Convex Polyhedra II: Testing
Statistics 710
October 12, 2006

The Testing Problems. Again suppose that $W = I_n$ and consider a polyhedral cone in \mathbb{R}^n,
\[\Omega = \{ \theta \in \mathbb{R}^n : \langle \gamma_i, \theta \rangle \geq 0, \ i = 1, \ldots, m \}, \tag{1} \]
where $\gamma_1, \ldots, \gamma_m \in \mathbb{R}^n$ are linearly independent; let $L = \text{span}\{\gamma_1, \ldots, \gamma_m\}$; and suppose that $y \sim \text{Normal}[\theta, \sigma^2 I_n]$. The following three hypotheses are considered: $H_0 : \theta \in L^\perp$, $H_1 : \theta \in \Omega$, and $H_2 : \theta \in \mathbb{R}^n$. For example, in monotone regression, H_0 is the hypothesis that the regression function is constant; in convex regression, it is the hypothesis that the regression function is linear.

First consider H_0 vs. $H_1 - H_0$. The log-likelihood function is
\[\ell(\theta, \sigma^2|y) = -\frac{1}{2\sigma^2}||y - \theta||^2 - \frac{1}{2} n \log(\sigma^2), \tag{2} \]
and the least squares estimators of θ are the maximum likelihood estimators. So, the maximum likelihood estimator under H_0 is $\hat{\theta}_o^\circ = \Pi_{L^\perp} y$ and the unconditional maximum likelihood estimator is $\hat{\theta} = \Pi_{\Omega} y$. If σ^2 is known, then the log-likelihood ratio statistics is
\[\Lambda_{01} = 2 \left[\ell(\hat{\theta}, \sigma^2) - \ell(\hat{\theta}_o^\circ, \sigma^2) \right] = \frac{1}{\sigma^2} \left[||y - \hat{\theta}_o^\circ||^2 - ||y - \hat{\theta}||^2 \right]. \]
Here $y - \hat{\theta}_o^\circ = y - \hat{\theta} + \hat{\theta} - \hat{\theta}_o^\circ$, and $||y - \hat{\theta}_o^\circ||^2 = ||y - \hat{\theta}||^2 + 2(y - \hat{\theta}, \hat{\theta} - \hat{\theta}_o^\circ) + ||\hat{\theta} - \hat{\theta}_o^\circ||^2 = ||y - \hat{\theta}||^2 + ||\hat{\theta} - \hat{\theta}_o^\circ||^2$ and, therefore,
\[\Lambda_{01} = \frac{1}{\sigma^2} ||\hat{\theta} - \hat{\theta}_o^\circ||^2. \]

If σ^2 is unknown, then the maximum likelihood estimators are
\[\hat{\sigma}^2 = \frac{||y - \hat{\theta}||^2}{n} \quad \text{and} \quad \hat{\sigma}_o^2 = \frac{||y - \hat{\theta}_o^\circ||^2}{n}, \]
and the likelihood ratio statistics is
\[\Lambda_{01} = 2 \left[\ell(\hat{\theta}, \sigma^2) - \ell(\hat{\theta}^o, \sigma^2) \right] = n \log \left[\frac{||y - \hat{\theta}^o||^2}{||y - \hat{\theta}||^2} \right] = \log \left[\frac{||\hat{\theta}^o - \hat{\theta}||^2 + ||y - \hat{\theta}||^2}{||y - \hat{\theta}||^2} \right]. \]

Of course, an equivalent test is to reject if
\[\frac{||\hat{\theta}^o - \hat{\theta}||^2}{||\hat{\theta} - \hat{\theta}^o||^2 + ||y - \hat{\theta}||^2} \]
is large.

Next, consider testing \(H_1 \text{ vs } H_2 \), when \(\sigma^2 \) is known. For \(H_2 \), the maximum likelihood estimator is \(y \), and
\[\Lambda_{12} = 2 \left[\ell(y, \sigma^2) - \ell(\hat{\theta}^o, \sigma^2) \right] = \frac{1}{\sigma^2} ||y - \hat{\theta}||^2. \]
If \(\sigma^2 \) unknown, then an independent estimate is required.

Least Favorable Configurations. Since both null hypotheses are composite, the dependence of the test statistics on parameters, under the hypotheses must be assessed. For \(H_0 \text{ vs } H_1 \) this is simple. *The distributions of \(||\hat{\theta}^o - \hat{\theta}||^2 \text{ and } ||y - \hat{\theta}||^2 \text{ are the same for all } \theta \in L^+ \).* This is a simple consequence of the following: if \(z \in \mathbb{R}^n \) and \(\theta \in L^+ \), then
\[\hat{\theta}(z + \theta) = \hat{\theta}(z) + \theta \quad \text{and} \quad \hat{\theta}^o(z + \theta) = \hat{\theta}^o(z) + \theta. \] (3)
To establish the first of these assertions, it suffices to show that \(\hat{\theta}(z) + \theta \) satisfies the necessary and sufficient conditions for \(\hat{\theta}(z + \theta) \). Clearly, \(\hat{\theta}(z) + \theta \in \Omega \) and
\[\langle z + \theta - [\hat{\theta}(z) + \theta], \xi \rangle = \langle z - \hat{\theta}(z), \xi \rangle \leq 0 \]
for all \(\xi \in \Omega \). Also,
\[\langle z + \theta - [\hat{\theta}(z) + \theta], \hat{\theta}(z) + \theta \rangle = \langle z - \hat{\theta}(z), \hat{\theta}(z) + \theta \rangle = 0, \]
since \(\hat{\theta}(z) \pm \theta \in \Omega \). The second assertion in (3) may be established similarly (and more easily). To complete the argument, observe that if \(y \sim \text{Normal}(\theta, I_n) \), where \(\theta \in L^+ \), then \(y \) has the same distribution as \(z + \theta \), where \(z \sim \Phi^n \). It follows that
\[\|\hat{\theta}(y) - \hat{\theta}^o(y)\|^2, ||y - \hat{\theta}(y)||^2 \overset{d}{=} [||\hat{\theta}(z) - \hat{\theta}^o(z)||^2, ||z - \hat{\theta}(z)||^2]. \]

The situation is slightly more complicated for testing \(H_1 \text{ vs } H_2 \), since the distribution of \(||y - \hat{\theta}(y)||^2 \) does depend on \(\theta \in \Omega \), but a bound can be derived. If \(y = z + \theta \), where \(z \in \mathbb{R}^n \) and \(\theta \in \Omega \), then \(\hat{\theta}(z) + \theta \in \Omega \), so that
\[||y - \hat{\theta}(y)||^2 = \inf_{\xi \in \Omega} ||y - \xi||^2 \leq ||z + \theta - [\hat{\theta}(z) + \theta]||^2 = ||z - \hat{\theta}(z)||^2. \]
where

\[\max_{\theta \in \theta} P_\theta[\|y - \hat{\theta}(y)\|^2 > u] \leq P[\|z - \hat{\theta}(z)\|^2 > u] = P_0[\|y - \hat{\theta}(y)\|^2 > u]. \]

The Null Distribution. The main result is that if \(\theta \in L \), then

\[
P_\theta\left[\frac{1}{\sigma^2} \| \hat{\theta} - \hat{\theta}^* \|^2 \leq u, \frac{1}{\sigma^2} \| y - \hat{\theta} \|^2 \leq v \right] = \sum_{k=m}^{n} P[\chi_{k-m}^2 \leq u] P[\chi_{n-k}^2 \leq v] q(n, k),
\]

where

\[q(n, k) = P_0[D = k]. \]

Two preliminary results are need to establish this. First, recall the relation \(\hat{\theta} = \Pi_{L,j} y + \Pi_{L,j} y \), where \(J = \{ j \leq m : \langle \gamma_j, \hat{\theta} \rangle > 0 \} \). Recall too the definitions of \(\Gamma_j \) and \(\Delta_j \) and observe that

\[\Gamma'_{j} \Pi_{L,j} = (\Delta'_{j} \Delta_{j})^{-1} \Delta'_{j} \] and \(\Delta'_{j} \Pi_{K,j} = (\Gamma'_{j} \Gamma_{j})^{-1} \Gamma_{j} \). It follows easily that

\[\{ y : \hat{\theta}(y) = J \} = \{ y \in \mathbb{R}^n : \Gamma'_{j} \Pi_{L,j} y > 0 \text{ and } \Delta'_{j} \Pi_{K,j} y \leq 0 \}. \]

Next, recall that if \(z \sim \Phi^0 \), then \(\|z\| \) and \(z/\|z\| \) are independent. In fact, if \(Q \neq 0 \) is any projection matrix, then \(\|Qz\| \) and \(Qz/\|Qz\| \) are independent. To see this recall that the eigen values of a projection matrix are either 0 or 1, so that \(Q \) may be written as \(Q = C \text{diag}(I_k, 0)C' \), where \(1 \leq k \leq n \) and \(C \) is orthogonal. Then \(Cz \sim \text{Normal}[0, \text{diag}(I_k, 0)] \), so that \(Cz = [w', 0, \ldots, 0]' \), where \(w \sim \Phi^k \). The independence of \(\|z\| \) and \(z/\|z\| \) now follows easily from that of \(\|w\| \) and \(w/\|w\| \).

For the proof of (*) we may suppose that \(\theta = 0 \) and \(\sigma = 1 \). Then

\[
P_0\left[\|\hat{\theta} - \hat{\theta}^*\|^2 \leq u, \|y - \hat{\theta}\|^2 \leq v \right] = \sum_{J} P[J(y) = J, \|\Pi_{L,j} y\|^2 \leq u, \|\Pi_{K,j} y\|^2 \leq v]
\]

Here \(\Pi_{L,j} y \) and \(\Pi_{K,j} y \) are independent. So,

\[
P[J(y) = J, \|\Pi_{L,j} y\|^2 \leq u, \|\Pi_{K,j} y\|^2 \leq v]
= P[\Gamma'_{J} \Pi_{L,j} y > 0, \Delta_{J} \Pi_{K,j} \leq 0, \|\Pi_{L,j} y\|^2 \leq u, \|\Pi_{K,j} y\|^2 \leq v]
= P[\Gamma'_{J} \Pi_{L,j} y > 0, \|\Pi_{L,j} y\|^2 \leq u] \times P[\Delta_{J} \Pi_{K,j} \leq 0, \|\Pi_{K,j} y\|^2 \leq v]
\]

Next, using the independence of norms and angles

\[
P[\Gamma'_{J} \Pi_{L,j} y > 0, \|\Pi_{L,j} y\|^2 \leq u] = P[\Gamma'_{J} \Pi_{L,j} y > 0] P[\|\Pi_{L,j} y\|^2 \leq u]
\]

and

\[
P[\Delta_{J} \Pi_{K,j} \leq 0, \|\Pi_{K,j} y\|^2 \leq v].
\]
So, letting $k = \# J$

\[
P[\hat{J}(y) = J, \|\Pi_{L_J}y\|^2 \leq u, \|\Pi_{K_{\hat{J}}}y\|^2 \leq v] = P[\Gamma'_J\Pi_{L_J}y > 0] \times P[\|\Pi_{L_J}y\|^2 \leq u] \times P[\Delta_{\hat{J}}\Pi_{K_{\hat{J}}} \leq 0] \times P[\|\Pi_{K_{\hat{J}}}y\|^2 \leq v]
\]

\[
= P[\chi^2_{k-m} \leq u]P[\chi^2_{n-k} \leq v]P[\hat{J} = J]
\]
in which the independence of $\Pi_{L_J}y$ and $\Pi_{K_{\hat{J}}}$ has been used again. Relation (*) then follows by writing

\[
\sum_{J} = \sum_{k=0}^{n-m} \sum_{\# J = k} \cdot \sum_{J}.
\]

So, for the case of known σ^2,

\[
P_{\theta} [\Lambda_{01} > c] = P_0 \left[\frac{1}{\sigma^2} \|\hat{\theta} - \theta^o\|^2 > c \right] = \sum_{k=m}^{n} P[\chi^2_{k-m} > c]q(n, k)
\]

for all $\theta \in L^\perp$, and this may set equal to any given α, by appropriate choice of c. For unknown σ^2, recall that if U and V are independent chi-squared variables with r and s degrees of freedom, then

\[
\frac{U}{U+V} \sim \beta\left(\frac{r}{2}, \frac{s}{2}\right).
\]

So,

\[
P_{\theta} \left[\frac{\|\hat{\theta}^o - \hat{\theta}\|^2}{\|\hat{\theta}^o - \hat{\theta}\|^2 + \|y - \hat{\theta}\|^2} > c \right] = \sum_{k=m}^{n} P \left[\beta\left(\frac{k-m}{2}, \frac{n-k}{2}\right) > c \right]q(n, k)
\]

for all $\theta \in L^\perp$.

Remark. This material is adapted from [1].

References