Statistics 600 Problem Set 1
Due in class on Wednesday, October 7th.

1. Suppose we have a least squares problem with more variables than observations. That is, we observe a response vector $Y \in \mathbb{R}^n$, and a design matrix $X \in \mathbb{R}^{n \times p}$ where $p \geq n$. You may assume that $Y \in \text{col}(X)$.

(a) Derive an expression for the vector $\hat{\beta}$ that minimizes $\|\beta\|^2$ subject to $X\beta = Y$.

Solution: Using the QR decomposition, write $X' = QR$, so the equation $X\beta = Y$ becomes $Q'\beta = G$, where $G = R^{-T}Y$. Next we will show that $\hat{\beta} \in \text{col}(Q)$. We can write $\beta = \theta + \gamma$, where $\theta \in \text{col}(Q)$ and $\gamma \in \text{col}(Q)^\perp$. Note that $Q'\beta = Q'\theta$, and $\|\beta\|^2 = \|\theta\|^2 + \|\gamma\|^2$. Thus for any choice of θ satisfying $Q'\theta = G$, $\|\beta\|^2$ will always be minimized by setting $\gamma = 0$. Since $\theta \in \text{col}(Q)$, we can write $\theta = Q\eta$ for some $\eta \in \mathbb{R}^n$, and we have $Q'Q\eta = \eta = G$, and $\theta = QG$. Thus the solution is $\hat{\beta} = QR^{-T}Y$.

(b) Under what conditions is $\hat{\beta}$ unbiased? You may assume the usual generating model $Y = X\beta + \epsilon$ with $E(\epsilon|X) = 0$.

Solution: We can write

$$\hat{\beta} = QR^{-T}Y$$
$$= QR^{-T}(X\beta + \epsilon)$$
$$= QR^{-T}(R'Q'\beta + \epsilon)$$
$$= QQ'\beta + QR^{-T}\epsilon.$$

Thus $E(\hat{\beta}|X) = QQ'\beta$, which is equal to β under the condition that $\beta \in \text{col}(Q) = \text{col}(X')$.

(c) Derive an expression for $\text{cov}(\hat{\beta}|X)$, under the generating model $Y = X\beta + \epsilon$ with $E(\epsilon|X) = 0$ and $\text{cov}(\epsilon|X) = \sigma^2 I$.

Solution:

$$\text{cov}(\hat{\beta}|X) = \text{cov}(QR^{-T}Y|X)$$
$$= \text{cov}(QR^{-T}(X\beta + \epsilon)|X)$$
$$= \text{cov}(QR^{-T}(R'Q'\beta + \epsilon)|X)$$
\[
= \operatorname{cov}(QQ'\beta + QR^{-T}\epsilon|X) \\
= \operatorname{cov}(QR^{-T}\epsilon|X) \\
= \sigma^2 QR^{-T} R^{-1}Q'.
\]

(d) Let \(\hat{Y} = X\hat{\beta} \) be the usual fitted values. What is the value of \(E\|\hat{Y} - Y\|^2? \)

Solution:

\[
\hat{Y} = XQR^{-T}Y = R'Q'R^{-T}Y = Y.
\]

Thus \(E\|\hat{Y} - Y\|^2 = 0 \) – or \(\hat{Y} \) is always equal to \(Y \).

(e) What is the value of \(E\|\hat{Y} - EY\|^2/n? \)

Solution:

\[
E\|\hat{Y} - EY\|^2/n = E\|Y - EY\|^2/n = \sigma^2.
\]

(f) Suppose we observe a random vector \(Y^* \in \mathcal{R}^n \) that has the same distribution as \(Y \), but is independent of \(Y \). What is the value of \(E\|Y^* - \hat{Y}\|^2/n? \)

Solution: Write \(Y^* = X\beta + \epsilon^* \),

\[
E\|X\beta + \epsilon^* - (X\beta + \epsilon)\|^2/n = E\|\epsilon - \epsilon^*\|^2/n = 2\sigma^2.
\]

2. Suppose we observe data from a simple linear model \(Y = \alpha + \beta X + \epsilon \) where \(X, Y \in \mathcal{R}^n \), \(E(\epsilon|X) = 0 \) and \(\operatorname{cov}(\epsilon|X) = \sigma^2 I \). Suppose \(X \) and \(Y \) are partitioned as

\[
Y = \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} \quad X = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix},
\]

where \(Y_1 \) and \(Y_2 \) each have half the length of \(Y \), and \(X_1 \) and \(X_2 \) each have half the length of \(X \). Let \(\hat{\beta}_1 \) and \(\hat{\beta}_2 \) denote the least squares estimates obtained by regressing \(Y_1 \) on \(X_1 \) and \(Y_2 \) on \(X_2 \), respectively, and let \(\hat{\beta} = (\hat{\beta}_1 + \hat{\beta}_2)/2 \).

(a) If \(\bar{X}_1 = \bar{X}_2 = \bar{X} \), state a condition such that \(\hat{\beta} \) has the same variance as the least squares estimate \(\beta \) obtained by regressing \(Y \) on \(X \). Then state whether when this condition holds, \(\hat{\beta} \) is the least squares estimate, or is a different estimate with the same variance.
Solution: Let \(T_1 = \sum_{i=1}^{n/2} \epsilon_i (X_i - \bar{X}_1) \) and \(T_2 = \sum_{i=n/2+1}^{n} \epsilon_i (X_i - \bar{X}_2) \), and let \(S_1 = \sum_{i=1}^{n/2} (X_i - \bar{X}_1)^2 \) and \(S_2 = \sum_{i=n/2+1}^{n} (X_i - \bar{X}_2)^2 \). Then

\[
\hat{\beta}_1 = \beta + \frac{T_1}{S_1},
\]

\[
\hat{\beta}_2 = \beta + \frac{T_2}{S_2},
\]

and

\[
\hat{\beta} = \beta + \frac{T_1}{2S_1} + \frac{T_2}{2S_2}.
\]

Since \(\text{var}(T_j) = \sigma^2 S_j \) for \(j = 1, 2 \), it follows that

\[
\text{var}\hat{\beta} = \frac{\sigma^2}{4S_1} + \frac{\sigma^2}{4S_2}.
\]

The variance of the least squares estimate using all the data is

\[
\sigma^2 / \sum_i (X_i - \bar{X})^2 = \sigma^2 / (S_1 + S_2).
\]

The two variances are equal if only if

\[
(S_1 + S_2)^2 = 4S_1 S_2,
\]

which is easily seen to hold if and only if \(S_1 = S_2 \). This is the condition required for the variance of \(\hat{\beta} \) to equal the variance of \(\hat{\beta} \), and it is easy to see that when \(S_1 = S_2 \), \(\hat{\beta} = \hat{\beta} \).

(b) Now consider the more general case where \(\bar{X}_1 \) and \(\bar{X}_2 \) may differ. Show that in this case \(\text{var}\hat{\beta} \) is always greater than \(\text{var}\hat{\beta} \), and derive a concise expression for the difference.

Solution: By the Gauss-Markov theorem, since \(\hat{\beta} \) is linear and unbiased, if \(\hat{\beta} \neq \hat{\beta} \), then \(\text{var}(\hat{\beta}) \) must be greater than \(\text{var}(\hat{\beta}) \).

We can show this directly as follows.

\[
\sum_{i=1}^{n}(X_i - \bar{X})^2 = \sum_{i=1}^{n/2}(X_i - \bar{X}_1 + \bar{X}_1 - \bar{X}_2 + \bar{X}_2 - \bar{X})^2 + \]

3
\[\sum_{i=n/2+1}^{n} (X_i - \bar{X}_1 + \bar{X}_1 - \bar{X}_2 + \bar{X}_2 - \bar{X})^2 \]

Taking the first term,

\[\sum_{i=1}^{n/2} (X_i - \bar{X}_1 + \bar{X}_1 - \bar{X}_2 + \bar{X}_2 - \bar{X})^2 \]

\[= \sum_{i=1}^{n/2} (X_i - \bar{X}_1)^2 + (\bar{X}_1 - \bar{X}_2)^2 + (\bar{X}_2 - \bar{X})^2 + (X_i - \bar{X}_1)(\bar{X}_1 - \bar{X}_2) + (X_i - \bar{X}_1)(\bar{X}_2 - \bar{X}) + (\bar{X}_1 - \bar{X}_2)(\bar{X}_2 - \bar{X}) \]

\[= \sum_{i=1}^{n/2} (X_i - \bar{X}_1)^2 + (\bar{X}_1 - \bar{X}_2)^2 + (\bar{X}_2 - \bar{X})^2 + (X_i - \bar{X}_1)(\bar{X}_1 - \bar{X}_2) \]

\[= S_1 + n(\bar{X}_1 - \bar{X}_2)^2/2 + n(\bar{X}_2 - \bar{X})^2/2 + n(\bar{X}_1 - \bar{X}_2)(\bar{X}_2 - \bar{X})/2. \]

We can apply a similar calculation to obtain

\[\sum_{i=n/2+1}^{n} (X_i - \bar{X}_1 + \bar{X}_1 - \bar{X}_2 + \bar{X}_2 - \bar{X})^2 \]

\[= S_2 + n(\bar{X}_1 - \bar{X}_2)^2/2 + n(\bar{X}_1 - \bar{X})^2/2 + n(\bar{X}_1 - \bar{X}_2)(\bar{X}_1 - \bar{X})/2. \]

Since

\[(\bar{X}_1 - \bar{X}_2)(\bar{X}_2 - \bar{X}) + (\bar{X}_1 - \bar{X}_2)(\bar{X}_1 - \bar{X}) = 0, \]

we have

\[\sum_{i=1}^{n} (X_i - \bar{X})^2 = S_1 + S_2 + n(\bar{X}_1 - \bar{X}_2)^2 + n(\bar{X}_1 - \bar{X})^2/2 + n(\bar{X}_2 - \bar{X})^2/2. \]

Thus the difference in variances is

\[\text{var}(\beta) - \text{var}(\beta) = \sigma^2/4S_1 + \sigma^2/4S_2 - 1/(S_1 + S_2 + D) \]

where \(D = n(\bar{X}_1 - \bar{X})^2/n + n(\bar{X}_2 - \bar{X})^2/2. \)

The difference in variances simplifies to

\[\frac{(S_1 - S_2)^2 + D(S_1 + S_2)}{4S_1S_2(S_1 + S_2 + D)}. \]
3. Prove that the “horizontal residuals” in simple linear regression sum to zero in a least squares fit of Y (the dependent variable) on X (the independent variable). The horizontal residuals are the line segments connecting each data point X_i, Y_i to the fitted line $\hat{\alpha} + \hat{\beta}X$.

Solution: To get the i^{th} horizontal residual, solve

$$\hat{\alpha} + \hat{\beta}X = Y_i$$

to get $\hat{X}_i = (Y_i - \hat{\alpha})/\hat{\beta}$, so the residual becomes $H_i \equiv X_i - (Y_i - \hat{\alpha})/\hat{\beta}$. Now if we sum these values we get

$$\sum_i H_i = \sum_i X_i - (Y_i - \bar{Y} + \hat{\beta}(X_i - \bar{X}))/\hat{\beta}$$

$$= \sum_i (\bar{Y} - Y_i)/\hat{\beta} + \sum_i (X_i - \bar{X})$$

$$= 0.$$

4. (a) Suppose that $F \in \mathcal{R}^d$ is a vector, and I is the $d \times d$ identity matrix. Derive explicit expressions for $(I + FF')^{-1}$ and $(I - FF')^{-1}$. Hint: the answers have the form $I + \lambda FF'$, for $\lambda \in \mathcal{R}$.

Solution: To determine the inverse of $I + FF'$, set

$$I = (I + FF')(I + \lambda FF')$$

$$= I + \lambda FF' + FF' + \lambda \|F\|^2 FF'$$

$$= I + (\lambda + 1 + \lambda \|F\|^2)FF'.$$

We must have $1 + \lambda(1 + \|F\|^2) = 0$, so $\lambda = -1/(1 + \|F\|^2)$. To determine the inverse of $I - FF'$, set

$$I = (I - FF')(I + \lambda FF')$$

$$= I + \lambda FF' - FF' - \lambda \|F\|^2 FF'$$

$$= I + (\lambda - 1 - \lambda \|F\|^2)FF'.$$
We must have $-1 + \lambda(1 - \|F\|^2) = 0$, so $\lambda = 1/(1 - \|F\|^2)$.

(b) Suppose we have an orthogonal design matrix $X \in \mathbb{R}^{n \times p+1}$, and we are able to add one additional observation to the data set (i.e. add one row to X). This row, denoted x, must satisfy the constraint $\|x\|^2 = 1$. Describe how x should be chosen so as to minimize the maximum of the variances of $\hat{\beta}_0, \ldots, \hat{\beta}_p$.

Solution: Let $\hat{\beta}$ denote the slope estimates based on all $n+1$ cases. Then $X'X = I + xx'$, so $\text{cov}(\hat{\beta}) = I - xx'/2$. Thus the variance of $\hat{\beta}_j$ is $\sigma^2(1-x_j^2/2)$. The maximum of these variances is determined by the smallest of the x_j^2. Thus we want to maximize $\min_j x_j^2$ subject to $\sum_j x_j^2 = 1$. The solution is to have $x_j = 1/\sqrt{p+1}$ for all j.

5. (a) Derive an expression for $\text{cov}(Y, \hat{Y})$, i.e. the $n \times n$ matrix containing all population covariances between elements of Y and elements of \hat{Y}.

(b) Derive an expression for the sample covariance between the observed and fitted values, $E\text{cov}(\hat{Y}, Y)$ – note that this is a scalar. Consider whether this covariance can or cannot be positive, negative, or zero.

Solution: Let P be the projection matrix onto $\text{col}(X)$. Then,

$$\text{cov}(\hat{Y}, Y) = (PY)'(Y - \bar{Y})/(n - 1)$$

$$= (Y - \bar{Y} + Y'P(Y - \bar{Y})/n - 1)$$

$$= (Y - \bar{Y})'P(Y - \bar{Y})/n - 1 + \bar{Y}'P(Y - \bar{Y})/n - 1.$$

Here, \bar{Y} is interpreted as an n-vector in which all values are equal to the sample mean of the Y_i. This can be written $\bar{Y} = n^{-1}11'Y$, where 1 is an n-vector of 1's. Since there is an intercept in the model, $P1 = 1$, so the second summand above is equal to

$$n^{-1}11'(Y - \bar{Y})/n - 1,$$

which is zero since $1'(Y - \bar{Y}) = 0$. Thus

$$\text{cov}(\hat{Y}, Y) = (Y - \bar{Y})'P(Y - \bar{Y})/n - 1 \geq 0.$$
The covariance cannot be negative. It can only be zero if \(Y \) is a constant vector.

6. “Total least squares” (TLS) for one covariate aims to identify a line \(\ell \) that minimizes

\[
\sum_i d((X_i, Y_i), \ell)^2,
\]

where \(d(Q, \ell) \) is the minimum distance in \(\mathbb{R}^2 \) between the point \(Q \) and any point on the line \(\ell \).

(a) Parameterize \(\ell \) in the form \(\{ (X, \alpha + \beta X) | X \in \mathbb{R} \} \), for scalars \(\alpha \) and \(\beta \). Write down expressions for \(d(Q, \ell) \) and a loss function that can be minimized to identify \(\alpha \) and \(\beta \). Both expressions should be explicit functions of \(\alpha \) and \(\beta \).

Solution: To identify the point on \(\ell \) that is closest to \(X_i, Y_i \), we minimize

\[
(X - X_i)^2 + (\alpha + \beta X - Y_i)^2
\]

as a function of \(X \). Setting the first derivative to zero yields

\[
X = \frac{X_i - \alpha \beta + Y_i \beta}{1 + \beta^2},
\]

and the second derivative is \(2(1 + \beta^2) \), so this is a global minimizer. The loss function is

\[
(1 + \beta^2)^{-1} \sum_i R_i^2,
\]

where \(R_i = Y_i - \alpha - \beta X_i \) is the usual OLS residual.

(b) Parameterize \(\ell \) in the form \(\{ Z \in \mathbb{R}^2 | B'(Z - W) = 0 \} \), for 2-vectors \(B \) and \(W \) with \(||B|| = 1 \). Write down expressions for \(d(Q, \ell) \) and a loss function that can be minimized to identify \(B \) and \(W \) (\(W \) can be any point on \(\ell \) and is therefore not uniquely identified). Both expressions should be explicit functions of \(B \) and \(W \).

Solution: Let \(Q_i = (X_i, Y_i) \) be a data point. Let \(P_i \) be the point on \(\ell \) that is closest to \(Q_i \). Then \(Q_i - P_i \) is parallel to \(B \), so we can write \(P_i = Q_i - \lambda B \) for some \(\lambda \in \mathbb{R} \), and since \(P_i \) is on \(\ell \) we must have \(B'(P_i - W) = 0 \). Combining these two equations we can identify \(\lambda = B'(Q_i - W) \). Therefore the \(d(Q_i, \ell)^2 \) is

7
\[B'(Q_i - W)(Q_i - W)'B \]

so the loss function is

\[B' \left(\sum_i (Q_i - W)(Q_i - W)' \right) B. \]

(c) Based on your expression in part (b), show that the TLS solution passes through the center of the data \((\bar{X}, \bar{Y})\), and use this to define a minimizing value for \(W\).

Solution:

\[
\sum_i (Q_i - W)(Q_i - W)' = \sum_i (Q_i - \bar{Q} + \bar{Q} - W)(Q_i - \bar{Q} + \bar{Q} - W)'
\]
\[
= \sum_i (Q_i - \bar{Q})(Q_i - \bar{Q})' + \sum_i (Q_i - \bar{Q})(\bar{Q} - W)' + \sum_i (\bar{Q} - W)(Q_i - \bar{Q})' + n(\bar{Q} - W)(\bar{Q} - W)'
\]
\[
= \sum_i (Q_i - \bar{Q})(Q_i - \bar{Q})' + n(\bar{Q} - W)(\bar{Q} - W)'.
\]

therefore the value of the loss function will either stay constant or be reduced if we set \(W = \bar{Q}\), which guarantees that \(\ell\) contains \(\bar{Q}\).

(d) Building on (b) and (c), construct a quadratic form whose minimizing value subject to \(\|B\| = 1\) solves the TLS problem for \(B\).

Solution: The quadratic form is

\[B' \left(\sum_i (Q_i - \bar{Q})(Q_i - \bar{Q})' \right) B. \]

7. (a) Suppose we are fitting a simple linear regression model to a data set of size \(n\). Let \(V_n = \text{var}(X_1, \ldots, X_n)\). Determine the fastest rate at which \(V_n \to 0\) for which we still have \(\text{var}(\beta_n) \to 0\).
Solution: Since
\[
\text{var}(\hat{\beta}) = \frac{\sigma^2}{(n-1)V_n}
\]
we need \(nV_n \to \infty\) (or \(V_n \to 0\) “slower than \(1/n\”).

(b) Suppose we are fitting a regression model of the form \(\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X_1 + \hat{\beta}_2 X_2\), and the covariates are asymptotically standardized so that \(\bar{X}_1, \bar{X}_2 \to 0\), and \(\text{var}(X_1), \text{var}(X_2) \to 1\). Let \(r_n = \text{cov}(X_1, X_2)\). What is the fastest rate at which \(r_n \to 1\) such that we will still have \(\text{var}(\hat{\beta}_1), \text{var}(\hat{\beta}_2) \to 0\)?

Solution: The variance of \(\hat{\beta}_1\) (which is the same as the variance of \(\hat{\beta}_2\) is
\[
\frac{1}{n(1-r_n^2)} = \frac{1}{n(1-r_n)(1+r_n)}.
\]
So we need \(n(1-r_n) \to \infty\), or \(1-r_n\) goes to zero “slower than rate \(1/n\”).

8. This exercise aims to illustrate the effect of outliers in least squares fitting. Suppose we observe data that follows a linear model with \(p = 1\) covariate: \(Y = \alpha + \beta X + \epsilon\). Specifically, consider a triangular array of data \(Y_{in}, X_{in}\), where \(i = 1, \ldots, n\). There is also a random indicator \(\delta_{in}\), that we do not observe, such that \(\text{var}(\epsilon_{in}|X, \delta_{in} = 1) = k_n\sigma^2\), and \(\text{var}(\epsilon_{in}|X, \delta_{in} = 0) = \sigma^2\) (the errors are centered, so that \(E(\epsilon|X, \delta) \equiv 0\)). Suppose \(X\) is sampled from a population with variance \(\sigma_X^2\), and \(P(\delta_{in} = 1) = p_n\). Note that \(n \cdot \text{var}(\hat{\beta})\) has a finite limit when \(k_n \equiv 1\). Derive conditions on \(k_n\) and \(p_n\) such that (i) \(n \cdot \text{var}(\hat{\beta})\) has a finite limit, and (ii) \(n \cdot \text{var}(\hat{\beta})\) has the same limit that would occur if \(k_n \equiv 1\).

Solution: The least squares estimator can be written
\[
\hat{\beta}_n = \beta + \sum_i \epsilon_{in}(X_{in} - \bar{X}_n) / \sum_i (X_{in} - \bar{X}_n)^2.
\]
Since the variance of the error term can be expressed
\[
\text{var}(\epsilon_{in}) = \text{var}E(\epsilon_{in}|\delta_{in}) + E\text{var}(\epsilon_{in}|\delta_{in}) = \sigma^2(p_n k_n + 1 - p_n),
\]
the variance of the estimator is

$$\text{var}\hat{\beta}_n = \sigma^2(p_nk_n + 1 - p_n)\sum_{i}(X_{in} - \bar{X}_n)^2.$$

Scaling by n,

$$n \times \text{var}\hat{\beta}_n = \sigma^2(p_nk_n + 1 - p_n)/n^{-1}\sum_{i}(X_{in} - \bar{X}_n)^2 \sim \sigma^2(p_nk_n + 1 - p_n)/\sigma_x^2.$$

Thus for (i), we need $p_nk_n + 1 - p_n$ to have a limit, and for (ii), we need $p_n(k_n - 1) \to 0$. A reasonable interpretation of this is that the outliers will not prevent the variance of $\hat{\beta}$ from going to zero at the usual rate as long as p_nk_n stays bounded. For example, if fraction $p_n = 0.1$ of the errors have $k_n = 10$ times greater variance ($\sqrt{10} \approx 3.2$ times greater standard deviation), then the variance of $\hat{\beta}_n$ will decrease at the usual rate. But if we want the limiting variance ($\lim_{n\to\infty} n\text{var}\hat{\beta}_n$) to be the same as when no outliers are present, we would need p_n to be much smaller, say $p_n = 0.01$.