Edge Corrections for Spatial Point Processes
September 22, 2004

Review: \(N_B, \ B \subseteq \mathbb{R}^p \) denotes a stationary point process with intensity \(\lambda \). Thus,
\[
E[N_B] = \lambda \nu_p(B),
\]
where \(\nu_p(B) \) is the \(p \)-dimensional volume of \(B \). Some quantities of interest are
\[
p(t) = P[N_{B(x,t)} > 0],
\]
\[
G(t) = P[N_{B(x,t)} > 1 | x \in \mathcal{N}],
\]
and
\[
K(t) = \frac{1}{\lambda} E[N_{B(x,t)} - 1 | x \in \mathcal{N}],
\]
where
\[
\mathcal{N} = \{ x \in \mathbb{R}^p : N_{\{x\}} > 0 \},
\]
\[
B(x, t) = \{ y \in \mathbb{R}^p : d(x, y) \leq t \},
\]
and \(d(x, y) \) is the Euclidean distance from \(x \) to \(y \).

Example: For a Poisson process, \(N_B \) has a Poisson distribution for every \(B \), and \(N_{B_1}, \ldots, N_{B_m} \) are independent when \(B_1, \ldots, B_m \) are mutually exclusive. For a Poisson process in \(\mathbb{R}^2 \),
\[
p(t) = 1 - e^{-\lambda \pi t^2},
\]
\[
G(t) = p(t),
\]
\[
K(t) = \pi t^2.
\]
Data: Suppose that the process is observed throughout a region $E \subseteq \mathbb{R}^p$.

Estimating $K.$ Let

$$\hat{K}_0(t) = \frac{1}{\lambda n} \sum_{x \in \mathcal{N} \cap E} \# \{y \in \mathcal{N} : 0 < d(x, y) \leq t \},$$

where

$$n = N_E,$$

and

$$\hat{K}_0(t) = \frac{1}{\lambda n} \sum_{x \in \mathcal{N} \cap E} \# \{y \in \mathcal{N} \cap E : 0 < d(x, y) \leq t \}.$$

Then (Ripley says)

$$E[\hat{K}_0(t)] = K(t),$$

$$\hat{K}_0(t) \leq \hat{K}_0(t),$$

and, therefore,

$$E[\hat{K}_0(t)] \leq E[\hat{K}(t)].$$

That is, \hat{K}_0 has a negative bias.

Fact: For a Poisson process: Given $N_E = n$, the n points are independently and uniformly distributed over E.

The Magnitude of the Bias: For a Poisson Process. Observe that for $n \geq 2,$

$$\frac{\lambda \hat{K}_0(t)}{n-1} = \frac{\# \{(x, y) : x, y \in \mathcal{N} \cap E, 0 < d(x, y) \leq t \}}{n(n-1)}.$$

So, for $n \geq 2,$

$$E \left[\frac{\lambda \hat{K}_0(t)}{n-1} \right] = \frac{\# \{(x, y) : x, y \in \mathcal{N} \cap E, 0 < d(x, y) \leq t \}}{n(n-1)} = F(t),$$

where

$$X, Y \sim^{\text{ind}} \text{Uniform}(E).$$

$F(t)$ can be computed for some shapes and approximated more generally.
Example. If E is a rectangle in \mathbb{R}^2, then

$$F(t) = \frac{\pi t^2}{a} - \frac{2ut^3}{3a^2} + \frac{t^4}{2a^2},$$

where

$$a = \text{area},$$

$$u = \text{perimeter},$$

provided that t does not exceed the length of the shorter sides.

Approximation: Based on this and other examples, Ripley suggests the approximation

$$F(t) \approx \frac{\pi t^2}{a} - \frac{2ut^3}{3a^2}$$

for small t for convex E.

Back to \hat{K}_0. Writing

$$\hat{K}_0(t) = \frac{n - 1}{\lambda} \times \frac{\lambda \hat{K}_0(t)}{n - 1}$$

leads to

$$E[\hat{K}_0(t)] = E\left\{ \frac{n - 1}{\lambda} E\left[\frac{\lambda \hat{K}_0(t)}{n - 1} \mid n \right] \right\}$$

$$= E\left[\frac{n - 1}{\lambda} F(t) \right]$$

$$= \frac{\lambda a - 1}{\lambda} F(t);$$

or

$$E[\hat{K}_0(t)] \approx \frac{\lambda a - 1}{\lambda} \left[\frac{\pi t^2}{a} - \frac{2ut^3}{3a^2} \right].$$

There are two sources of bias here

$$\frac{\lambda a - 1}{\lambda} < a$$

and

$$a \left[\frac{\pi t^2}{a} - \frac{2ut^3}{3a^2} \right] < \pi t^2 = K(t).$$

The second is typically the more serious, at least of $a \lambda = E(n)$ is large.
Some Corrected Estimators. *Border Corrections.* Find sets $E_t \subseteq E$ for which $E_t + B(0,t) \subseteq E$. Then let

$$
\hat{K}_1(t) = \frac{1}{\lambda N_{E_t}} \# \{(x,y) : x \in E_t, y \in E, y \neq x, \text{ & } d(x,y) \leq t\}.
$$

Here

$$E[\lambda N_{E_t}] = \lambda^2 \nu_p(E_t)$$

$$E\left[\#\{(x,y) : x \in E_t, y \in E, 0 < d(x,y) \leq t\}\right] = E\left\{ \sum_{x \in E_t} E\left[\#\{(x,y) : x \in E_t, y \in E, 0 < d(x,y) \leq t\}|x]\right] \right\} = E\left[N_{E_t} \lambda K(t) \right] = \lambda^2 \nu_p(E_t) K(t),$$

and $K(t)$ is the ratio of the expectations.

$K_1(t)$ need not be a monotone function, however.
Reweighting. Define k by
\[
\frac{1}{k(x, y)} = \frac{|\partial B[x, d(x, y)] \cap E|}{|\partial B[x, d(x, y)]|},
\]
where ∂B denotes the boundar of B and $|\partial B|$ denotes its length, and
\[
\hat{K}_2(t) = \frac{1}{\lambda a^2} \sum_{x, y \in N \cap E} k(x, y)1_{\{0 < d(x, y) \leq t\}}.
\]
Then
\[
E[\hat{K}_2(t)] = \cdots = K(t),
\]
under some general symmetry assumptions. For example, if E is the unit square and $x = (.5, 0)$ and $y = (0, 0)$, then
\[
|\partial B[x, d(x, y)] \cap E| = \frac{1}{2}\pi + 1,
\]
\[
|\partial B[x, d(x, y)]| = \pi,
\]
and
\[
k(x, y) = \frac{2\pi}{\pi + 2}.
\]

More On Reweighting. There are more elaborate versions of \hat{K}_2.