Statistics 403 Problem Set 5

Due in lab on Friday, October 15th

1. The following questions are about a population of people, some of whom are home owners, and some of whom are renters.

(a) Suppose 65% of the population are home-owners, the home-owners have a mean annual income of $52,000, and the mean annual income of the population is $45,000. What is the mean annual income of the renters?

Solution: Apply the double expectation theorem:

\[
45000 = E(\text{Income}) = E_{\text{Own}}E(\text{Income}|\text{Own}) = 0.65 \cdot E(\text{Income}|\text{Own} = 1) + 0.35 \cdot E(\text{Income}|\text{Own} = 0) = 0.65 \cdot 52000 + 0.35 \cdot E(\text{Income}|\text{Own} = 0),
\]

where \(\text{Own} = 1 \) means the person owns their home, and \(\text{Own} = 0 \) means that the person rents their home.

Solving we get

\[
E(\text{Income}|\text{Own} = 0) = 32000.
\]

(b) Suppose the mean annual incomes of the home-owners and renters are $43,000 and $29,000, respectively, and the mean annual income in the population is $33,000. What proportion of the population owns their home?

Solution:

\[
33000 = E_{\text{Own}}E(\text{Income}|\text{Own}) = p \cdot E(\text{Income}|\text{Own} = 1) + (1 - p) \cdot E(\text{Income}|\text{Own} = 0) = p \cdot 43000 + (1 - p) \cdot 29000 = 14000p + 29000.
\]

Thus \(p = 4000/14000 \approx 0.29 \).

(c) Suppose the home owners have a mean annual income of $47,000 and the standard
deviation of home owners’ incomes is $7,000. Then suppose that the renters have a mean annual income of $31,000 and the standard deviation of renters’ incomes is $4,500. If 72% of the population are renters, what is the standard deviation of incomes in the population?

Solution: Apply the law of total variation to get the variance of incomes in the population:

\[
\text{var}(\text{Income}) = E_{\text{Own}} \text{var}(\text{Income}|\text{Own}) + \text{var}_{\text{Own}} E(\text{Income}|\text{Own})
\]

The first term is

\[
E_{\text{Own}} \text{var}(\text{Income}|\text{Own}) = 0.28 \cdot 7000^2 + 0.72 \cdot 4500^2 = 28300000.
\]

The overall mean is

\[
0.28 \cdot 47000 + 0.72 \cdot 31000 = 35480.
\]

Thus the second term is

\[
0.28(47000 - 35480)^2 + 0.72(31000 - 35480)^2 = 51609600.
\]

Thus the standard deviation of incomes is

\[
\sqrt{28300000 + 51609600} \approx 8939.
\]

(d) Suppose the home owners have a mean annual income of $52,000 and the standard deviation of home owners’ incomes is $5,500. Then suppose that the renters have a mean annual income of $33,000, and 55% of the population are renters. Not knowing the variance of renters’ incomes, what is the smallest possible value for the overall population variance in incomes?

Solution: We can apply the law of total variation, using zero as the variance of the renters’ incomes. The mean is

\[
\sqrt{28300000 + 51609600} \approx 8939.
\]
\[0.45 \cdot 52000 + 0.55 \cdot 33000 = 41550. \]

The \(\text{var}_{\text{Own}} E(\text{Income}|\text{Own}) \) term is
\[0.45(33000 - 41550)^2 + 0.55(52000 - 41550)^2 = 92957500. \]

Thus the smallest possible variance for the incomes is
\[0.45 \cdot 5500^2 + 92957500 = 106570000, \]
which corresponds to a standard deviation of 10323.

(e) Suppose the home owners have a mean annual income of $55,000 and the standard deviation of home owners’ incomes is $8,500. Then suppose that the renters have a mean annual income of $36,000, and the standard deviation of renters’ incomes is $5,500. If 79\% of the population are renters, what fraction of the overall variability in incomes is explained by home ownership status?

Solution: The \(E_{\text{Own}} \text{var}(\text{Income}|\text{Own}) \) term is
\[0.21 \cdot 8500^2 + 0.79 \cdot 5500^2 = 39070000. \]

The overall mean is
\[0.21 \cdot 55000 + 0.79 \cdot 36000 = 39990. \]

The \(\text{var} E_{\text{Own}}(\text{Income}|\text{Own}) \) term is
\[0.21(55000 - 39990)^2 + 0.79(36000 - 39990)^2 = 59889900. \]

Thus the fraction of variance explained by home ownership status is
\[59889900/(59889900 + 39070000) \approx 0.61. \]

2. Suppose that \(A \) and \(B \) are independent, standardized random variables. What are the values of (i) \(\text{cor}(A + B, A - B) \), and (ii) \(\text{cor}(A + B, A) \)?
Solution:

(i)

\[
\text{cov}(A + B, A - B) = \text{cov}(A, A) - \text{cov}(A, B) + \text{cov}(A, B) - \text{cov}(B, B) \\
= \text{var}(A) - \text{var}(B) \\
= 0.
\]

Note that we do not even need \(A \) and \(B \) to be independent for this to be true. Since the covariance is zero, the correlation must also be zero.

(ii)

\[
\text{cov}(A + B, A) = \text{cov}(A, A) + \text{cov}(B, A) \\
= \text{var}(A) \\
= 1.
\]

Also,

\[
\text{var}(A + B) = \text{var}(A) + \text{var}(B) = 2.
\]

(here we are using the independence of \(A \) and \(B \)).

Thus the correlation is

\[
\frac{\text{cov}(A + B, A)}{\text{SD}(A + B) \cdot \text{SD}(A)} = 1/\sqrt{2}.
\]

3. (a) Suppose that \(A \) and \(B \) are independent, standardized random variables. Describe all constants \(c \) and \(d \) for which \(cA + dB \) is standardized.

Solution: The expected value is

\[
E(cA + dB) = cE(A) + dE(B) = 0.
\]

Thus \(cA + dB \) is always centered, regardless of the values of \(c \) and \(d \).
The variance is
\[
\text{var}(cA + dB) = \text{var}(cA) + \text{var}(dB)
\]
\[
= c^2 \text{var}(A) + d^2 \text{var}(B)
\]
\[
= c^2 + d^2.
\]
Thus we need \(c^2 + d^2 = 1\) for the \(cA + dB\) to be standardized. These points form a circle centered at the origin with radius 1 if plotted in the \(c,d\) plane.

(b) Suppose that \(A\) and \(B\) are independent, standardized random variables. Show that \(cA + \sqrt{1 - c^2}B\) is standardized for any value \(-1 \leq c \leq 1\).

Solution: As in part (a), \(cA + \sqrt{1 - c^2}B\) has expected value zero since \(A\) and \(B\) have expected value zero and expectations are linear.

The variance of \(cA + \sqrt{1 - c^2}B\) is
\[
c^2 \text{var}(A) + (1 - c^2) \text{var}(B) = 1.
\]

(c) Suppose that \(A\) and \(B\) are standardized, random variables. For a given value \(-1 \leq r \leq 1\), find a constant \(c\) such that the correlation between \(cA + \sqrt{1 - c^2}B\) and \(A\) is equal to \(r\).

Solution: From part (b), we know that \(cA + \sqrt{1 - c^2}B\) is standardized, and you are given that \(A\) is standardized. Thus, the correlation and the covariance are the same. The covariance is
\[
\text{cov}(A, cA + \sqrt{1 - c^2}B) = c \cdot \text{var}(A) + c\sqrt{1 - c^2} \text{cov}(A, B) = c.
\]
Thus if we set \(c = r\), we will get \(\text{cor}(cA + \sqrt{1 - c^2}B, A) = r\), as desired.

(d) Suppose that \(A\), \(B\), and \(U\) are independent. For a given value \(0 \leq r \leq 1\), find a constant \(c\) such that the correlation between \(\sqrt{1 - c^2}A + cU\) and \(\sqrt{1 - c^2}B + cU\) is equal to \(r\).
Solution: From part (b) above, we know that $\sqrt{1-c^2}A + cU$ and $\sqrt{1-c^2}B + cU$ are both standardized, regardless of the value of c. Thus the correlation is the covariance, which is

$$\text{cov}(\sqrt{1-c^2}A + cU, \sqrt{1-c^2}B + cU) = c^2 \text{var}(U) = c^2.$$

Thus we set $c^2 = r$ and solve for c to get $c = \sqrt{r}$.

4. Suppose we plan to collect data on peoples’ diets by conducting a survey in which siblings will be interviewed. We will collect data X_1, \ldots, X_{2n} on n sibling pairs, (X_1 and X_2 are data from a sibling pair, X_3 and X_4 are data from another sibling pair, and so on). Unrelated people respond independently, but the responses of siblings are correlated at level r.

(a) Determine the standard deviation of \bar{X}.

Solution: The covariance matrix has $2n$ rows and $2n$ columns (corresponding to the $2n$ observed data points). It is entirely zero, except for n 2×2 blocks that look like this

$$
\begin{pmatrix}
\sigma^2 & r\sigma^2 \\
r\sigma^2 & \sigma^2
\end{pmatrix}
$$

The sum of values in each of these blocks is $2\sigma^2(1 + r)$. Thus the sum of all values in the covariance matrix is $2n\sigma^2(1 + r)$. Thus, based on a result given in the notes,

$$\text{var}(\bar{X}) = \frac{2n\sigma^2(1 + r)}{(2n)^2} = \frac{\sigma^2(1 + r)}{2n}.$$

So the standard deviation of \bar{X} is $\sigma \sqrt{(1 + r)/(2n)}$.

Note some special cases:

- When $r = 0$ we have independent data, and the standard error is $\sigma/\sqrt{2n}$ which is “standard deviation of the data”/“square root of the sample size”, as we have known for a long time.

- When $r = 1$ the two people in a household are perfectly correlated, so the second person interviewed in each household provides no new information. Thus we really only have a sample size of n (the number
of households), so the standard error is σ/\sqrt{n}, which is also “standard deviation of the data”/“square root of the sample size”.

(b) Suppose another researcher conducts a survey by interviewing $2n$ unrelated people. What is the ratio of the length of the confidence interval obtained in this way to the length of the confidence interval obtained using sibling data?

Solution: The length of the CI from part (a) is $4\sigma\sqrt{(1 + r)/2n}$. If we had independent data, the CI would be $\bar{X} \pm \sigma/\sqrt{2n}$, so the length of the interval is $4\sigma/\sqrt{2n}$. The ratio of these two lengths is $1/\sqrt{1 + r}$. Thus when $r = 0$, the lengths are the same, so the ratio is 1. When $r > 0$, the ratio is less than 1, reflecting the fact that the interval based on independent data is shorter. When $r = 1$, the interval based on independent data is exactly $1/\sqrt{2}$ times as long as the interval based on dependent data, which is the same ratio you get when reducing the sample size by half.