Signed Measures and The Radon Nikodym Theorem
February 7, 2001

Signed Measures. Let \((\Omega, \mathcal{A})\) be a measurable space. Then a finite signed measure is a function
\[
\psi : \mathcal{A} \to \mathbb{R}
\]
for which
\[
\psi\left(\bigcup_{k=1}^{\infty} A_k \right) = \sum_{k=1}^{\infty} \psi(A_k)
\]
whenever \(A_1, A_2, \cdots \in \mathcal{A}\) are mutually exclusive. Thus, infinite values are not allowed for \(\psi\). Observe that
\[
\psi(\emptyset) = 0
\]
for any finite signed measure \(\psi\).

Example 1. Any finite measure is a finite signed measure. If \(\mu\) and \(\nu\) are finite signed measures, then
\[
\psi(A) = \nu(A) - \mu(A), \quad A \in \mathcal{A},
\]
defines a finite signed measure. \(\diamond\)

Example 2. If \(\mu\) and any measure and \(f : \Omega \to \mathbb{R}\) is integrable with respect to \(\mu\), then
\[
\psi(A) = \int_A f d\mu, \quad A \in \mathcal{A},
\]
defines a finite signed measure, by an easy application of the Dominated Convergence Theorem. \(\diamond\)

Proposition. The Monotone Sequences Theorem. Let \(\psi\) be a signed measure. If \(A_n \in \mathcal{A}\) and \(A_n \uparrow A\) or \(A_n \downarrow A\) as \(n \to \infty\), then
\[
\lim_{n \to \infty} \psi(A_n) = \psi(A).
\]

Proof. Exercise—similar to the case of measures.

If \(\psi\) is a finite signed measure, then a set \(B \in \mathcal{A}\) is called a positive set for \(\psi\) if \(\psi(A) \geq 0\) for all \(A \in \mathcal{A} \cap B\), and a negative set for \(\psi\) if \(\psi(A) \leq 0\) for all \(A \in \mathcal{A} \cap B\).

Example 2: Continued. If \(\psi\) is as in (1), then \(B = \{\omega : f(\omega) \geq 0\}\) is a positive set for \(\psi\). \(\diamond\)

The Hahn Decomposition Theorem. If \(\psi\) is any finite signed measure, then there are a positive set \(\Omega^+\) and a negative set \(\Omega^-\) for which \(\Omega^+ \cap \Omega^- = \emptyset\) and \(\Omega = \Omega^+ \cup \Omega^-\).

Proof. The set \(\Omega^+\) will be so chosen that \(\psi(\Omega^+) = \sup_{A \in \mathcal{A}} \psi(A) = \alpha\), say. There are \(A_n \in \mathcal{A}\) for which
\[
\lim_{n \to \infty} \psi(A_n) = \alpha = \sup_{A \in \mathcal{A}} \psi(A).
\]
Let
\[C_n = \{B_1 \cap \cdots \cap B_n : B_j = A_j \text{ or } A'_j\}, \]
\[C_n^o = \{C \in C_n : B_n = A_n\}, \]
\[C_n^+ = \{C \in C_n^o : \psi(C) > 0\}, \]
and
\[E_n = \bigcup_{C \in C_n^+} C. \]
Then
\[\psi(A_n) = \sum_{C \in C_n^o} \psi(C) \leq \sum_{C \in C_n^+} \psi(C) = \psi(E_n) \]
for all \(n \geq 1 \). Clearly,
\[E_m \cup \cdots \cup E_n \subseteq E_m \cup \cdots \cup E_{n+1} \]
and
\[\psi(E_m \cup \cdots \cup E_n) \leq \psi(E_m \cup \cdots \cup E_{n+1}), \]
and for \(0 \leq n < \infty \), because we add only terms with positive measure at each stage. Let
\[F_m = \bigcup_{n=m}^{\infty} E_n. \]
Then
\[\psi(A_m) \leq \psi(E_m) \leq \lim_{n \to \infty} \psi(E_m \cup \cdots \cup E_n) = \psi(F_m) \]
for all \(m \). Now let
\[\Omega^+ = \bigcap_{m=1}^{\infty} F_m. \]
Then
\[\alpha = \lim_{m \to \infty} \psi(A_m) \leq \lim_{m \to \infty} \psi(F_m) = \psi(\Omega^+) \]
and, therefore,
\[\alpha = \psi(\Omega^+) < \infty. \]
Let \(\Omega^- = \Omega - \Omega^+ \). Then, it is clear that \(\Omega^+ \) is a positive set. For if \(B \subset A \cap \Omega^+ \) and \(\psi(B) < 0 \), then
\[\psi(\Omega^+) = \psi(B) + \psi(\Omega^+ - B) < \psi(\Omega^+ - B), \]
contradicting \(\psi(\Omega^+) = \alpha \). That \(\Omega^- \) is a negative set may be established similarly. \(\diamond \)
Corollary 1.

\[
\psi(\Omega^+) = \sup_{A \in \mathcal{A}} \psi(A), \\
\psi(\Omega^-) = \sup_{A \in \mathcal{A}} \psi(A),
\]

Corollary 2. The Jordan Decomposition. For \(B \in \mathcal{A} \), let

\[
\psi^+(B) = \psi(\Omega^+ \cap B), \\
\psi^-(B) = -\psi(\Omega^- \cap B).
\]

Then \(\psi^\pm \) are finite measures,

\[
\psi(B) = \psi^+(B) - \psi^-(B), \\
\psi^+(B) = \sup_{A \subseteq B} \psi(A), \\
\psi^-(B) = -\inf_{A \subseteq B} \psi(A)
\]

for \(B \in \mathcal{A} \).

Proof. The first three assertions are clear. For the fourth observe that if \(A \subseteq B \), then \(\psi(A) = \psi^+(A) - \psi^-(A) \leq \psi^+(B) \) with equality if \(A = \Omega^+ \cap B \). The fifth assertion may be established similarly. \(\diamond \)

Remark. The sets \(\Omega^\pm \) are not uniquely determined, but the measures \(\psi^\pm \) are.

Singularity and Absolute Continuity. Two measures \(\mu \) and \(\nu \) are said to be mutually singular if there is a measurable \(\Omega_0 \) for which

\[
\mu(\Omega - \Omega_0) = 0 \quad \text{and} \quad \nu(\Omega_0) = 0.
\]

This relationship is denoted by \(\mu \perp \nu \). For example, the measures \(\psi^+ \) and \(\psi^- \) of the last corollary are mutually singular.

If \(\mu \) and \(\nu \) are measures on \(\mathcal{A} \), then \(\nu \) is said to be absolutely continuous with respect to \(\mu \) if \(\nu(A) = 0 \) whenever \(A \in \mathcal{A} \) and \(\mu(A) = 0 \). This relation is denoted by \(\nu \ll \mu \).

Example 3. If \(\mu \) is a measure and \(f \) is a non-negative measurable function, then

\[
\nu(A) = \int_A f \, d\mu, \quad A \in \mathcal{A},
\]

defines a measure which is absolutely continuous with respect to \(\mu \).

The Radon Nikodym Theorem provides a converse to the example.
Lemma 1. If \(\nu \) is finite and \(\nu \ll \mu \) then: \(\forall \epsilon > 0, \exists \delta > 0 \) for which \(\nu(A) \leq \epsilon \) whenever \(A \in \mathcal{A} \) and \(\mu(A) \leq \delta \).

Proof. If the condition were not satisfied, then there would be an \(\epsilon > 0 \) and a sequence of sets \(A_n \in \mathcal{A} \) for which \(\mu(A_n) \leq \frac{1}{n^2} \) and \(\nu(A_n) \geq \epsilon \) for all \(n \geq 1 \). Let \(B_n = A_n \cup A_{n+1} \cup \cdots \) and \(C = B_1 \cap B_2 \cap \cdots \). Then

\[
\nu(C) = \lim_{n \to \infty} \nu(B_n) \geq \liminf_{n \to \infty} \nu(A_n) \geq \epsilon
\]

and

\[
\mu(C) = \lim_{n \to \infty} \mu(B_n) \leq \limsup_{n \to \infty} \sum_{k=n}^{\infty} \mu(A_k) = 0,
\]

contradicting the assumed absolute continuity.

\(\diamond \)

Remark. If \(\nu \) is finite, then the condition is, in fact, necessary and sufficient for absolute continuity.

Example 4. Let \(\Omega = \{1, 2, \cdots\} \), \(\mathcal{A} = \mathcal{P}(\Omega) \), \(\nu = \) counting measure, and

\[
\mu(A) = \sum_{n \in A} \frac{1}{n^2}.
\]

Then

\[
\nu \ll \mu,
\]

\[
\lim_{n \to \infty} \mu\{n + 1, n + 2, \cdots\} = 0,
\]

but

\[
\nu\{n + 1, n + 2, \cdots\} = \infty
\]

for all \(n \).

\(\diamond \)

Lemma 2. Let \(\mu \) and \(\nu \) be finite measures that are not mutually singular. Then there is an \(\epsilon > 0 \) and an \(B \in \mathcal{A} \) for which \(\mu(B) > 0 \) and \(\nu(A) \geq \epsilon \mu(A) \) for all \(A \in \mathcal{A} \cap B \).

Proof. Let

\[
\psi_n(A) = \nu(A) - \frac{1}{n} \mu(A)
\]

for \(A \in \mathcal{A} \). Then each \(\psi_n \) is a finite signed measure. Let \(B^+_n \) and \(B^-_n \) be a Hahn Decomposition of \(\Omega \) for \(\psi_n \). Further, let

\[
C = \bigcup_{n=1}^{\infty} B^+_n.
\]

Then

\[
C' = \bigcap_{n=1}^{\infty} B^-_n.
\]

Then \(\psi_n(C') \leq 0 \) for all \(n \), since \(C' \subset B^-_n \) for all \(n \). It follows that \(\nu(C') \leq \mu(C')/n \) for all \(n \) and, therefore, that \(\nu(C') = 0 \). Since \(\mu \) and \(\nu \) are not mutually singular, it then follows that \(\mu(C) > 0 \). So, \(\mu(B^+_m) > 0 \) for some \(m \), and the lemma then follows with \(B = B^+_m \) and \(\epsilon = 1/m \). For if \(A \subseteq B^+_m \), then \(\psi_m(A) \geq 0 \) and, therefore, \(\nu(A) \geq \mu(A)/m \).

\(\diamond \)
Lemma 3. Let \(\mu \) and \(\nu \) be measures; and let \(\mathcal{G} \) be the collection of all non-negative measurable \(g : \Omega \to \mathbb{R} \) for which \(\int_A g d\mu \leq \nu(A) \) for all \(A \in \mathcal{A} \). Then \(\mathcal{G} \) is closed under the formation of maxima and increasing limits.

Proof. If \(g_1, g_2 \in \mathcal{G} \), then \(g = g_1 \vee g_2 \in \mathcal{G} \) because

\[
\int_A g d\mu = \int_{A, g_1 \leq g_2} g_2 d\mu + \int_{A, g_2 < g_1} g_1 d\mu \\
\leq \nu(A \cap \{g_1 \leq g_2\}) + \nu(A \cap \{g_2 < g_1\}) \\
= \nu(A)
\]

for all \(A \in \mathcal{A} \). Similarly, if \(g_n \in \mathcal{G} \) and \(g_n \uparrow g \), then \(g \in \mathcal{G} \) because

\[
\int_A g d\mu = \lim_{n \to \infty} \int_A g_n d\mu \leq \nu(A)
\]

for all \(A \in \mathcal{A} \). \(\diamond \)

Lemma 4. Suppose that \(\mu \) is sigma-finite. If \(f \) and \(g \) are non-negative, measurable functions for which

\[
\int_A g d\mu \leq (=) \int_A f d\mu
\]

for all \(A \in \mathcal{A} \), then \(g \leq (=) f \text{ a.e. } (\mu) \).

Proof. There are \(\Omega_m \in \mathcal{A} \) for which \(\mu(\Omega_m) < \infty \) for all \(m \) and \(\Omega_m \uparrow \Omega \) as \(n \to \infty \). Let \(\Omega_{mn} = \{\omega : f(\omega) \leq n\} \cap \Omega_m \). Then \(\int_{\Omega_{mn}} g d\mu = \int_{\Omega_{mn}} f d\mu < \infty \) for all \(m \) and \(n \). Let \(B = \{\omega : g(\omega) > f(\omega)\} \). Then

\[
\int_{\Omega_{mn}} (g - f)_+ d\mu = \int_{B \cap \Omega_{mn}} (g - f)d\mu = 0
\]

for all \(m \) and \(n \). So, \(\mu(\{\omega : g(\omega) > f(\omega)\} \cap \Omega_{mn}) = 0 \) for all \(m \) and \(n \). It follows easily that \(g \leq f \text{ a.e.} \). If there is equality in (2), then \(f \leq g \text{ a.e.} \), by reversing the roles of \(f \) and \(g \), and \(f = g \text{ a.e.} \). \(\diamond \)

The Radon Nikodym Theorem. If \(\mu \) and \(\nu \) are sigma-finite measures for which \(\nu \ll \mu \), then there is a non-negative measurable \(f \) for which

\[
\nu(A) = \int_A f d\mu
\]

for all \(A \in \mathcal{A} \).

Proof. Suppose first that \(\mu \) and \(\nu \) are finite. Define \(\mathcal{G} \) as in the previous lemma. Then there are \(g_1, g_2, \cdots \in \mathcal{G} \) for which

\[
\lim_{n \to \infty} \int_{\Omega} g_n d\mu = \sup_{g \in \mathcal{G}} \int_{\Omega} g d\mu;
\]

and the right side is finite, because $\nu(\Omega) < \infty$. Let $f_n = g_1 \vee \cdots \vee g_n$. Then $f_n \uparrow f$ and $f \in \mathcal{G}$ by the previous lemma. Let

$$\psi(A) = \nu(A) - \int_A f \, d\mu$$

for $A \in \mathcal{A}$. Then ψ is a finite measure and $\psi \ll \mu$. So, if $\psi \neq 0$, then ψ and μ cannot be singular and there are $B \in \mathcal{A}$ and $\epsilon > 0$ for which $\mu(B) > 0$ and $\psi(A) \geq \epsilon \mu(A)$ for all $A \in \mathcal{A} \cap B$. Let $h = f + 1_B$. Then

$$\int_A h \, d\mu = \int_A f \, d\mu + \epsilon \mu(A \cap B)$$

$$\leq \int_A f \, d\mu + \psi(A \cap B)$$

$$= \nu(A) - \psi(A) + \psi(A \cap B)$$

$$\leq \nu(A)$$

for all $A \in \mathcal{A}$. So, $h \in \mathcal{G}$; but $\int_\Omega h \, d\mu = \int_\Omega f \, d\mu + \epsilon \mu(B) > \int_\Omega f \, d\mu$, contradicting the construction of f. So, $\psi = 0$ and

$$\nu(A) = \int_A f \, d\mu$$

for all $A \in \mathcal{A}$.

For the sigma-finite case, we may write $\Omega = \bigcup_{m,n=1}^\infty \Omega_{mn}$, where Ω_{mn} are mutually exclusive sets for which $\mu(\Omega_{mn}) + \mu(\Omega_{mn}) < \infty$ for all m and n. Let $\mu_{mn} = \mu|\Omega_{mn}$, the restriction of μ to Ω_{mn} and $\nu_{mn} = \mu|\Omega_{mn}$. Then it is easily seen that $\nu_{mn} \ll \mu_{mn}$ for all m and n. So, there are measurable f_{mn} for which

$$\nu_{mn}(A) = \int_A f_{mn} \, d\mu_{mn} = \int_A f_{mn} \, d\mu$$

for $A \in \mathcal{A} \cap \Omega_{mn}$. Let

$$f = \sum_{m,n=1}^\infty f_{mn} 1_{\Omega_{mn}}.$$ If $A \in \mathcal{A}$, then

$$\nu(A) = \sum_{m,n=1}^\infty \nu(A \cap \Omega_{mn}) = \sum_{m,n=1}^\infty \int_{A \cap \Omega_{mn}} f_{mn} \, d\mu$$

$$= \sum_{m,n=1}^\infty \int_{A \cap \Omega_{mn}} f \, d\mu = \int_A f \, d\mu,$$

as required.

The essential uniqueness follows from Lemma 4.

Any function f for which (3) holds is called a version of the Radon Nikodym derivative of ν with respect to μ and denoted by

$$f = \frac{d\nu}{d\mu}.$$

Remark. The absolute continuity was not used in the construction of f.

6
The Lebesgue Decomposition Theorem. If μ and ν are sigma-finite measures, then there are measures ν_a and ν_s for which $\nu = \nu_a + \nu_s$, $\nu_a \ll \mu$, and $\nu_s \perp \mu$.

Proof. Suppose first that μ and ν are finite, and construct f and ψ, as in the proof of the Radon Nikodym Theorem.