Answers, Exam II

1. a) Since \(\lim_{x \to \infty} F(x) = c \), we must have \(c = 1 \).

 b) Since \(F \) is right continuous,

 \[
 F(1) = \lim_{x \uparrow 1} F(x) = \lim_{x \uparrow 1} \frac{1 + x}{2 + x} = \frac{2}{3},
 \]

 and since \(F \) is continuous at \(1/2 \),

 \[
P(1/2 \leq X \leq 1) = P(X \leq 1) - P(X \leq 1/2) = F(1) - F(1/2) = 2/3 - 1/4 = 5/12.
 \]

2. a) \(p(x) = (2x - 1)/36 \) for \(x = 1, \ldots, 6 \), and \(p(x) = 0 \) otherwise.

 b) \(EX = \sum_{x=1}^{6} x p(x) = 161/36 \approx 4.47 \).

3. a) The number of face cards has a hypergeometric distribution with mean \(5 \times 16/52 \approx 1.538 \).

 b) The mass function at \(2 \) is \(\binom{16}{2} \binom{36}{3} / \binom{52}{5} \approx 33\% \).

4. Let \(X \) denote the number of defects, and let \(B \) be the event that the item was produced on a Monday or Friday. By the law of total probability,

 \[
P(X \leq 1) = P(X \leq 1|B)P(B) + P(X \leq 1|B^c)P(B^c) = 4e^{-3} \cdot \frac{2}{5} + 3e^{-2} \cdot \frac{3}{5} \approx 32.33\%.
 \]

 b) By Bayes law,

 \[
P(B|X = 4) = \frac{P(X = 4|B)P(B)}{P(X = 4|B)P(B) + P(X = 4|B^c)P(B^c)}
 \]

 \[
 = \frac{3^4 e^{-3} (2/5)}{3^4 e^{-3} (2/5) + 2^4 e^{-2} (3/5)} \approx 55.39\%.
 \]

5. a) \(P(X \geq 115) = P(Z \geq -3/4) \approx 77.34\% \).

 b) \(120 - 20(0.25) = 125 \).

6. For \(0 < y < 1 \),

 \[
 F_Y(y) = P(Y \leq y) = P(1/X^2 \leq y) = P(X \geq 1/\sqrt{y}) = \int_{1/\sqrt{y}}^{\infty} \frac{1}{x^2} \, dx = \sqrt{y}.
 \]

 For \(y \leq 0 \), \(f_Y(y) = 1 \), and for \(y \geq 1 \), \(F_Y(y) = 1 \). The probability density function for \(Y \) is

 \[
f_Y(y) = F'_Y(y) = \begin{cases}
1/(2\sqrt{y}), & 0 < y < 1; \\
0, & \text{otherwise}.
\end{cases}
 \]