Complex Integration
January 17, 2001

Complex Numbers. Let \mathbb{C} denote the complex numbers. Thus, each $z \in \mathbb{C}$ may be written $z = x + iy$, where $i^2 = -1$ and $x, y \in \mathbb{R}$ are called the real and imaginary parts of z. The reader is assumed to be familiar with complex numbers including addition, multiplication, and absolute value

$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2),$$
$$z_1z_2 = x_1x_2 - y_1y_2 + i(x_1y_2 + x_2y_1),$$
$$\bar{z} = x - iy,$$
$$|z| = \sqrt{z\bar{z}} = \sqrt{x^2 + y^2}.$$

If $\theta \in \mathbb{R}$, then the complex exponential is defined by

$$e^{i\theta} = \cos(\theta) + i\sin(\theta).$$

It is easily seen that $e^{i\theta} \times e^{i\omega} = e^{i(\theta + \omega)}$ and that $|e^{i\theta}| = 1$. Any complex number z may be written as $z = re^{i\theta}$, where $r = |z|$ and $-\pi < \theta \leq \pi$; and if $z \neq 0$, then θ is uniquely determined.

Distance in \mathbb{C} is defined by $d(z_1, z_2) = |z_1 - z_2|$. Viewed as a metric space, \mathbb{C} is isometric to \mathbb{R}^2. The Borel sets of \mathbb{C} is the smallest sigma-algebra containing the open sets.

Complex Integration. Now, let (Ω, \mathcal{A}) be a measurable space. Then any function $f : \Omega \to \mathbb{C}$ may be written as $f = u + iv$, where $u(\omega)$ and $v(\omega)$ are the real and imaginary parts of $f(\omega)$ for each $\omega \in \Omega$. Clearly, f is measurable iff u and v are measurable in which case $|f| = \sqrt{(u^2 + v^2)}$ is measurable. If μ is a measure on \mathcal{A}, then a measurable $f : \Omega \to \mathbb{C}$ is said to be integrable (with respect to μ) iff $|f|$ is integrable in which case

$$\int_{\Omega} f d\mu = \int_{\Omega} u d\mu + i \int_{\Omega} v d\mu.$$

Proposition 1. If $f, f_1, f_2 : \Omega \to \mathbb{C}$ are integrable and $\alpha_1, \alpha_2 \in \mathbb{C}$, then

$$\int_{\Omega} (\alpha_1 f_1 + \alpha_2 f_2) d\mu = \alpha_1 \int_{\Omega} f_1 d\mu + \alpha_2 \int_{\Omega} f_2 d\mu$$

and

$$|\int_{\Omega} f d\mu| \leq \int_{\Omega} |f| d\mu.$$

Proof. The first assertion is left as an exercise, and the second is clear if $\int_{\Omega} f d\mu = 0$. If $\int_{\Omega} f d\mu \neq 0$, then $\int_{\Omega} f d\mu = re^{i\theta}$, where $r = |\int_{\Omega} f d\mu|$. In this case,

$$|\int_{\Omega} f d\mu| = r = \int_{\Omega} e^{-i\theta} f d\mu = \int_{\Omega} \Re[e^{-i\theta} f] d\mu \leq \int_{\Omega} |e^{-i\theta} f| d\mu \leq \int_{\Omega} |f| d\mu,$$

as asserted.✿
Proposition 2. The Dominated Convergence Theorem. Let \(f, f_1, f_2, \ldots \) be integrable complex valued functions. If \(\lim_{n \to \infty} f_n(\omega) = f(\omega) \) for a.e. \(\omega \), and if there is an integrable \(g \) for which \(|f_n| \leq g \) for all \(n \), then

\[
\lim_{n \to \infty} \int_{\Omega} f_n d\mu = \int_{\Omega} f d\mu.
\]

Proof. We have

\[
|\int_{\Omega} (f_n - f) d\mu| \leq \int_{\Omega} |f_n - f| d\mu
\]

for each \(n \). Here \(|f_n - f| \to 0 \) a.e. as \(n \to \infty \), and \(|f_n - f| \leq 2g \) for all \(n \). So,

\[
\lim_{n \to \infty} \int_{\Omega} |f_n - f| d\mu = 0
\]

by the Dominated Convergence Theorem for real valued functions. \(\diamond \)

Remark. If \(F : \mathbb{R} \to \mathbb{C} \) and the real and imaginary parts of \(F = U + iV \) are continuously differentiable, then \(F' = U' + iV' \) and

\[
\int_{(a,b]} F'(t) dt = \int_{a}^{b} F'(t) dt = F(b) - F(a).
\]

Complex Random Variables. If \((\Omega, \mathcal{A}, P)\) is a probability space, then a measurable function \(Z : \Omega \to \mathbb{C} \) is called a complex random variable. Write \(Z = X + iY \). A family \(Z_i, i \in I \), of complex random variables is said to be independent if \((X_i, Y_i), i \in I\), are.

Proposition 3. If \(Z_1, \ldots, Z_m \) are integrable, independent complex random variables, then

\[
E[Z_1 \times \cdots \times Z_m] = E(Z_1) \times \cdots \times E(Z_m).
\]

Proof. If \(m = 2 \), then

\[
E(Z_1Z_2) = E[(X_1X_2 - Y_1Y_2) + i(X_1Y_2 + X_2Y_1)]
\]

\[
= E(X_1)E(X_2) - E(Y_1)E(Y_2) + i[E(X_1)E(Y_2) + E(X_2)E(Y_1)]
\]

\[
= E(Z_1)E(Z_2).
\]

The general case then follows by induction. \(\diamond \)

Characteristic Functions

January 17

Fourier Transforms. Now let \(F \) be a finite measure on the Borel sets of \(\mathbb{R} \). Then the **Fourier Transform of \(F \)** is defined by

\[
\hat{F}(t) = \int_{\mathbb{R}} e^{itx} F(dx) = \int_{\mathbb{R}} \cos(tx) F(dx) + i \int_{\mathbb{R}} \sin(tx) F(dx)
\]
for $t \in \mathbb{R}$. If F is a probability measure and if X is any random variable with distribution F, then

$$
\hat{F}(t) = E[e^{itX}]
$$

for $t \in \mathbb{R}$, by the Transformation Theorem. In this case \hat{F} is called the characteristic function of F or of X.

Remark: Linear Functions. If $X \sim F$ and $Y = aX + b \sim G$, then $\hat{G}(t) = e^{ibt} \hat{F}(at)$, since

$$
\hat{G}(t) = E[e^{itY}] = e^{ibt} E[e^{iatX}] = e^{ibt} \hat{F}(at).
$$

Example 1. If $F\{\pm 1\} = 1/2$, then $\hat{F}(t) = (e^{it} + e^{it})/2 = \cos(t)$.

Example 2: Exponential Distributions. If F is the exponential distribution with failure rate λ, then

$$
\hat{F}(t) = \lim_{n \to \infty} \int_0^n \lambda e^{itx-\lambda x} dx = \lim_{n \to \infty} \frac{\lambda e^{itx-\lambda x}}{\lambda - it} \bigg|_{x=0}^{x=n} = \frac{\lambda}{\lambda - it}.
$$

If

$$
F\{dx\} = \frac{1}{2} \lambda e^{-\lambda|x|} dx, -\infty < x < \infty,
$$

then

$$
\hat{F}(t) = \frac{1}{2} \left[\frac{\lambda}{\lambda - it} + \frac{\lambda}{\lambda + it} \right] = \frac{\lambda}{\lambda^2 + t^2}
$$

for $-\infty < t < \infty$.

Proposition 1. Elementary Properties. If F is a finite measure, then $|\hat{F}(t)| \leq \hat{F}(0) = F\{\mathbb{R}\}$ and $\hat{F}(-t) = \hat{F}(t)^\ast$ (complex conjugate) for all t and \hat{F} is uniformly continuous.

Proof. The first three assertions are clear. For the last,

$$
|\hat{F}(t + h) - \hat{F}(t)| = \left| \int_{\mathbb{R}} [e^{ithx} - 1] e^{itx} F\{dx\} \right| \leq \int_{\mathbb{R}} |e^{ithx} - 1| F\{dx\}
$$

for $t \in \mathbb{R}$ and $h > 0$. The right side does not depend on t and approaches zero as $h \to 0$ by the Dominated Convergence Theorem.

In the next proposition, let $L_{c,h} = \{c \pm kh : k = 0, 1, 2, \ldots\}$ for $c \in \mathbb{R}$ and $h > 0$.

Proposition 2. If F is a distribution function, then $F\{L_{c,h}\} = 1$ for some $c \in \mathbb{R}$ and $h > 0$ iff $|\hat{F}(t_0)| = 0$ for some $t_0 > 0$.

Proof. If $F\{L_{c,h}\} = 1$, where $h > 0$, let $t_0 = 2\pi/h$. Then $e^{it_0(x-c)} = 1$ a.e. (F) and, therefore,

$$
e^{-it_0} \hat{F}(t_0) = \int_{\mathbb{R}} e^{it_0(x-c)} F\{dx\} = 1.
$$

Conversely, if $|\hat{F}(t_0)| = 1$ for some $t_0 > 0$, then $\hat{F}(t_0) = e^{it_0}$ for some $c \in \mathbb{R}$. Let $h = 2\pi/t_0$. Then

$$
0 = 1 - e^{-it_0} \hat{F}(t_0) = \int_{\mathbb{R}} [1 - e^{it_0(x-c)}] F\{dx\} = \int_{\mathbb{R}} [1 - \cos(t_0(x-c))] F\{dx\}
$$

and, therefore, $\cos(t_0(x-c)) = 1$ a.e. (F). That is, $F\{L_{c,h}\} = 1$.

Remark. F is said to be a lattice distribution of $F\{L_{c,h}\} = 1$ for some $c \in \mathbb{R}$ and $h > 0$.

3
Proposition 3: Convolutions. If $X \sim F$ and $Y \sim G$ be independent random variables, then $Z = X + Y$ has distribution function

$$K(z) = \int_R G(z - x)F\{dx\}.$$

If G has a density g (with respect to Lebesgue measure), then K has density

$$k(z) = \int_R g(z - x)F\{dx\}.$$

Proof. The joint distribution of X and Y is $F \times G$, the product measure. Fix and z and let $B = \{(x, y) : x + y \leq z\}$. Then $P\{Z \leq z\} = (F \times G)(B)$. So, by Fubini’s Theorem,

$$K(z) = \int_R G\{B_x\}F\{dx\} = \int_R G(z - x)F\{dx\},$$

as asserted. If G has density g, then the right side is

$$\int_R \left[\int_{(-\infty, z-x]} g(y)dy \right] F\{dx\} = \int_R \left[\int_{(-\infty, z]} g(y-x)dy \right] F\{dx\} = \int_{(-\infty, z]} k(y)dy,$$

where k is as in the statement of the proposition, by a change of variables and Fubini’s Theorem. So, K has density k. ◇

Example 3. If F and G are uniform on $(-\frac{1}{2}, \frac{1}{2})$, then $k(z) = (1 - |z|)^+$. ◇

Remark. K is called the convolution of F and G and denoted by $K = F * G$. It follows directly from the proposition that $F * G = G * F$ and $(F * G) * H = F * (G * H)$ for distribution functions F, G, and H. Thus "F * G * H" is unambiguous. ◇

Proposition 4. More on Convolutions. If F_1, \cdots, F_n are probability measures, then $(F_1 * \cdots * F_n)^r(t) = \hat{F}_1(t) \times \hat{F}_n(t)$ for all t.

Proof. Construct independent random variables X_1, \cdots, X_n with distribution functions F_1, \cdots, F_n. Then $X_1 + \cdots + X_n$ has distribution function $F_1 * \cdots * F_n$ and, therefore,

$$(F_1 * \cdots * F_n)^r(t) = E[e^{it(X_1 + \cdots + X_n)}]$$

$$= E[e^{itX_1}] \times \cdots \times E[e^{itX_n}]$$

$$= \hat{F}_1(t) \times \cdots \times \hat{F}_n(t)$$

for all t. ◇

Example 1: Revisited. If $X_1, \cdots, X_n \sim^{ind} F$, where $F\{\pm 1\} = 1/2$, then the characteristic function of $S_n = X_1 + \cdots + X_n$ is $\cos^n(t)$. 4
Moments and Derivatives. Recall that the moments of a distribution F are $\mu_k = \int_{\mathbb{R}} x^k F\{dx\}$, if these exist. The same notation is used when F is a finite measure. There is a simple relation between the moments of a distribution and derivatives of the characteristic function. Let

$$\rho_k(t) = e^{it} - \sum_{j=0}^{k-1} \frac{1}{j!} (it)^j$$

Lemma 1.

$$|\rho_k(t)| \leq \frac{1}{k!} |t|^k.$$

Proof. If $k = 1$, then

$$\rho_1(t) = |e^{it} - 1| = \left| \int_0^t e^{is} ds \right| \leq \int_0^{|t|} ds = |t|,$$

Suppose that the Lemma were known for $k < m$, where $m = ge2$. Then $\rho'_m(t) = \rho_{m-1}(t)$, so that

$$|\rho_m(t)| = \left| \int_0^t \rho_{m-1}(s) ds \right| \leq \int_0^{|t|} \frac{s^{m-1}}{(m-1)!} ds = \frac{|t|^m}{m!},$$

as asserted. \hfill \Box

The Moments Theorem. If $k \geq 1$ and F has a finite k^{th} moment, then then \hat{F} has k continuous derivative given by

$$\hat{F}^j(t) = i^j \int_{\mathbb{R}} x^j e^{itx} F\{dx\} \quad (!)$$

for $t \in \mathbb{R}$ and $j = 1, \ldots, k$. Conversely, if $\hat{F}''(0)$ exist (finite), then F has a finite second moment.

Proof. Suppose first that $j = 1$. If $h_n \to 0$, $h_n \neq 0$, and $t \in \mathbb{R}$, then

$$\frac{\hat{F}(t+h_n) - \hat{F}(t)}{h_n} = \int_{\mathbb{R}} g_n(x) F\{dx\},$$

where

$$g_n(x) = \frac{e^{ih_n x} - 1}{h_n} e^{itx}$$

for $x \in \mathbb{R}$. Clearly, $\lim_{n \to \infty} g_n(x) = ix e^{tx}$ for all x, and $|g_n(x)| \leq |x|$ for all n and x. So,

$$\lim_{n \to \infty} \int_{\mathbb{R}} g_n(x) F\{dx\} = \int_{\mathbb{R}} ix e^{tx} F\{dx\},$$

by the Dominated Convergence Theorem. It follows that \hat{F} is differentiable and that \hat{F}' is given by (!). That \hat{F}' is uniformly continuous, then follows from Proposition 1, since

$$\hat{F}'(t) = i \int_{[0,\infty)} e^{itx} x F\{dx\} - i \int_{[0,\infty)} e^{itx} |x| F\{dx\},$$

5
and both integrals are the Fourier transforms of finite measures. The general case \(j \geq 2 \) now follows by induction.

For the converse, if \(F \) is continuously differentiable on some neighborhood of 0 and \(F''(0) \) exists (finite), then

\[
-\hat{F}''(0) = \lim_{t \downarrow 0} \frac{2 - \hat{F}(t) - \hat{F}(-t)}{t^2}.
\]

The right side is

\[
\lim_{t \downarrow 0} 2 \int_{\mathbb{R}} \frac{1 - \cos(tx)}{t^2} F(dx) \geq \int_{\mathbb{R}} x^2 F(dx),
\]

by Fatou's Lemma.

\[\diamondsuit\]

Corollary. If \(\mu_k \) is finite, then \(\hat{F}^{(k)}(0) = i^k \mu_k \).

Normal Distributions. Recall that the standard normal distribution function is

\[
\Phi(z) = \int_{(-\infty, z]} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}y^2} dy.
\]

The normal distribution function with parameter \(\mu \in \mathbb{R} \) and \(\sigma^2 > 0 \) is

\[
F(x) = \Phi\left(\frac{x - \mu}{\sigma} \right).
\]

Proposition 5. If \(F \) is normal with parameters \(\mu \) and \(\sigma^2 \), then

\[
\hat{F}(t) = e^{i\mu t - \frac{1}{2}\sigma^2 t^2}
\]

for \(t \in \mathbb{R} \).

Proof. Suppose first that \(\mu = 0 \) and \(\sigma^2 = 1 \), so that \(F = \Phi \). Then

\[
\hat{\Phi}''(t) = -\int_{-\infty}^{\infty} x^2 e^{itx} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2} dx = -\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} x^2 \cos(tx) e^{-\frac{1}{2}x^2} dx,
\]

by Moments Theorem. Integrating the right side by parts twice, then leads to

\[
\Phi''(t) = \frac{t^2 - 1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \cos(tx) e^{-\frac{1}{2}x^2} = (t^2 - 1)\Phi(t)
\]

for \(t \in \mathbb{R} \). Moreover, \(\Phi(0) = 1 \) and \(\Phi'(0) = 0 \). The unique solution this differential equation is \(\hat{\Phi}(t) = e^{-\frac{1}{2}t^2} \), as asserted.

For the general case, let \(Z \sim \Phi \) and \(X = \sigma Z + \mu \). Then \(X \sim F \) and, therefore, \(\hat{F}(t) = e^{i\mu t} \Phi(\sigma t) \).

\[\diamondsuit\]

Corollary. The mean and variance of \(F \) are \(\mu \) and \(\sigma^2 \)

The Riemann Lebesgue Lemma. If \(dF = f d\lambda \), where \(f \geq 0 \) is integrable, then \(\lim_{|t| \to \infty} \hat{F}(t) = 0 \).

Proof. See text.