Jointly Distributed Random Variables

Def: Given a model, \((\Omega, P)\), random variables

\[X, Y, Z, \ldots : \Omega \to \mathbb{R} \]

are said to be jointly distributed.

Notation: Then, for example,

\[P[X \in A, Y \in B] = P(\omega : X(\omega) \in A \text{ and } Y(\omega) \in B) \]

and

\[P[(X, Y) \in C] = P(\{\omega : (X(\omega), Y(\omega)) \in C\}) \]

for \(A, B \subseteq \mathbb{R} \) and \(C \subseteq \mathbb{R}^2 \).

An Example

If a committee of size four is selected at random from 5 Dems., 5 Inds., and 5 Reps, then

\[X = \#\text{Dems}, \]

\[Y = \#\text{Reps}, \]

are JDRVs for which

\[P[X = 0, Y = 0] = \binom{5}{4} \binom{15}{4}, \]

\[P[X = 1, Y = 1] = \binom{5}{1} \binom{7}{2} \binom{15}{4}, \]

\[P[X = 2, Y = 2] = \binom{5}{2} \binom{13}{2} \binom{15}{4}, \]

and

\[P[X = Y] = \frac{5 + 250 + 100}{1365} = .260. \]

The Joint Probability Mass Function

Two RVs: If \(X \) and \(Y \) are JD discrete RVs, then their joint probability mass function is

\[f(x, y) = P[X = x, Y = y] \]

for \(x, y \in \mathbb{R} \).

Several: If \(X_1, \ldots, X_m \) are JD discrete RVs, then their joint probability mass function is

\[f(x_1, \ldots, x_m) = P[X_1 = x_1, \ldots, X_m = x_m] \]

for \(x_1, \ldots, x_m \in \mathbb{R} \).

Vector Notation: Let \(\mathbf{X} = (X_1, \ldots, X_m) \) and

\[f(\mathbf{x}) = P[\mathbf{X} = \mathbf{x}] \]

for \(\mathbf{x} = (x_1, \ldots, x_m) \in \mathbb{R}^m \).

Bivariate Hypergeometric Distributions

Parameters \(N, R, W, \) and \(n \)

If \(n \) tickets are drawn at random \(w.o.r. \) from \(N \) tickets of which \(R \) are red and \(W \) are white, then

\[X = \#\text{red}, \]

\[Y = \#\text{white}, \]

are JD discrete RVs with joint PMF

\[f(x,y) = \binom{R}{x} \binom{W}{y} \binom{N - R - W}{n - x - y} / \binom{N}{n} \]

for integers \(x, y \geq 0 \) with \(x + y \leq n \) and \(f(x,y) = 0 \) for other values of \(x, y \).

Example: Committees. \(N = 15, R = 5, W = 5, \) and \(n = 4. \)

Note: Extensions to Several Colors.
Partitions

Review

If \(n \geq 1 \) and \(n_1, \ldots, n_m \geq 0 \) are integers for which
\[
n_1 + \cdots + n_m = n,
\]
then a set of \(n \) elements may be partitioned into \(m \) subsets of sizes \(n_1, \ldots, n_m \) in
\[
\binom{n}{n_1, \ldots, n_m} = \frac{n!}{n_1! \cdots n_m!}
\]
ways.

Example: MISSISSIPPI

\[
\binom{11}{4,1,2,4} = \frac{11!}{4! \cdot 2! \cdot 4!} = 34650.
\]

Example

If a balanced (6-sided) die is rolled 12 times, then the probability that each face appears twice is
\[
\frac{12!}{(1^6)(6!)} = \frac{12!}{2^6} = 0.0034.
\]

For an outcome is
\[
\omega = (i_1, \ldots, i_{12}),
\]
where \(1 \leq i_1, \ldots, i_{12} \leq 6 \); there are
\[
\# \Omega = 6^{12}
\]
such outcomes on
\[
\binom{12}{2,2,2,2,2,2} = \frac{12!}{2^6} = \frac{12!}{2^6}
\]
of which each face appears twice.

Multinomial Distributions

A Loaded Die: Now consider an \(m \)-sided, loaded die. Let
\[
p_i = \text{Prob}[i \text{ spots}]
\]
on a single role. So,
\[
p_1, \ldots, p_m \geq 0,
\]
\[
p_1 + \cdots + p_m = 1.
\]

Repeated Trials: Suppose that the die is rolled \(n \) times, and let
\[
X_i = \# \text{roles with } i \text{ spots}
\]
for \(i = 1, \ldots, m \). Then
\[
f(x_1, \ldots, x_m) = P[X_1 = x_1, \ldots, X_m = x_m]
\]
is
\[
\binom{n}{x_1, \ldots, x_m} p_1^{x_1} \cdots p_m^{x_m}
\]
for integers \(x_1, \ldots, x_m \geq 0 \) \((*)\)
with
\[
x_1 + \cdots + x_m = n.
\]

For the probability of any sequence with \(x_i \)’s is
\[
p_1^{x_1} \cdots p_m^{x_m}.
\]
and there are
\[
\binom{n}{x_1, \ldots, x_m}
\]
such sequences.

Thus
\[
f(x_1, \ldots, x_m) = \binom{n}{x_1, \ldots, x_m} p_1^{x_1} \cdots p_m^{x_m}
\]
if \((*)\) holds and \(f(x_1, \ldots, x_m) = 0 \) otherwise.

Def: Called multinomial with parameters \(n, m, \) and \(p_1, \ldots, p_m \).
Properties of Multivariate PMFs

If \(f \) is the joint PMF of \(X_1, \ldots, X_m \), then there is a finite or countably infinite

\[\mathcal{X} \subseteq \mathbb{R}^m \]

for which

\[f(x) \geq 0, \text{ for all } x \tag{1} \]

and

\[f(x) = 0 \text{ if } x \notin \mathcal{X}, \tag{2} \]

and

\[\sum_{x \in \mathcal{X}} f(x) = 1. \tag{3} \]

Also,

\[P[X \in B] = \sum_{x \in B \cap \mathcal{X}} f(x) \]

for \(B \subseteq \mathbb{R}^m \).

Conversely, any \(f \) that satisfies (1), (2), and (3), is the joint PMF of some random variables \(X_1, \ldots, X_m \).

Marginal Distributions

Two Variables

Let \(X \) and \(Y \) by JD discrete RVs with joint PMF

\[f(x, y) = P[X = x, Y = y] \]

and ranges \(\mathcal{X} \) and \(\mathcal{Y} \). So, \(f(x, y) = 0 \) unless \(x \in \mathcal{X} \) and \(y \in \mathcal{Y} \). Then \(X \) and \(Y \) have individual (marginal) PMFs

\[f_X(x) = \sum_{y \in \mathcal{Y}} f(x, y), \]

\[f_Y(y) = \sum_{x \in \mathcal{X}} f(x, y). \]

For

\[\{ X = x \} = \bigcup_{y \in \mathcal{Y}} \{ X = x, Y = y \} \]

and, therefore,

\[P[X = x] = \sum_{y \in \mathcal{Y}} P[X = x, Y = y]. \]

Example

Two tickets are drawn w.o.r. from a box with

1 ticket labelled one,
2 tickets labelled two,
3 ticket labelled three,

Let

\(X = \) label on first ticket,
\(Y = \) label on second.

Then

Table of \(f(x, y) \)

<table>
<thead>
<tr>
<th>(x, y)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>(f_X(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/5</td>
<td>2/5</td>
<td>3/5</td>
<td>1/3</td>
</tr>
<tr>
<td>2</td>
<td>3/50</td>
<td>6/50</td>
<td>9/50</td>
<td>6/5</td>
</tr>
<tr>
<td>3</td>
<td>8/50</td>
<td>12/50</td>
<td>18/50</td>
<td>3/5</td>
</tr>
</tbody>
</table>

\(f_Y(y) \)

\[\begin{array}{c}
\frac{1}{5} \\
\frac{2}{5} \\
\frac{3}{5}
\end{array} \]

Marginal Distributions

Several Variables

Let

\(X = (X_1, \ldots, X_i) \)

and

\(Y = (Y_1, \ldots, Y_k) \)

be JD discrete RVs with joint PMF

\[f(x, y) = P[X = x, Y = y] \]

and ranges \(\mathcal{X} = \mathbf{X}(\Omega) \) and \(\mathcal{Y} = \mathbf{Y}(\Omega) \). Then \(X \) and \(Y \) have individual (marginal) joint PMFs

\[f_X(x) = \sum_{y \in \mathcal{Y}} f(x, y), \]

and

\[f_Y(y) = \sum_{x \in \mathcal{X}} f(x, y). \]
Example
Multinomial Distributions

If

\((X_1, \cdots, X_m) \sim \text{Multinomial}(n, \mathbf{p})\),

and \(1 \leq k < n\), then the distribution of

\((X_1, \cdots, X_k, X_{k+1} + \cdots + X_m)\)

is

\(\text{Multinomial}(n, k + 1, \mathbf{p}_1, \cdots, \mathbf{p}_k, \mathbf{p}_{k+1}, \cdots, \mathbf{p}_m)\).

In particular,

\(X_i \sim \text{Binomial}(n, p_i)\).

Slide 13

Multiple Integrals

An Interlude

If

\(-\infty < a < b < \infty,\)

\(-\infty < c < d < \infty,\)

and

\(f : [a, b] \times [c, d] \to \mathbb{R},\)

is sufficiently nice (e.g. continuous), then

\[\int_a^b \int_c^d f(x, y) \, dy \, dx \]

is the limit of Riemann sums.

Extensions: Under mild technical conditions,

\(a, c \to -\infty,\)

\(b, d \to \infty.\)

Other Regions: Under conditions,

\[\int \int_C f(x, y) \, dy \, dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \mathbf{1}_C(x, y) \, dy \, dx. \]

Slide 14

Example:

\[\int \int_C 1 \, dy \, dx = \text{Area}(C). \]

Slide 15

Reduction to Iterated Integration

Theorem: If

\(C = \{(x, y) : a \leq x \leq b, \ c(x) \leq y \leq d(x)\},\)

then

\[\int \int_C f(x, y) \, dy \, dx = \int_a^b \left[\int_{c(x)}^{d(x)} f(x, y) \, dy \right] \, dx, \]

under conditions.

Corollary

\[\int_a^b \int_c^d g(x) h(y) \, dy \, dx = \left[\int_a^b g(x) \, dx \right] \int_c^d h(y) \, dy. \]

Example: If \(T = \{(x, y) : 0 \leq x \leq 1, \ 0 \leq y \leq x\},\)

then

\[\int \int_T 1 \, dy \, dx = \int_0^1 \left[\int_0^x dy \right] \, dx \]

\[= \int_0^1 x \, dx \]

\[= \frac{1}{2}. \]
Higher Dimensions

Write \[\int_{\mathbb{R}^m} f(x)dx \]
for
\[\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \cdots, x_m)dx_m \cdots dx_1. \]

Bivariate Densities

A function \(f : \mathbb{R}^2 \to \mathbb{R} \)

is a bivariate density if
\(f(x, y) \geq 0, \)
and
\[\int \int_{\mathbb{R}^2} f(x, y)dydx = 1. \]

If \(f \) is a density, then JDRV X and Y have joint density \(f \)
\[P[(X, Y) \in C] = \int \int_C f(x, y)dydx \]
for nice subsets \(C \subseteq \mathbb{R}^2. \)

Example: Uniform Distributions. If \(R \subset \mathbb{R}^2 \) and
\(0 < \alpha = \text{Area}(R) < \infty, \) then
\[f(x, y) = \frac{1}{\alpha} 1_{R}(x, y) \]
is a density, called the uniform density over \(R. \)

Marginal Densities

If \(X \) and \(Y \) have joint density \(f, \) then \(X \) and \(Y \)
have individual (marginal) densities
\[f_X(x) = \int_{-\infty}^{\infty} f(x, y)dy, \]
\[f_Y(y) = \int_{-\infty}^{\infty} f(x, y)dx. \]

Example: Let
\[D = \{(x, y) : x^2 + y^2 \leq 1\} \]
and
\[f(x, y) = \frac{1}{\pi} 1_D(x, y). \]
If \(-1 < x < 1, \) then
\[f_X(x) = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{1}{\pi} dy = \frac{2}{\pi} \sqrt{1-x^2}. \]

Example

If
\[f(x, y) = \frac{2}{(1 + x + y)^3} \]
for \(0 \leq x, y < \infty \) and \(f(x, y) = 0 \) otherwise, then
\[\int_0^\infty f(x, y)dy = \frac{1}{(1 + x + y)^{2\gamma}} \bigg|_{y=0}^{\infty} \]
\[= \frac{1}{(1 + x)^2} \]
for \(0 \leq x < \infty, \) and
\[\int \int_{\mathbb{R}^2} f(x, y)dydx = \int_0^\infty \frac{dx}{(1 + x)^2} \bigg|_{x=0}^{\infty} \]
\[= \frac{1}{1 + x} \bigg|_{x=0}^{\infty} \]
\[= 1. \]
So, \(f \) is a density and
\[f_X(x) = \frac{1}{(1 + x)^2} \]
for \(0 \leq x < \infty. \)
Multivariate Densities

A function

\[f : \mathbb{R}^m \rightarrow \mathbb{R} \]

is a multivariate density if

\[f(x) \geq 0, \]

and

\[\int_{\mathbb{R}^m} f(x)dx = 1. \]

If \(f \) is a density, then JDRVs \(X_1, \cdots, X_m \) have joint density \(f \)

\[P[X \in C] = \int_C f(x)dx \]

for nice subsets \(C \subseteq \mathbb{R}^m \).

Marginal Densities: If \(X_1, \cdots, X_j \) and \(Y_1, \cdots, Y_k \) have joint density \(f \), then \(X_1, \cdots, X_j \) have joint density

\[f_{X}(x) = \int_{\mathbb{R}^k} f(x,y)dy. \]

Joint Distribution Functions

Def: If \(X \) and \(Y \) are JDRVs, then their joint distribution function is

\[F(a,b) = P[X \leq a, Y \leq b]. \]

Marginal Distributions: Then

\[F_X(a) = \lim_{b \to \infty} F(a,b), \]

\[F_Y(b) = \lim_{a \to -\infty} F(a,b), \]

Notes: a) Characteristic Properties

b) Higher Dimensions
c) Harder to Use
d) Mixed Distributions

Independence

JDRVs \(X \) and \(Y \) are independent if

\[P[X \in A, Y \in B] = P[X \in A]P[Y \in B] \]

for all nice subsets \(A, B \subseteq \mathbb{R} \) (for example, intervals).

Conditions for Independence

PMF: If \(X \) and \(Y \) are discrete, then \(X \) and \(Y \) are independent iff

\[f(x,y) = f_X(x)f_Y(y) \quad (*) \]

for all \(x \) and \(y \). For if \(X \) and \(Y \) are independent, then \(X = x \) iff \(X \in [x, x] \), so that

\[f(x,y) = P[X = x, Y = y] = P[X = x]P[Y = y] = f_X(x)f_Y(y). \]

Conversely, if \((*) \) holds, then

\[P[X \in A, Y \in B] = \sum_{x \in A \cap X} \sum_{y \in B \cap Y} f(x,y) = \sum_{x \in A \cap X} f_X(x)f_Y(y) = [\sum_{x \in A \cap X} f(x,y)][\sum_{y \in B \cap Y} f_Y(y)] = P[X \in A]P[Y \in B], \]

where \(X \) and \(Y \) are the ranges of \(X \) and \(Y \).

Example: If \(E \) and \(F \) are independent events, then \(1_E \) and \(1_F \) are independent random variables. For example,

\[P[1_E = 1, 1_F = 1] = P(E \cap F) = P(E)P(F) = P[1_E = 1]P[1_F = 1] \]
Other Conditions

DFs: X and Y are independent iff

$$F(a, b) = F_X(a)F_Y(b)$$

for all $a, b \in \mathbb{R}$.

Densities: If X and Y have individual densities f_X and f_Y, then X and Y are independent iff X and Y have joint density

$$f(x, y) = f_X(x)f_Y(y).$$

Example

If

$$X \sim \text{Exp}(\lambda),$$

$$Y \sim \text{Exp}(\lambda)$$

are independent, what is

$$P[Y \geq 2X \text{ or } X \geq 2Y].$$

Here

$$f_X(x) = f_Y(y) = \lambda e^{-\lambda x}$$

for $0 \leq z < \infty$. So,

$$f(x, y) = f_X(x)f_Y(y) = \lambda^2 e^{-\lambda(x+y)}$$

for $0 \leq x, y < \infty$ and $f(x, y) = 0$ for other x and y. So,

Several Variables

X_1, \ldots, X_m are independent if

$$P[X_1 \in A_1, \ldots, X_m \in A_m] = P[X_1 \in A_1] \times \cdots \times P[X_m \in A_m]$$

Note: Equivalent Conditions. For example,

$$f(x_1, \ldots, x_m) = f_1(x_1) \times \cdots \times f_m(x_m).$$
The Distribution of the Maximum

Example: n light globes are placed in service at time \(t = 0 \) and allowed to burn continuously. Denote their lifetimes by \(X_1, \ldots, X_n \) and suppose that
\[
X_1, \ldots, X_n \sim \text{ind } F. \tag{*}
\]
If burned out globes are not replaced, then the room goes dark at time
\[
Y = \max[X_1, \ldots, X_n],
\]
the largest of \(X_1, \ldots, X_n \).

The Distribution of \(Y \): If (*) holds, then
\[
G(y) := P[Y \leq y] = P[X_1 \leq y, \ldots, X_n \leq y] = P[X_1 \leq y] \times \cdots \times P[X_n \leq y] = F(y)^n = F(y)^n.
\]
So, if \(F \) has density \(f \), then \(Y \) has density
\[
g(y) = \frac{d}{dy} F(y)^n = nF(y)^{n-1} f(y).
\]

Example: Revisited. If \(n = 5 \) and \(F \) is exponential with \(\lambda = 1 \) per hour, then
\[
F(t) = 1 - e^{-t},
\]
\[
G(t) = (1 - e^{-t})^5,
\]
and
\[
g(t) = 5(1 - e^{-t})^4 e^{-t}
\]
for \(0 \leq t < \infty \). The probability that the room is still lighted after two months is
\[
P[Y \geq 2] = 1 - G(2) = 1 - (1 - e^{-2})^5 = .5167.
\]

Order Statistics

If
\[
X_1, \ldots, X_n \sim \text{ind } F,
\]
let
\[
X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}
\]
by \(X_1, \ldots, X_n \) in increasing order. Thus,
\[
X_{(1)} = \min[X_1, \ldots, X_n],
\]
\[
\ldots,
\]
\[
X_{(n)} = \max[X_1, \ldots, X_n].
\]

Notes
- Times that globes burn out—in the example.
- Can find distributions.
- Section 6.6 and Problems 9 and 10.

Sums of Independent Random Variables

Convolutions: Let \(X \) and \(Y \) be independent, integer valued random variables, and let
\[
Z = X + Y.
\]
Then
\[
f_Z(k) = \sum_{j=-\infty}^{\infty} f_X(j)f_Y(k-j). \tag{*}
\]
For
\[
\{Z = k\} = \bigcup_{j=-\infty}^{\infty} \{X = j, Y = k-j\}
\]
and, therefore,
\[
P[Z = k] = \sum_{j=-\infty}^{\infty} P[X = j]P[Y = k-j].
\]

Note: (*) is called the convolution of \(f_X \) and \(f_Y \).
Example

Poisson

If $X \sim \text{Poisson}(\alpha)$ and $Y \sim \text{Poisson}(\beta)$ are independent, then

$$f_X(j) = \frac{1}{j!} \alpha^j e^{-\alpha},$$
$$f_Y(j) = \frac{1}{j!} \beta^j e^{-\beta},$$

for $j = 0, 1, 2, \cdots$, and $f_X(j) = f_Y(j) = 0$ for $j < 0$. So, the PMF of $Z = X + Y$ is

$$f_Z(k) = \sum_{j=0}^{\infty} f_X(j)f_Y(k-j)$$
$$= \sum_{j=0}^{k} \frac{1}{j!} \alpha^j e^{-\alpha} \times \frac{1}{(k-j)!} \beta^{k-j} e^{-\beta}$$
$$= \frac{1}{k!} e^{-\alpha-\beta} \sum_{j=0}^{k} \frac{k!}{j!(k-j)!} \alpha^j \beta^{k-j}$$
$$= \frac{1}{k!}(\alpha + \beta)^k e^{-\alpha-\beta}$$

So, if

$$X \sim \text{Poisson}(\alpha),$$
$$Y \sim \text{Poisson}(\beta),$$

are independent, then

$$X + Y \sim \text{Poisson}(\alpha + \beta).$$

By induction, if

$$X_i \sim \text{Poisson}(\lambda_i), \quad i = 1, \cdots, n,$$

are independent, then

$$X_1 + \cdots + X_n \sim \text{Poisson}(\lambda_1 + \cdots + \lambda_n).$$

Convolution

The Continuous Case

Let X and Y are independent with densities f_X and f_Y, and let

$$Z = X + Y.$$

Then

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x)f_Y(z-x)dx.$$

Example: If $X \sim \text{Unif}[0,1]$ and $Y \sim \text{Unif}[0,1]$, then

$$f_Z(z) = \min[z, 2-z]$$

for $0 \leq z \leq 2$ and $f_Z(z) = 0$ otherwise.

In this case

$$f_X(z) = f_Y(z) = 1 \text{ for } 0 \leq z \leq 1,$$
$$f_X(z) = f_Y(z) = 0 \text{ otherwise}.$$

So, if $0 \leq z \leq 1$, for example, then

$$f_Z(z) = \int_{-\infty}^{\infty} f_X(x)f_Y(z-x)dx$$
$$= \int_{0}^{z} 1 \times 1 dx$$
$$= z.$$
Similarly

Let

\[X_1, \ldots, X_n \] be independent

and

\[Y = X_1 + \cdots + X_n. \]

If

\[X_i \sim \text{Gamma}(\alpha_i, \beta), \quad i = 1, \ldots, n, \]

then

\[Y \sim \text{Gamma}(\alpha_1 + \cdots + \alpha_n, \beta). \]

If

\[X_i \sim \text{Normal}(\mu_i, \sigma_i^2), \quad i = 1, \ldots, n, \]

then

\[Y \sim \text{Normal}(\mu, \sigma^2), \]

where

\[\mu = \mu_1 + \cdots + \mu_n, \]

\[\sigma^2 = \sigma_1^2 + \cdots + \sigma_n^2. \]

Conditional Distributions

The Discrete Case

Let \(X \) and \(Y \) have joint PMF \(f \). If \(f_X(x) > 0 \), then the conditional PMF of \(Y \) given \(X \) is

\[f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}. \]

Thus,

\[f_{Y|X}(y|x) = \frac{P[X = x, Y = y]}{P[X = x]} = \frac{P[Y = y|X = x]}{P[X = x]}. \]

Note: \(f_{Y|X} \) is a PMF, since

\[\sum_{y \in \mathcal{Y}} f_{Y|X}(y|x) = \frac{1}{f_X(x)} \sum_{y \in \mathcal{Y}} f(x,y) = 1. \]

Note: Can reverse the roles of \(X \) and \(Y \).

Example

Box Ticket Models

If

\[f(x,y) = \binom{R}{x} \binom{W}{y} \binom{N - R - W}{n - x - y} \binom{N}{n}, \]

for \(x + y \leq n \), where \(n \leq N \), \(R, W \geq 1 \) and \(R + W < N \), then

\[f_X(x) = \binom{R}{x} \binom{N - R}{n - x} \binom{N}{n} \]

and

\[f_{Y|X}(y|x) = \binom{W}{y} \binom{N - R - W}{n - x - y} \binom{N - R}{n - x}. \]

Note: Intuitive.

Conditional Distributions

The Continuous Case

Conditional Densities: Let \(X \) and \(Y \) have joint density \(f \). If \(f_X(x) > 0 \), then the conditional density of \(Y \) given \(X \) is

\[f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}. \]

As above, this is a density.

Conditional Probability: Write

\[P[Y \in B|X = x] = \int_B f_{Y|X}(y|x)dy. \]

Notes:

- New definition.
- \(P[X = x] = 0 \).
- Can reverse the roles of \(X \) and \(Y \).
Example

If
\[f(x, y) = \frac{2}{(1 + x + y)^2} \]
for \(0 \leq x, y < \infty\), then
\[f_X(x) = \frac{1}{(1 + x)^2} \]
for \(0 \leq x < \infty\). So,
\[f_{Y|X}(y|x) = \frac{2(1 + x)^2}{(1 + x + y)^2} \]
and
\[P[Y > x|X = x] = \int_x^\infty \frac{2(1 + x)^2}{(1 + x + y)^2} \, dy \]
\[= -\frac{(1 + x)^2}{(1 + x + y)^2} \bigg|_x^\infty \]
\[= \frac{(1 + x)^2}{(1 + x + c)^2}. \]

Bayes Theorem

In both cases (discrete and continuous),
\[f(x, y) = f_{Y|X}(y|x)f_X(x), \]
if \(f_X(x) > 0\). In the discrete case,
\[f_Y(y) = \sum_{x \in X} f(x, y) \quad (\ast) \]
and
\[f_{X|Y}(x|y) = f(x, y)f_Y(y), \]
when \(f_Y(y) > 0\). In the continuous case, the sum in \((\ast)\) is replaced by an integral.

Mixed Distributions: One variable can be discrete and the other continuous.

Multivariate Extensions: \(X\) and/or \(Y\) can be vectors.

The Rule of Succession

Suppose
\[X \sim \text{Unif}[0, 1], \]
and
\[f_Y(y_1, \ldots, y_n|X) = x^{y_1 + \cdots + y_n}(1 - x)^{n-(y_1 + \cdots + y_n)} \]
for \(y_1, \ldots, y_n = 0\) or 1. Then
\[P[Y_1 = 1, \ldots, Y_n = 1] = f_Y(1, \ldots, 1) \]
\[= \int_0^1 x^n \, dx
\[= \frac{1}{n+1}. \]

If there were an \((n + 1)\)st \(Y_i\), then
\[P[Y_{n+1} = 1|Y_1 = 1, \ldots, Y_n = 1] = \frac{P[Y_1 = 1, \ldots, Y_{n+1} = 1]}{P[Y_1 = 1, \ldots, Y_n = 1]}
\[= \frac{1/(n + 2)}{1/(n + 1)}
\[= \frac{n + 1}{n + 2}. \]

Note: Depends (crucially) on the distribution of \(X\).
Transformations

Let

$$m \geq 1,$$

$$D \subseteq \mathbb{R}^m,$$

and let

$$w : D \rightarrow E \subseteq \mathbb{R}^m$$

be surjective (one-to-one). Write

$$y = w(x)$$

as

$$y_1 = w_1(x_1, \ldots, x_m),$$

$$y_2 = w_2(x_1, \ldots, x_m),$$

$$\ldots,$$

$$y_m = w_m(x_1, \ldots, x_m),$$

Jacobianns

Assuming that w is differentiable, let

$$J_w(x) = |\det \begin{pmatrix} \frac{\partial w_1(x)}{\partial x_1} & \cdots & \frac{\partial w_1(x)}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial w_m(x)}{\partial x_1} & \cdots & \frac{\partial w_m(x)}{\partial x_m} \end{pmatrix}|,$$

where

$$x = (x_1, \ldots, x_m).$$

Or, briefly,

$$J(x) = |\det \frac{\partial w(x)}{\partial x}|.$$

Polar Coordinates

Let

$$m = 2,$$

$$D = (0, \infty) \times [-\pi, \pi),$$

$$y_1 = r \cos(\theta),$$

$$y_2 = r \sin(\theta).$$

Then

$$w : D \rightarrow \mathbb{R}^2 \setminus \{0\}$$

$$\frac{\partial w_1}{\partial r} = \cos(\theta),$$

$$\frac{\partial w_1}{\partial \theta} = r \sin(\theta),$$

$$\frac{\partial w_1}{\partial \theta} = -r \sin(\theta),$$

$$\frac{\partial w_2}{\partial \theta} = r \sin(\theta),$$

So,

$$J(r, \theta) = |\det \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ -\theta \sin(\theta) & \theta \cos(\theta) \end{pmatrix}|.$$

That is,

$$J(r, \theta) = r \cos^2(\theta) + r \sin^2(\theta) = r.$$
Change of Variables

Suppose that
\[w : D \rightarrow \mathbb{R}^n \]
is differentiable and one-to-one and let \(v : E \rightarrow D \)
be the inverse function.

Theorem. Under technical conditions,
\[
\int_D g(x) \, dx = \int_E g[v(y)] |J_v(y)| \, dy.
\]

Corollary.
\[
\int_{\mathbb{R}^2} g(x_1, x_2) \, dx_1 \, dx_2 = \int_0^\infty \int_0^{\pi} g[r \cos(\theta), r \sin(\theta)] r \, d\theta \, dr.
\]

Transformations of RV's

Now let \(X_1, \ldots, X_m \) have joint density \(f \).

Let \(\mathbf{X} = (X_1, \ldots, X_m) \).

Suppose \(P[\mathbf{X} \in D] = 1 \) and let
\[\mathbf{Y} = w(\mathbf{X}), \]
where \(w : D \rightarrow \mathbb{R}^m \).

That is,
\[
Y_1 = w_1(X_1, \ldots, X_m), \quad Y_2 = w_2(X_1, \ldots, X_m), \quad \ldots, \quad Y_m = w_m(X_1, \ldots, X_m),
\]

Example

If \(X_1, X_2 \sim \text{ind } \Phi \),
then
\[
f(x_1, x_2) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x_1^2}{2}} \times \frac{1}{\sqrt{2\pi}} e^{-\frac{x_2^2}{2}}
\]
\[= \frac{1}{2\pi} e^{-\frac{1}{2}(x_1^2 + x_2^2)}.
\]

Then,
\[X_1 = R \cos(\Theta), \quad X_2 = R \sin(\Theta), \]
then
\[g(r, \theta) = f[r \cos(\theta), r \sin(\theta)] r
\]
for \(0 < r < \infty \) and \(-\pi < \theta \leq \pi \).
So,

\[g_1(r) = \int_{-\pi}^{\pi} \frac{r}{2\pi} e^{-\frac{1}{2}r^2} d\theta \]
\[= re^{-\frac{1}{2}r^2} \]

for \(0 < r < \infty\); and

\[g_2(\theta) = \int_{0}^{\infty} \frac{r}{2\pi} e^{-\frac{1}{2}r^2} dr \]
\[= -\frac{1}{2\pi} e^{-\frac{1}{2}r^2} \bigg|_{r=0}^{r=\infty} \]
\[= re^{-\frac{1}{2}r^2} ; \]

and

\[R \text{ and } \Theta \text{ are independent.} \]