Review

Let $X_1, X_2, \cdots \sim \text{ind } F$, where F has mean and variance

$$
\mu = \int_{-\infty}^{\infty} x dF(x), \quad \sigma^2 = \int_{-\infty}^{\infty} (x - \mu)^2 dF(x).
$$

The LLN

$$
\frac{X_1 + \cdots + X_n}{n} \rightarrow \mu.
$$

The CLThm: Let $S_n = X_1 + \cdots + X_n$. Then

$$
\lim_{n \to \infty} P \left(\frac{S_n - n\mu}{\sigma/\sqrt{n}} \leq z \right) = \Phi(z),
$$

where Φ is the standard normal distribution function; that is,

$$
S_n \approx \text{Normal}(n\mu, n\sigma^2).
$$

for large n.

Today: An Application: Simulation.

Prologue

Let $A, B, C \sim \text{ind } \text{Unif}[-L, L]$.

What is the probability that

$$
Ax^2 + Bx + C = 0
$$

has real roots (in x)? This is

$$
P[4AC \leq B^2] = \frac{1}{8L^3} \int \int \int_R dadbdc,
$$

where

$$
R = \{(a, b, c) : -L \leq a, b, c \leq L, \ 4ac \leq b^2\}.
$$

Notes: • Can be computed
 • With difficulty
 • Does not depend on L.

The LLN For Events

If

$$
E_1, E_2, \cdots \text{ are independent,} \quad P(E_i) = p,
$$

then

$$
\frac{\#\{k \leq N : E_k \text{ occurs}\}}{N} \rightarrow p.
$$

Notes: • Qualitative
 • CLThm

Applications: • Prediction—e.g. gambling.
 • Inference—today.
 • Use to compute p.

Simulation

The LLN In Action

Outline

• Random Number Generators
• Simulation Experiments
• Examples
• Non-uniform Distributions
Modular Arithmetic

If m is any positive integer, then any integer n may be written

$$n = km + r,$$

where k and r are integers for which

$$0 \leq r < m.$$

Write

$$n = r \pmod{m}.$$

If

$$n_i = k_im + r_i,$$

then $n_1 = n_2 \pmod{m}$ if $r_1 = r_2$.

Example: $10 = 1 \pmod{3}$.

Linear Congruential Generators

Consider the recursion

$$X_{n+1} = (aX_n + c) \pmod{m},$$

where a, c, m, and X_0 are positive integers (parameters of the LCG). Here

$$a = \text{multiplier},$$

$$c = \text{increment},$$

$$m = \text{modulus},$$

$$X_0 = \text{seed}.$$

Example: With $X_0 = 1$, $a = 3$, $c = 1$, and $m = 8$,

$$X_1 = 3 \times 1 + 1 = 4 \pmod{8}$$

$$X_2 = 3 \times 4 + 1 = 5 \pmod{8}$$

$$X_3 = 3 \times 5 + 1 = 0 \pmod{8}$$

$$X_4 = 3 \times 0 + 1 = 1 \pmod{8}$$

Pseudo Random Number Generators

For suitable a, c, m, and X_0,

$$U_n = \frac{X_n}{m}$$

simulate independent standard uniform random variables $\text{Unif}[0,1]$.

Example

$$a = 129,$$

$$c = 1,$$

$$m = 2^{35}.$$

Note: RAND or RND.

Example

Q: $A, B, C \sim \text{ind} \text{Unif}[-L, L]$, what is the probability that $Ax^2 + Bx + C = 0$ has real roots (in x)?

Ans: Generate

$$A_1, B_1, C_1, \cdots, A_N, B_N, C_N \sim \text{ind} \text{Unif}[-1, 1].$$

Let

$$E_i = \{4A_iC_i \leq B_i^2\}.$$

Then

$$P(E_i) = P[4AC \leq B^2] = p, \text{ say},$$

and

$$\frac{\#\{i \leq N : E_i \text{ occurs}\}}{N} \to p$$

as $N \to \infty$ by the LLN.
Estimate: Estimate \(p \) by
\[
\hat{p} = \frac{\#\{i \leq N : 4A_i C_i \leq B_i^2\}}{N}
\]
with a large \(N \).

Example: With \(N = 10,000 \),
\[
\hat{p} = .628
\]

Note: • Generate 30,000 random numbers.
 • Instantaneous.
 • Error allowance .01 (Later).
 • Exact: .627

Assessing The Error
Let
\[
E_1, E_2, \cdots \text{ be independent,}
\]
\[
P(E_k) = p,
\]
\[
S = \#\{k \leq N : E_k \text{ occurs}\},
\]
and
\[
\hat{p} = \frac{1}{N}S = \frac{\#\{k \leq N : E_k \text{ occurs}\}}{N}.
\]
Then
\[
S \sim \text{Binomial}(N, p),
\]
\[
E(S) = Np,
\]
\[
D^2(S) = Npq,
\]
and
\[
S^* = \frac{S - Np}{\sqrt{Npq}} \approx \text{Normal}[0, 1].
\]

Assessing Error-Continued
Let
\[
\epsilon = \hat{p} - p
\]
and
\[
\epsilon^* = \frac{\hat{p} - p}{\sqrt{pq/N}}.
\]
Then
\[
\hat{p} - p = \sqrt{\frac{pq}{N}} \epsilon^*
\]
\[
\epsilon^* = S^* \approx \Phi.
\]
So,
\[
P[-2 \leq \epsilon^* \leq 2] \approx \Phi(2) - \Phi(-2) = .954
\]
for large \(N \). That is, with high probability
\[
-2 \leq \epsilon^* = \frac{\hat{p} - p}{\sqrt{pq/N}} \leq 2,
\]
or
\[
|\hat{p} - p| = \sqrt{\frac{pq}{N}} |\epsilon^*| \leq 2\sqrt{\frac{pq}{N}}.
\]

Assessing Error-Completed
Simple Bound: Use
\[
pq = p(1 - p) \leq \frac{1}{4}.
\]
So, with high probability,
\[
|\hat{p} - p| \leq 2\sqrt{\frac{pq}{N}} \leq \frac{1}{\sqrt{N}}.
\]
For example, if \(N = 10,000 \), then \(1/\sqrt{N} = .01 \).

Better Bound: Solve the inequality
\[
|\hat{p} - p| \leq 2\sqrt{\frac{pq}{N}}.
\]
Get
\[\ldots\]

Bad Idea (But widely recommended): Use
\[
|p - \hat{p}| \leq 2\sqrt{\frac{pq}{N}}.
\]
Remarks

Terminology: The interval
$$p \in \hat{p} \pm \frac{1}{\sqrt{N}}$$
is called a \textit{(conservative, asymptotic) 95\% confidence interval for p}.

Other Applications: Drug testings, opinion polls, etc.

Example: In a poll of $$N = 1600$$ voters, 55\% favored candidate A over B. Allowance for error is $$1/\sqrt{N} = .025$$.

Example

Assessing Accuracy in the CLThm

Let
$$U_1, \cdots, U_{12} \sim \text{ind Unif}(0, 1],$$
$$Z = U_1 + \cdots + U_{12} - 6,$$
and
$$F(z) = P[Z \leq z]$$
then
$$F(z) \approx \Phi(z)$$
by the CLThm, since $$\mu = 1/2$$ and $$\sigma^2 = 1/12$$.

A Simulation Experiment: Generate
$$U_1, U_2, \cdots, U_{12N}.$$

Let
$$Z_k = U_{12(k-1)+1} + \cdots + U_{12k} - 6$$
and
$$\hat{F}(z) = \frac{\#\{k \leq N : Z_k \leq z\}}{N}.$$

Results of the Simulation

$$n = 12$$
$$N = 10,000$$

<table>
<thead>
<tr>
<th>z</th>
<th>\hat{F}(z)</th>
<th>\Phi(z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.6</td>
<td>.058</td>
<td>.055</td>
</tr>
<tr>
<td>-1.2</td>
<td>.120</td>
<td>.115</td>
</tr>
<tr>
<td>-0.8</td>
<td>.214</td>
<td>.21</td>
</tr>
<tr>
<td>-0.4</td>
<td>.346</td>
<td>.345</td>
</tr>
<tr>
<td>0.0</td>
<td>.496</td>
<td>.500</td>
</tr>
<tr>
<td>0.4</td>
<td>.654</td>
<td>.655</td>
</tr>
<tr>
<td>0.8</td>
<td>.789</td>
<td>.788</td>
</tr>
<tr>
<td>1.2</td>
<td>.884</td>
<td>.885</td>
</tr>
<tr>
<td>1.6</td>
<td>.944</td>
<td>.945</td>
</tr>
</tbody>
</table>

Simulating Other Distributions

Basic Fact: If

$$G$$ is a cont. ↑ DF,
$$U \sim \text{Unif}(0, 1],$$
then
$$Y = G^{-1}(U) \sim G,$$
since
$$P[Y \leq y] = P[G^{-1}(U) \leq y] = P[U \leq G(y)] = G(y).$$

Note: • General Method
• Not always efficient.
Example
Exponential Distributions

If

\[G(y) = 1 - e^{-y}, \ 0 \leq y < \infty, \]
\[0 < u < 1, \]

then

\[G(y) = u \]

iff

\[e^{-y} = 1 - u, \]

so that

\[G^{-1}(u) = -\log(1 - u). \]

Thus

\[Y = -\log(1 - U) \sim G. \]

Note: Also, \(-\log(U) \sim G\).