiffiffiffi
2j

p
cð2jt � kÞ;

fj;kðtÞ ¼
ffiffiffiffi
2j

p
fð2jt � kÞ;

where j D 0, 1, … and k D 0, 1, …, 2j ¡ 1. The index j refers to dilations and k refers to
translations and

ffiffiffi
2

p
is the normalizing factor. It can be seen that these basis functions are

orthogonal to each other, and the support becomes smaller as j increases. The functions
fj, k(t) and cj, k(t) are usually referred to as averaging and differencing operations,
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respectively. Let us now consider tensor products of three elements with each of them
being f(t) or c(t). The total number of different combinations is 23 D 8. The 3D scaling
function is the tensor product of three 1D scaling functions f(t). 3D mother wavelet func-
tions are the remaining seven tensor products considering all cross-spatial horizontal, ver-
tical, and diagonal directions. 3D Haar wavelets are generated as adapted translations and
dilations of these functions by using a tensor product of three 1D Haar wavelets. For
example,

fj;fk;l;mgðu; v;wÞ D fj;kðuÞfj;lðvÞfj;nðwÞ:

For more details about the construction of 3D Haar wavelets, see [24].
Let B(u, v, w) denote the collection of 3D Haar wavelet basis functions constructed

above using tensor products. We can now decompose Xi(u, v, w) and b(u, v, w) as follows:

Xiðu; v;wÞ ¼ CT
i Bðu; v;wÞ; bðu; v;wÞ ¼ Bðu; v;wÞTh; (2)

where Ci is the known wavelet coefficient vector of Xi and h is the unknown coefficient
vector of b. Then by the orthogonality of wavelet basis functions, the 3D functional logis-
tic regression reduces to the following multiple logistic regression by plugging (2) into (9):

log
pi

1� pi

� �
¼ b0 þ CT

i h: (3)

Once an estimator of h is obtained from (3), an estimator of b can be obtained from (2).
It should be noted that the wavelet expansion of a given function is determined by the

coarsest and the finest levels of decomposition. In practice, we only observe X(u, v, w)
discretely, e.g. at a finite number of uniformly distributed voxels in a cube. Representing
observed X(u, v, w) by a set of wavelet coefficients is called discrete wavelet transform. In
this case, the finest level is always given as the operations on adjacent voxels, and thus
only the coarsest level needs to be determined, which is referred to as the level of decom-
position in this paper. The number of basis functions in the set B(U, V, W) or the length
of Ci depends on the level of decomposition.

The estimation of h in (3) is accomplished by fitting the model via a penalized maxi-
mum log-likelihood:

bh ¼ argmax
h

1
n

Xn
i¼1

fYilog pi þ ð1� YiÞlog ð1� piÞg � λk h k1; (4)

where k ¢ k1 denote the L1 norm. Such a penalty is called the lasso penalty [25] that makes
many estimated coefficients to be exactly zero. The constant λ � 0 is a tuning parameter
that determines how much shrinkage is applied to the vector h. This regularized logistic
regression problem can be efficiently solved by the coordinate descent algorithm [18].
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The estimation of b(u, v, w) is then obtained by

bbðu; v;wÞ ¼ Bðu; v;wÞTbh:
Note that when the wavelet transform is performed under different levels of decomposi-
tion, the obtained bh is different, corresponding to different collections of B(u, v, w). As a
result, the estimator bbðu; v;wÞ would be different. We set the level of decomposition as
another tuning parameter in addition to λ in (4), and their optimal values will be deter-
mined by certain criterion using a data-driven approach. Hence an identified brain region
consists of a cluster of neighbouring cubes, where the sizes of the cubes are controlled by
the level of decomposition.

2.2. Elastic net regularized logistic regression (EN-RLR)

The elastic net is considered as a generalized version of lasso which encourages a grouping
effect by allowing strongly correlated predictors to be in or out of the model together. It
also enjoys the computational advantage of lasso. It should be noted that Haar wavelets
are constructed to account for the grouping effect of the neighbouring voxels, so we only
implement the L1 penalty in Section 2.1. To compare with the approach proposed in
Section 2.1, here we evaluate the performance of EN-RLR at the voxel level rather than
the ROI level [15], which is given by

log
pi

1� pi

� �
¼ b0 þ

X
u;v;w

Xiðu; v;wÞbðu; v;wÞ; i ¼ 1; � � � ; n; (5)

where (u, v, w) are integers indicating the location of the corresponding voxel. Denote the
total number of voxels by p. Since p � n, regularization is needed to prevent overfitting.
The elastic net method maximizes the following regularized log-likelihood function:

1
n

Xn
i¼1

fYilog pi þ ð1� YiÞlog ð1� piÞg � λPaðbÞ; (6)

where Pa(b) DP
u, v, w{ajb(u, v, w)j C (1 ¡ a)b(u, v, w)2}. It can be seen that the penalty

λPa(b) is a mixture of L1 and L2 penalties, and when a D 1, (6) is simplified to the lasso
problem. We set both λ and a as tuning parameters, whereas in [17], a is set to be zero to
enforce the L2 penalty, resulting in a ridge regression. Note that (4) is for the wavelet-
transformed images whereas (6) is for the original images.

2.3. Principal-component-based logistic regression (PC-LR)

PCA is a widely used tool for dimension reduction. It projects the original images into the
eigenspace such that the variance of the projection along each component, the so-called
principal component (PC), is maximized [3]. Each PC is referred to as an eigenimage. As
most of the variability of images are captured by a small number of PCs, we retain the first
few PCs with greater variances. The associated PC scores are treated as predictors in the
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logistic regression model. The original coefficient function b can be obtained by the
inverse transform of the coefficients of PC scores. The model can be written as follows:

log
pi

1� pi

� �
Db0 þ STi z; i ¼ 1; � � � ; n: (7)

where S is the matrix composed of PCs of the matrix X. The original b will be estimated bybb ¼ Vbz , where the columns of V are corresponding loadings of the PCs. The number of
PCs used in the regression may affect the classification performance. Thus, in this work,
we treat the number of PCs as a tuning parameter.

2.4. PET imaging data

PET imaging data analysed in this paper were obtained from the ADNI database (adni.
loni.ucla.edu). The ADNI project was launched in 2003 by the National Institute on
Aging, the National Institute of Biomedical Imaging and Bioengineering, the Food and
Drug Administration, private pharmaceutical companies, and non-profit organizations,
as a $60 million, five-year public–private partnership. The primary goal of ADNI has
been to test whether serial MRI, PET, other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure the progression of MCI and early AD.
Determination of sensitive and specific markers for disease progression in very early AD
is intended to aid researchers and clinicians to develop new treatments and monitor their
effectiveness, as well as lessen the time and cost of clinical trials. The Principal Investigator
of this initiative is Michael W. Weiner, MD, VA Medical Center and University of Cali-
fornia, San Francisco. ADNI is the result of efforts of many co-investigators from a broad
range of academic institutions and private corporations, and subjects have been recruited
from over 50 sites across the USA and Canada.

Detailed information about how FDG-PET images were acquired is available on
the ADNI website. The processing steps can be summarized as follows. First, six
five-minute frame scans were acquired 30–60 min after injecting FDG to the partici-
pants. These frame scans were co-registered to the first frame and then averaged to
create a single image. After this step, the co-registered, averaged PET images were
reoriented into a standard 160 £ 160 £ 96 voxel image grid with 1.5-mm cubic vox-
els and the anterior–posterior axis of the subject is parallel to the anterior commis-
sure (AC)– posterior commissure (PC) line. Finally, smoothing is performed to
produce a uniform resolution. The data-set used in the present work consists of 403
participants’ baseline scans, including 102 NC participants, 206 MCI participants,
and 95 AD participants. After a careful review of each AD case by co-author Dr
Frey, 15 out of the original 95 AD cases are found to be actually non-AD dementia
cases, thus removed from the analysis. By the 48th month of the follow-up, 86 out
of 206 MCI patients have converted to AD. To reduce the dimensionality, we set the
values of voxels outside the brain and in the ventricles to zero and exclude the col-
umns whose elements are all zero in the wavelet coefficient matrix obtained after
applying 3D Haar wavelet transform to the images. Typically, the dimensionality can
be reduced to about 700,000 from more than two million, which is a significant
decrease.

BIOSTATISTICS & EPIDEMIOLOGY 9



3. Results

3.1. Simulations

We conduct simulation studies to evaluate the performance of the three classification
methods. The images, covariates in the logistic regression, are obtained from the ADNI
data-set. For illustrative purposes, we extract the same 160 £ 160 axial slice from each
subject and use it as the 2D functional covariate Xi(u, v). For a given coefficient function
b, we randomly generate the response variable Yi from a Bernoulli distribution with suc-
cess probability pi determined by the following 2D model:

log
pi

1� pi

� �
¼ b0 þ

Z Z
Xiðu; vÞbðu; vÞ dudv; i ¼ 1; � � � ; n: (8)

The regression coefficient function b(u, v) is chosen to be non-zero at two small round
regions, see Figure 2(a). The scale of b(u, v), together with the intercept b0, is adjusted to
achieve a Bayes error rate [26] around 0.15 which is the lowest possible error rate for
any classifier. We consider two case-control ratios, the ratio of the number of occurrence
(Yi D 1) to the number of non-occurrence (Yi D 0), at r D 1: 1 and r D 1: 2, by randomly
choosing 200 and 300 subjects from the ADNI data-set, respectively, for their 2D images.
Such designed simulation study keeps the original spatial correlation structure of the
ADNI FDG-PET images, whereas the disease status is randomly generated with the origi-
nal disease status completely ignored.

The selection of tuning parameters is involved in all three methods. We consider a vari-
ety of criteria for determining optimal tuning parameters, including cross-validated devi-
ance (CV-DEV), cross-validated misclassification error rates (CV-MER), cross-validated
area under the ROC curve (CV-AUC), AIC, and BIC, where the use of CV-DEV and CV-
MER is discussed in [18], and CV-AUC criterion, specially designed for optimizing the
classification performance for binary outcomes, is discussed in [27]. AIC and BIC are cri-
teria that penalize the number of free parameters, which are common for variable selec-
tion in high-dimensional models. Note that in the calculation of AIC and BIC, the
degrees of freedom (df) need to be determined. An unbiased estimate of df when only L1
penalty is used is the number of non-zero coefficients in the model [28], while an unbi-
ased estimate of df is derived as the trace of the modified hat matrix, when a mixture of
penalties is presented, see [29] for details. In PC-LR, df is estimated as the number of PCs
used in the model.

We apply a 10-fold cross-validation to evaluate prediction accuracy. Specifically, each
simulated data-set is randomly partitioned into 10 folds. Among them, nine folds are
used as the training set to fit model (8) by each of the optimal tuning parameter selection
criteria; the remaining fold is used as a test set to calculate the predicted probability bpi for
each test observation. The procedure is repeated 10 times with each of the 10 folds used
exactly once as the test set. For predictions based on each cut-off value of bpi, we compute
sensitivity and specificity and then construct the empirical ROC curves by changing the
cut-off point of bpi. Area under the ROC curve (AUC) is calculated to provide an overall
measure of the discriminative ability of each of the three classification models. The proce-
dure is repeated 100 times by generating 100 independent sets of binary response varia-
bles. The average ROC curves with average AUCs are presented in Figure 1. It shows that

10 X. WANG



a

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-SPE

S
E

N

 

 

AUC: 0.908(0.017)
AUC: 0.898(0.017)
AUC: 0.883(0.022)

b

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-SPE

S
E

N

 

 

AUC: 0.898(0.017)
AUC: 0.881(0.017)
AUC: 0.856(0.025)

c

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-SPE

S
E

N

 

 

AUC: 0.898(0.019)
AUC: 0.887(0.022)
AUC: 0.885(0.020)

d

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-SPE

S
E

N

 

 

AUC: 0.892(0.021)
AUC: 0.873(0.021)
AUC: 0.864(0.022)

e

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-SPE

S
E

N

 

 

AUC: 0.904(0.018)
AUC: 0.891(0.020)
AUC: 0.886(0.021)

f

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-SPE

S
E

N

 

 

AUC: 0.896(0.018)
AUC: 0.880(0.019)
AUC: 0.867(0.020)

g

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-SPE

S
E

N

 

 

AUC: 0.887(0.028)
AUC: 0.872(0.025)
AUC: 0.887(0.020)

h

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-SPE

S
E

N

 

 

AUC: 0.876(0.023)
AUC: 0.858(0.023)
AUC: 0.841(0.022)

i

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-SPE

S
E

N

 

 

AUC: 0.905(0.020)
AUC: 0.861(0.023)
AUC: 0.875(0.022)

j

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1-SPE

S
E

N

 

 

AUC: 0.899(0.016)
AUC: 0.809(0.041)
AUC: 0.804(0.027)

Figure 1. Simulation results. Average ROC curves and their average AUCs (standard errors) for three clas-
sification methods over 100 simulations (solid curve: HW-RFLR; dash-dot curve: EN-RLR; dotted curve: PC-
LR). The left panel is for r D 1: 1, the right panel is for r D 1: 2. The selection criterion used in (a) and
(b) is CV-DEV, (c) and (d) is CV-MCR, (e) and (f) is CV-AUC, (g) and (h) is AIC and (i) and (j) is BIC.
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the proposed HW-RFLR consistently dominates the other two methods. In general, our
simulations indicate that the proposed HW-RFLR approach can achieve higher classifica-
tion accuracy than EN-RLR and PC-LR for both balanced (i.e. r D 1: 1) and unbalanced
(i.e. r D 1: 2) case-control data.

In addition to the classification performance, we also assess the performance of
identifying non-zero regions of b(u, v) on the 160 £ 160 grid. To this end, we fit
model (8) with the optimal tuning parameters selected via the selection criterion
CV-DEV, the one with the best performance in above simulations. Figure 2 shows
the median estimates of b(u, v) for the 100 repetitions. The results of r D 1: 1 and
r D 1: 2 are similar, so we only present the results of r D 1: 1. From Figure 2, we
see that HW-RFLR and EN-LR methods not only yield sparse estimates of b(u, v),
but also correctly pick up the two non-zero regions of b(u, v), whereas PC-LR
method yields non-sparse result that include a large number of falsely discovered
voxels.

Figure 2. Simulation results. Comparison of median of bbðu; vÞ using three methods over 100 replica-
tions for the simulated data sets under the case of r D 1: 1. (a) true b(u, v); (b) median of bbPC�LRðu; vÞ;
(c) median of bbHW�RFLRðu; vÞ; (d) median of bbEN�RLRðu; vÞ.
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3.2. FDG-PET image analysis

In this subsection, we apply all three methods described in Section 2 to the ADNI FDG-
PET imaging data to build classifiers for discriminating AD from NC, then predict AD
conversions among MCI using baseline images. We treat each PET image as a realization
of the 3D functional predictor and then fit 3D functional logistic regression model (9) for
the classification of AD and NC, where Y D 1 indicates AD state. Similar to simulation
studies, we assess the classification performance using 10-fold cross-validation. To
examine the overall discriminative power, we plot the cross-validated ROC curves in
Figure 3(a). Corresponding AUCs are also provided. Here we use CV-DEV as the
criterion to select the tuning parameters. It can be seen that all three methods work well
in discriminating AD from NC. All the methods result in classification accuracies above
90%. The same methods are also applied to the comparison of MCI converters and NC
using baseline images. This is a more difficult classification problem, where we see that
the proposed HW-RFLR performs the best (see Figure 3(b)).

The estimated regression coefficient function for each classification by the proposed
HW-RFLR approach are given in Figure 4, which is depicted, superimposed on the aver-
age image of all the NC images. The clusters of voxels identified by the proposed approach
are sparsely located over the brain, representing the set of voxels that jointly achieve the
highest cross-validated classification accuracy. It suggests that only a few brain subregions
are identified to be predictive. The voxels with cold colours are negatively associated with
the more severe disease state, whereas the voxels with warm colours indicate a positive
relationship. Many of these identified clusters have been found discriminative in other
ROI-based analyses, for example, [2,30,31]. In particular, Figure 4(a) shows the anatomic
locations of voxels distinguishing probable AD subjects from cognitively normal subjects.
Regions with negative coefficients correspond anatomically to the parahippocampal gyrus
and anterior hippocampus (levels ¡48 to ¡30) and to the posterior cingulate and parietal
association cortices (levels +12 to +30). Whereas Figure 4 shows the anatomic locations
of voxels distinguishing subjects with progressive MCI from cognitively normal subjects.
Regions with negative coefficients at the base of the brain correspond to the amygdala
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Figure 3. Cross-validated ROC curves and their AUC for three classification methods under CV-DEV cri-
terion for pairwise classification (solid curve: HW-RFLR; dash-dot curve: EN-RLR; dotted curve: PC-LR).
(a): AD vs. NC; (b) MCI converters vs. NC.
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and anterior hippocampus (levels ¡36 and ¡30). Additional regions correspond to the
parietal association cortex and to the posterior cingulate cortex (levels +12 to +24). Cere-
bellar regions (levels ¡60 and ¡54) with positive regression coefficients are most likely a
result of global data normalization rather than true increased FDG metabolism in MCI
subjects.

To validate the proposed method in predicting early AD, we apply the logistic regres-
sion models built on AD and NC images to the independent MCI baseline images for pre-
dicting AD conversions. The results are given in Figure 5. Note that the images used for
the prediction in Figure 5 are up to four years earlier from the time of AD conversion,
and the MCI non-converters are different to NC, which make it a harder problem than
distinguishing AD and NC. It is interesting to see that the model built by the proposed
HW-RFLR performs the best with a predictive AUC of 0.779, which is even slightly higher
than the cross-validated AUC of the classification of MCI converters and NC, indicating a
high prediction precision of the classifier built upon AD and NC images.

4. Discussion

In this paper, we have described a Haar wavelet approach for classifying brain images in
the framework of 3D functional data. This approach is demonstrated to not only achieve
high classification accuracy, but also be more likely to identify the most responsive clus-
ters of voxels. The proposed regularized Haar-wavelet-based functional logistic regression

Figure 4. Voxels identified using the proposed HW-RFLR under CV-DEV criterion for pairwise classifica-
tion. (a) AD vs. NC; (b) MCI converters vs. NC.
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does not impose smoothness requirement on the regression coefficient function, thus has
the potential to identify the boundaries of truly predictive subregions. Our numerical
results demonstrate that the proposed HW-RFLR can achieve higher classification accu-
racy than other methods. We also compared different tuning parameter selection criteria
in this work, based on the simulations, choosing the tuning parameter based on deviance
performs slightly better than others. The proposed HW-RFLR is not sensitive to the selec-
tion criteria. It should be noted that although many previous studies reported classifica-
tion accuracy rates using FDG-PET image data, most of them did not perform the
selection of voxels. We emphasize that the proposed HW-RFLR method integrates voxel
selection into the estimation procedure, which is useful when only few brain subregions
are related to the disease status. Other baseline covariates (such as age, gender, etc.),
denoted by Z in the following, can be easily incorporated in the model:

log
pi

1� pi

� �
¼ b0 þ

Z Z Z
Xiðu; v;wÞbðu; v;wÞ dudvdwþ ZTg; i ¼ 1; :::; n: (9)

The prediction performance for the ADNI data is primarily driven by the brain regions
because the predictions based on the adjusted models are very similar to the unadjusted
one. Thus the results of the adjusted models are omitted.

The proposed approach is computationally efficient partly due to the fact that Haar
wavelets can further compress the data by thresholding the absolute value of wavelet coef-
ficients without losing the ability of preserving spatial correlations among voxels. In the
ADNI FDG-PET imaging data analysis, we excluded the voxels outside the brain prior to
model fitting, thus dramatically reduced the number of considered voxels. The computa-
tion of the ADNI data example can be done within several hours with the implementation
of coordinate descent algorithm using the MATLAB glmnet package on a 64-bit Intel
Xeon 3.33 GHz server with about 35 GB of RAM. The proposed HW-RFLR method can
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Figure 5. Predictive ROC curves and their AUC for three classification methods under CV-DEV criterion
for pairwise classification (solid curve: HW-RFLR; dash-dot curve: EN-RLR; dotted curve: PC-LR).
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deal with images of any dimension, and provides highly interpretable estimates of the
coefficient function due to sparsity.
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