Multiple Integrals
An Interlude

If
\[-\infty < a < b < \infty,\]
\[-\infty < c < d < \infty,\]
and
\[f : [a,b] \times [c,d] \to \mathbb{R},\]
is sufficiently nice (e.g. continuous), then
\[\int_a^b \int_c^d f(x,y)dydx\]
is the limit of Riemann sums.

Extensions: Under mild technical conditions,
\[a, c \to -\infty,\]
\[b, d \to \infty.\]
Bivariate Densities

A function \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \) is a **bivariate density** if

\[f(x, y) \geq 0, \]

and

\[\int_{\mathbb{R}^2} f(x, y) dy dx = 1. \]

If \(f \) is a density, then JDRVs \(X \) and \(Y \) have **joint density** \(f \)

\[P[(X, Y) \in C] = \int_C f(x, y) dy dx \]

for nice subsets \(C \subseteq \mathbb{R}^2 \).

Example: Uniform Distributions. If \(R \subseteq \mathbb{R}^2 \) and \(0 < \alpha = \text{Area}(R) < \infty \), then

\[f(x, y) = \frac{1}{\alpha} I_R(x, y) \]

is a density, called the **uniform density over** \(R \).

Marginal Densities

If \(X \) and \(Y \) have joint density \(f \), then \(X \) and \(Y \) have individual (marginal) densities

\[f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy, \]

\[f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx. \]

Example: Let

\[D = \{ (x, y) : x^2 + y^2 \leq 1 \} \]

and

\[f(x, y) = \frac{1}{\pi} 1_D(x, y). \]

If \(-1 < x < 1 \), then

\[f_X(x) = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{1}{\pi} dy = \frac{2}{\pi} \sqrt{1-x^2}. \]

Multivariate Densities A function \(f : \mathbb{R}^m \rightarrow \mathbb{R} \) is a **m-variate density** if

\[f(x) \geq 0, \]

and

\[\int_{\mathbb{R}^m} f(x) dx = 1. \]

If \(f \) is a density, then JDRVs \(X_1, \ldots, X_m \) have **joint density** \(f \)

\[P[X \in C] = \int_C f(x) dx \]

for nice subsets \(C \subseteq \mathbb{R}^m \).

Marginal Densities: If \(X_1, \ldots, X_j \) and \(Y_j, \ldots, Y_k \) have joint density \(f \), then \(X_1, \ldots, X_j \) have joint density

\[f_X(x) = \int_{\mathbb{R}^{k-j}} f(x, y) dy. \]
Joint Distribution Functions

Def: If X and Y are JDRVs, then their joint distribution function is

\[F(a, b) = P[X \leq a, Y \leq b]. \]

Marginal Distributions: Then

\[F_X(a) = \lim_{b \to \infty} F(a, b), \]
\[F_Y(b) = \lim_{a \to \infty} F(a, b). \]

Notes
a) Characteristic Properties
b) Higher Dimensions
c) Harder to Use
d) Mixed Distributions

Independence

JDRVs X and Y are independent if

\[P[X \in A, Y \in B] = P[X \in A]P[Y \in B] \]

for all nice subsets \(A, B \subseteq \mathbb{R} \) (for example, intervals).

Conditions for Independence

DFs: X and Y are independent iff

\[F(a, b) = F_X(a)F_Y(b) \]

for all \(a, b \in \mathbb{R} \).

Densities: If X and Y have individual densities \(f_X \) and \(f_Y \), then X and Y are independent iff X and Y have joint density

\[f(x, y) = f_X(x)f_Y(y). \]

Example

If

\[X \sim \text{Exp}(\lambda), \]
\[Y \sim \text{Exp}(\lambda) \]

are independent, what is

\[P[Y \geq 2X \text{ or } X \geq 2Y]. \]

Here

\[f_X(z) = f_Y(z) = \lambda e^{-\lambda z} \]

for \(0 \leq z < \infty \). So, \(f(x, y) = f_X(x)f_Y(y) = \lambda^2 e^{-\lambda(x+y)} \)

for \(0 \leq x, y < \infty \) and \(f(x, y) = 0 \) for other \(x \) and \(y \). So,

\[P[Y \geq 2X] = \int_0^\infty \left[\int_0^{2x} \lambda^2 e^{-\lambda(x+y)} dy \right] dx \]
\[= \int_0^\infty \left(\int_0^{\infty} \lambda^2 e^{-\lambda(x+y)} dy \right) dx \]
\[= \int_0^\infty \lambda^2 \lambda e^{-\lambda x} dx \]
\[= \frac{1}{3} \int_{x=0}^{\infty} e^{-3\lambda x} dx \]
\[= \frac{1}{3}. \]

Similarly,

\[P[X \geq 2Y] = \frac{1}{3}. \]

So,

\[P[Y \geq 2X \text{ or } X \geq 2Y] = \frac{2}{3}. \]
Several Variables

X_1, \ldots, X_m are independent if

$$P[X_1 \in A_1, \ldots, X_m \in A_m] = P[X_1 \in A_1] \times \cdots \times P[X_m \in A_m]$$

Note: Equivalent Conditions. For example,

$$f(x_1, \ldots, x_m) = f_1(x_1) \times \cdots \times f_m(x_m).$$

The Distribution of the Maximum

Example: n light globes are placed in service at time $t = 0$ and allowed to burn continuously. Denote their lifetimes by X_1, \ldots, X_n and suppose that

$$X_1, \ldots, X_n \sim \text{ind } F.$$

If burned out globes are not replaced, then the room goes dark at time

$$Y = \max[X_1, \ldots, X_n],$$

the largest of X_1, \ldots, X_n.

The Distribution of Y: If (*) holds, then

$$G(y) := P[Y \leq y] = P[X_1 \leq y, \ldots, X_n \leq y] = P[X_1 \leq y] \times \cdots \times P[X_n \leq y] = F(y)^n.$$

So, if F has density f, then Y has density

$$g(y) = \frac{d}{dy}F(y)^n = nF(y)^{n-1}f(y).$$

Example: Revisited. If $n = 5$ and F is exponential with $\lambda = 1$ per mo, then

$$F(t) = 1 - e^{-\lambda t},$$

and

$$G(t) = (1 - e^{-t})^5,$$

for $0 \leq t < \infty$. The probability that the room is still lighted after two months is

$$P[Y > 2] = 1 - G(2) = 1 - (1 - e^{-2})^5 = .5167.$$

Order Statistics

If

$$X_1, \ldots, X_n \sim \text{ind } F,$$

let

$$X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$$

by X_1, \ldots, X_n in increasing order. Thus,

$$X_{(1)} = \min[X_1, \ldots, X_n],$$

$$\cdots,$$

$$X_{(n)} = \max[X_1, \ldots, X_n].$$

Notes

- Times that globes burn out in the example.
- Can find distributions.
- Section 6.6 and Problems 9 and 10,
Convolution

The Continuous Case

Let X and Y are independent with densities f_X and f_Y, and let

$$Z = X + Y.$$

Then

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x)f_Y(z-x)dx.$$

Example: If $X \sim \text{Unif}[0, 1]$ and $Y \sim \text{Unif}[0, 1]$, then

$$f_Z(z) = \min[z, 2-z]$$

for $0 \leq z \leq 2$ and $f_Z(z) = 0$ otherwise.

In this case

$$f_X(z) = f_Y(z) = 1 \text{ for } 0 \leq z \leq 1,$$

$$f_X(z) = f_Y(z) = 0 \text{ otherwise}.$$

So, if $0 \leq z \leq 1$, for example, then

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x)f_Y(z-x)dx$$

$$= \int_0^z 1 \times 1 dx$$

$$= z.$$

Similarly

Let

$$X_1, \ldots, X_n$$

be independent

and

$$Y = X_1 + \cdots + X_n.$$

If

$$X_i \sim \text{Gamma}(\alpha_i, \beta), \ i = 1, \cdots, n,$$

then

$$Y \sim \text{Gamma}(\alpha_1 + \cdots + \alpha_n, \beta).$$

If

$$X_i \sim \text{Normal}(\mu_i, \sigma^2_i), \ i = 1, \cdots, n,$$

then

$$Y \sim \text{Normal}(\mu, \sigma^2),$$

where

$$\mu = \mu_1 + \cdots + \mu_n,$$

$$\sigma^2 = \sigma^2_1 + \cdots + \sigma^2_n.$$

Conditional Distributions

The Continuous Case

Conditional Densities: Let X and Y have joint density f. If $f_X(x) > 0$, then the conditional density of Y given X is

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}.$$

As above, this is a density.

Conditional Probability: Write

$$P[Y \in B|X = x] = \int_B f_{Y|X}(y|x)dy.$$

Notes:

- New definition.
- $P[X = x] = 0$.
- Can reverse the roles of X and Y.
Example

If
\[f(x, y) = \frac{2}{(1 + x + y)^2} \]
for \(0 \leq x, y < \infty\), then
\[f_X(x) = \frac{1}{(1 + x)^2} \]
for \(0 \leq x < \infty\). So,
\[f_{Y|X}(y|x) = \frac{2(1 + x)^2}{(1 + x + y)^3} \]
and
\[P[Y > c|X = x] = \int_c^\infty \frac{2(1 + x)^2}{(1 + x + y)^3} dy \]
\[= \frac{(1 + x)^2}{(1 + x + c)^3} \]

Bayes Theorem

In both cases (discrete and continuous),
\[f(x, y) = f_{Y|X}(y|x) f_X(x) \]
if \(f_X(x) > 0 \). In the discrete case,
\[f_Y(y) = \sum_{x \in X} f(x, y) \tag{\star} \]
and
\[f_{X|Y}(x|y) = f(x, y)/f_Y(y) \]
when \(f_Y(y) > 0 \). In the continuous case, the sum in (\star) is replaced by an integral.

Mixed Distributions: One variable can be discrete and the other continuous.

Multivariate Extensions: \(X \) and/or \(Y \) can be vectors.

The Rule of Succession

Suppose
\[X \sim \text{Unif}[0, 1], \]
and
\[f_Y(y_1, \ldots, y_n|x) = x^{y_1 + \cdots + y_n} (1 - x)^{n - (y_1 + \cdots + y_n)} \]
for \(y_1, \ldots, y_n = 0 \) or 1. Then
\[P[Y_1 = 1, \ldots, Y_n = 1] - f_Y(1, \ldots, 1) \]
\[= \int_0^1 x^ndy \]
\[= \frac{1}{n + 1} \]

If there were an \((n + 1)\)th \(Y \), then
\[P[Y_{n+1} = 1|Y_1 = 1, \ldots, Y_{n+1} = 1] \]
\[= \frac{P[Y_1 = 1, \ldots, Y_{n+1} = 1]}{P[Y_1 = 1, \ldots, Y_n = 1]} \]
\[= \frac{1}{1(n + 2)} \]
\[= \frac{n + 1}{n + 2} \]

Note: Depends (crucially) on the distribution of \(X \).
Transformations

Let

\[m \geq 1, \]
\[D \subseteq \mathbb{R}^m, \]

and let

\[w : D \rightarrow \mathbb{R}^m, \]

be surjective (one-to-one). Write

\[y = w(x) \]

as

\[y_1 = w_1(x_1, \ldots, x_m), \]
\[y_2 = w_2(x_1, \ldots, x_m), \]
\[\ldots, \]
\[y_m = w_m(x_1, \ldots, x_m), \]

Jacobians

Assuming that \(w \) is differentiable, let

\[J_w(x) = \left| \det \begin{pmatrix} \frac{\partial w_1(x)}{\partial x_1} & \cdots & \frac{\partial w_1(x)}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial w_m(x)}{\partial x_1} & \cdots & \frac{\partial w_m(x)}{\partial x_m} \end{pmatrix} \right|, \]

where

\[x = (x_1, \ldots, x_m). \]

Or, briefly,

\[J(x) = \left| \det \frac{\partial w(x)}{\partial x} \right|. \]

Polar Coordinates

Let

\[m = 2, \]
\[D = (0, \infty) \times [-\pi, \pi), \]

\[y_1 = r \cos(\theta), \]
\[y_2 = r \sin(\theta). \]

Then

\[w : D \rightarrow \mathbb{R}^2 - \{0\} \]

\[\frac{\partial w_1}{\partial r} = \cos(\theta), \]
\[\frac{\partial w_2}{\partial r} = \sin(\theta), \]
\[\frac{\partial w_1}{\partial \theta} = -r \sin(\theta), \]
\[\frac{\partial w_2}{\partial \theta} = r \sin(\theta), \]

So,

\[J(r, \theta) = \left| \det \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -r \sin(\theta) & r \cos(\theta) \end{pmatrix} \right|. \]

That is,

\[J(r, \theta) = r \cos^2(\theta) + r \sin^2(\theta) = r. \]
Change of Variables

Suppose that
\[w : D \to \mathbb{R}^m \]
is differentiable and one-to-one and let \(v : E \to D \)
be the inverse function.

Theorem. Under technical conditions,
\[\int_D g(x) dx = \int_E g[v(y)] J_v(y) dy. \]

Corollary.
\[\int_{\mathbb{R}^2} g(x_1, x_2) dx_2 dx_1 \\
- \int_0^\infty \int_{-\pi}^{\pi} g(r \cos(\theta), r \sin(\theta)) r d\theta dr. \]

Transformations of RVs

Now let
\[X_1, \ldots, X_m \sim f \text{ joint density}. \]
Let \(\mathbf{X} = (X_1, \ldots, X_m) \).

Suppose
\[P[X \in D] = 1 \]
and let
\[\mathbf{Y} = w(\mathbf{X}), \]
where
\[w : D \to \mathbb{R}^m \subset \mathbb{R}^m. \]

That is,
\[Y_1 = w_1(X_1, \ldots, X_m), \]
\[Y_2 = w_2(X_1, \ldots, X_m), \]
\[\ldots, \]
\[Y_m = w_m(X_1, \ldots, X_m). \]

Example

If
\[X_1, X_2 \sim \text{ind } \phi, \]
then
\[f(x_1, x_2) = \frac{1}{\sqrt{2\pi}} e^{-x_1^2/2} \times \frac{1}{\sqrt{2\pi}} e^{-x_2^2/2} \]
\[= \frac{1}{2\pi} e^{-x_1^2/2-x_2^2/2}. \]
\[X_1 = R \cos(\Theta), \]
\[X_2 = R \sin(\Theta), \]
then
\[g(r, \theta) = f[r \cos(\theta), r \sin(\theta)] r \]
\[= \frac{r}{2\pi} e^{-r^2/2} \]
for \(0 < r < \infty \) and \(-\pi < \theta \leq \pi \).

Suppose that
\[w \text{ is surjective,} \]
\[v = w^{-1} \text{ is smooth.} \]

Theorem. \(\mathbf{Y} \) has density
\[g(y) = f[v(y)] J_v(y) 1_E(y). \]

Corollary
\[g_1(y_1) = \int_{\mathbb{R}^n} g(y_1, z) dz. \]

Corollary. If
\[X_1, X_2 \sim f, \]
\[X_1 = R \cos(\Theta), \]
\[X_2 = R \sin(\Theta), \]
then
\[g(r, \theta) = f[r \cos(\theta), r \sin(\theta)] r \]
for \(0 < r < \infty \) and \(-\pi < \theta \leq \pi \).
So,

\[g_1(r) = \int_{-\pi}^{\pi} \frac{r}{2\pi} e^{-\frac{\theta^2}{2}} d\theta = r e^{-\frac{\pi^2}{2}} \]

for \(0 < r < \infty\); and

\[g_2(\theta) = \int_{0}^{\infty} \frac{r}{2\pi} e^{-\frac{\theta^2}{2r^2}} dr = \frac{1}{2\pi} e^{-\frac{\pi^2}{2r^2}} \bigg|_{r=0}^{\infty} = r e^{-\frac{\pi^2}{2}} \]

and

\(R \) and \(\Theta \) are independent.