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Chapter 0

Measures, Integration, Convergence

1 Measures

Let ©Q be a fixed non-void set.

Definition 1.1 ( fields, c—fields, monotone classes) A non-void class A of subsets of Q is
called a:

(i) field or algebra if A, B € A implies AU B € A and A° € A.
(i) o—field or o—algebraif A, Ay, Ay,... € A implies U{°A,, € A and A° € A.
(iii) monotone class if A,, is a monotone / (\) sequence in A implies U4, € A (N°A4, € A).

(iv) (Q,A) with A a o—field of subsets of Q is called a measurable space.

Remark 1.1 (i) A, B € Aimply AN B € A for a field.

(ii) Ay,..., A, ... € Aimplies NS, A, € A for a o—field.

(iii) 0, € A for both a field and o—field.

(iv) To prove that A is a field (oc—field) it suffices to show that A is closed under complements and
finite (countable) intersections.

Proposition 1.1 (i) Arbitrary intersections of fields (oc—fields) ((monotone classes)) are fields
(o—fields) ((monotone classes)).
(ii) There exists a minimal field (o— field) ((monotone class)) o(C) generated by any class of subsets

of Q.

(iii) a o—field is a monotone class and conversely if it is a field.

Proof.  (iii) (<) UsZ A, = USZ,(UR_  Ar) = U B, where B, /. O

Notation 1.1 If Q is a set, 2% is the family of all subsets of Q.
2¢ i always a o—field.

Example 1.1 If © = R, let By consist of () together with all finite unions of disjoint intervals of
the form U, (a;, b;], or U™ (a;, b;] U (apq1,00), (—00, byy1] U UL (@, b;], with a;,b; € R. Then By
is a field.
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Example 1.2 If @ = (0, 1], let By consist of §§ together with all finite unions of disjoint intervals
of the form U ;(a;,b;], 0 < a; < b; < 1. Then By is a field. But note that By does not contain
intervals of the form [a,b] or (a,b); however (a,b) = USZ;(a,b— 1/n].

Example 1.3 If Q = R, let C = By of example 1.1, and let B be the o—field generated by Boy;
B = o(Byp). Bis a o—field which contains all intervals, open, closed or half-open. From real analysis,
any open set O C R can be written as a countable union of (disjoint) open intervals:

O =U;Zq(an,by).

Thus B contains all open sets in R. This particular B = By is called the family of Borel sets. In
fact, B = 0(Q), where O is the collection of all open sets in R.

Example 1.4 Suppose that € is a metric space with metric p. Let O be the collection of open
subsets of . The the o—field B = o(Q) is called the Borel o—field. In particular, for Q@ = R* with
the Euclidean metric p(z,y) = |z — y| = {37 |2; — 4]*}Y/%, B = By, = ¢(0) is the o—field of Borel
sets.

Definition 1.2 (i) A measure (finitely additive measure) is a function p : A — [0, 00] such that
w(0)=0and u(> A,) =3 u(A,) for countable (finite) disjoint sequences A, in A.
(ii) A measure space is a triple (Q, A, u) with A a o—field and p a measure.

Definition 1.3 (i) u is a finite measure if u(Q) < oc.

(ii) p is a probability measure if u(2) = 1.

(iii) p is an infinite measure if p() = oco.

(iv) A measure p on a field (o—field) A is called o—finite if there exists a partition {F,},>1 C A
such that @ = >1° F,, and pu(F),) < oo for all n > 1.

(v) A probability space is a measure space (£, A, i) with p a probability measure.

Definition 1.4 (i) A measure p on (£,.A) is discrete if there are finitely or countably many points
w; in © and masses m; € [0,00) such that

= ZmZ for Ae A

w; €A

(ii) If p is defined on (£2,2%), Q arbitrary, by u(A) = fof points in A, u(A) = oc if A is not finite,
then p is called counting measure.

Example 1.5 (i) A discrete measure yu on (Q,.A) = (R, By): @; = i, m; = 2°.

(ii) A discrete measure p on (2, A) = (Z+,2%7): 2y = 20, my = 1/i. (Z+ = {1,2,...}.

(iii) Counting measure on (R, B1); not a o—finite measure'

(iv) Counting measure on (Z"’, QZ+).

(v) A probability measure on Q, the rationals: With {2;} an enumeration of the rationals, let

m; = 6/(7%?).

Proposition 1.2 Let (2, A, 1) be a measure space.
(i) f {An}p>1 CAwith A, C Ayqq for all n, then p(USZ Ay = lim,, .o p(A4,).
(ii) If p(Ay) < o0 and A, D A4y for all n, then p(NSL, A,) = lim,, oo u(Ay).
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Proof. (i)
MU AR) = (U (A \ Apey))  where  Ag =1

= Z,u (A, \ 4,-1) by countable additivity
1

= lim ) p(An\ Auor)
1

n

= lim ,u(Z(An \A,-1)) by finite additivity
1
= lim p(A,).

(ii) Let B, = A1\ A, = 41 N AS so that B,, /. Thus, on the one hand we have
limp(By) = w(U"By) by part (i)
= p(UT (A1 N AL))
p(Ar NUTTAY)
p(AL N (N7 A,)7)
= pu(A) — p(NT°A) by finite additivity,
while on the other hand,
lim w(B,) = lim A1\ A,) = li;rbn{u(Al) — (A} by finite additivity
= p(Ay) = lim p(Ay).

Combining these two equalities yield the conclusion of (ii). O

Definition 1.5

(i) imA, = U;Z, Ng2 . Ay = {w € Q:w € all but a finite number of A} s} = [4, a.a.];
(i) imA, = NS, U Ay = {w € Q :w € infinitely many A} s} = [4,, i.0.].

Remark 1.2 limA, C limA,; limA, = limA,, provided limA, = limA,.

Proposition 1.3 Monotone / (\,) 4,’s have lim A, = U{*4,, (= N{°4,, ).

Example 1.6 Let A = B = o(Bp) as in example 1.3. For B € By, let u(B) = the sum of the
lengths of intervals A € By composing B. Then p is a countably additive measure on By. Can p
be extended to B? The answers is yes, and depends on the following:

Theorem 1.1 (Caratheodory Extension Theorem) A measure p on a field C can be extended
to a measure on the minimal o—field o—field o(C) over C. If p is o—finite on C, then the extension
is unique and is also o—finite.

Proof. See Billingsley (1986), pages 29 - 35 and 137 - 139. O
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Example 1.7 (example 1.3, continued.) The extension of the countably additive measure g
on By to By = o(By), the Boreal o—field, is called Lebesgue measure; thus (R, By, ) where p is
the extension of the Caratheodory extension theorem, is a measure space. The usual procedure is
to complete By as follows.

Definition 1.6 If (2, A, 1) is a measure space such that B C A with A € A and pu(A) = 0 implies
B € A, then (Q, A, i) is a complete measure space. If u(A) = 0, then A is called a null set. (Of
course there can be non-empty null sets.)

Exercise 1.1 Let (2, A, 1) be a measure space. Define
A={AUN :A€ A N C B for some B € A such that u(B) = 0}

and let W(A U N) = p(A). Then (2, A, ) is a complete measure space.

Example 1.8 (example 1.3, continued.) Completing (R!, By, ) where y =Lebesgue measure
yields the complete measure space (R, By,f). By is called the o—field of Lebesgue sets.

So far we know only a few measures. But we will now construct a whole batch of them; and
they are just the ones most useful for probability theory.

Definition 1.7 A measure p on R assigning finite values to finite intervals is called a Lebesgue -
Stieltjes measure.

Definition 1.8 A function F on R which is finite, increasing, and right continuous is called a
generalized distribution function (generalized df).

F(a,b] = F(b) — F(a)

for —00 < @ < b < o0 is called the increment function of the generalized df F. We identify
generalized df’s having the same increment function.

Theorem 1.2 (Correspondence theorem.) The relation
p((a,b]) = F(a,b] for —o<a<b<oo

establishes a one-to-one correspondence between Lebesgue-Stieltjes measures p on B = By and
equivalence classes of generalized df’s.

Proof. See Billingsley (1986), pages 147, 149 - 151. O

Definition 1.9 (Probability measures on R.) If () = 1, then p is called a probability dis-
tribution or probability measure and is denoted by P.

Definition 1.10 An 7, right-continuous function F on R such that F(—oo) = 0 and F(oo) =1
is a distribution function (df).

Corollary 1 The relation
P((a,b])= F(b) — F(a) for —o<a<b<oo

establishes a one-to-one correspondence between probability measures on R and df’s.
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2 Measurable Functions and Integration

Let (€,.A) be a measurable space.
Let X denote a function, X : Q@ — R.

Definition 2.1 X : Q — R is measurableif [X € B]= X"!(B)={w € Q: X(w) € B} € Aforall
B € B;.

Definition 2.2 (i) For A € A the indicator function of A is the function

B 1 fweA
1A(“)_{ 0 ifwe A°

(ii) A simple function is X(w) =Y imq xla,(w)for Y7 A4, =Q, A; € A, z; € R.
(iii) An elementary function is X (w) =372, a;14,(w) for 3°72, A, =Q, A, € A, x; € R.

Proposition 2.1 X is measurable if and only if X ~1(C) = {X~1(C): C € C} C A where o(C) = B.
Hence X is measurable if and only if X 1((z,00)) = [X > z] € A for all x € R.

Proof. (=) This direction is trivial.

(<) X Y(B)=X"o(C))=a(XY(C)) since X! preserves all set operations and since X ~}(C) C
A with A a o—field by hypothesis.

Further, o({(z,00) : & € R}) = By since (a,b] = (a,00) N (b,00)°, and By is generated by intervals
of the form (a,b]. O Note that the assertion of the propostion would work with (z, 00) replaced

by any of [$,OO), (—OO,$], (—OO,$).

Proposition 2.2 Suppose that {X,} are measurable. Then so are sup, X,,, —X,, inf, X,,, imX,,,
limX,,, and lim X,,.

Proof.  [sup X, > 2] = U,[X,, > z];
[— X, > 2] =[X, < —z];

inf X,, = —sup,(—X,);

limX,, = inf,(supps, Xg);

lim,, X, = limX,, when lim X,, exists. O

Proposition 2.3 X is measurable if and only if it is the limit of a sequence of simple functions:

Xo=—nlxen+ 2.
k=—n2" 41

Lk—1)j2n<x <kyon) + nlxsnp)-

Proof. (=) The X,’s exhibited above have | X, (w) — X (w)| < 27" for | X (w)| < n.
(<) The exhibited X,,’s are simple, converge to X, and lim X,, is measurable by prop 2.2. O

Remark 2.1 If X >0, then 0< X,, /" X.
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Proposition 2.4 Let X,Y be measurable. Then X £V, XY, X/Y, Xt = Xlxsop X7 =
~X1ix<op [ X[, g(X) for measurable g are all measurable.

Proof. Let X,, Y, be simple functions, X, — X, Y, — Y. Then X, +Y,, X,)Y,, X,,/Y,
are simple functions converging to X £V, XV, and X/Y, and hence the limits are measurable by
prop 2.3. Xt and X~ are easy by prop 2.3, and |X| = XT + X~. For g : R — R measurable we
have, for B € By,

(¢X)"Y(B) = X Yg(B))=X"'( aBorel set ) since ¢ is measurable
A

€ since X! is measurable.

Remark 2.2 Any continuous function g is measurable since
g7 (B) = g7 (c(0)) = a(g7'(0)) = o( a subcollection of open sets ) C B.

Now let (2, A, 1) be a measure space, and leet X,Y denote measurable functions from (£, .A4)
to (R,B), R= RU {£x}, B=0o(BU {x}U{-00}).
CONVENTIONS: 0-o0c=0=00-0,2-c0c =0 -2 =0 if 0 < 2 < 00; 00 - 00 = 0.

Definition 2.3 (i) For X =Y 1" 2;14, with 2; > 0, >°1" A; = Q, then [ Xdu = Y7 a;u(4;).

(ii) For X > 0, [ Xdp = lim,, [ X,,dp where {X,,} is any > 0, /" sequence of simple functions,
X, — X.

(iii) For general X, [ Xdu= [ XTdu — [ X~du if one of [ Xtdp, [ X ~du is finite.

(iv) If [ Xdp is finite, then X is integrable.

JUSTIFICATION: See Loeéve pages 120 - 123 or Billingsley (1986), page 176.

Proposition 2.5 (Elementary properties.) Suppose that [ Xdu, [Ydu, and [ Xdu+ [Ydu
exist. Then:

(1) [(X+Y)du= [ Xdp+ [Ydp, [cXdp=c[Xdy

(ii)) X > 0 implies [ Xdp > 0; X > Y implies [ Xdu > [Ydu; and X =Y a.e. implies [ Xdu =
[Ydu.

(iii) (integrability). X is integrable if and only if | X | is integrable, and either implies that X is a.e.
finite. | X| <Y with Y integrable implies X integrable; X and Y integrable implies that X + VY is
integrable.

Proof. (ili) That X is integrable if and only if [ X*dp and [ X~ du finite if and only if
| X| integrable is easy. Now [ XTtdu < oo implies X finite a.e.; if not, then u(A) > 0 where
A={w: Xt w) =00}, and then [ XTdu > [ XT1adu = oo - u(A) = oo, a contradiction. Now
0< Xt <Y, thus 0 < [ Xtdu < [Ydu < oo. Likewise [ X ~du < co. O

Theorem 2.1 (Monotone convergence theorem.) If 0 < X,, / X, then [ X, du — [ Xdp.

Corollary 1 If X,, > 0 then [} 77, X, dp =572, [ X,du.
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Proof. Note that 0 < 377 Xy >°7° Xk and apply the monotone convergence theorem. O

Theorem 2.2 (Fatou’s lemma.) If X,, > 0 for all n, then [limX,dy <lim [ X, du .
Proof. Since X, > infg>, X =Y, / limX,, it follows from the MCT that

/li_and,u = /limYnd,u = lim/Ynd,u < li_m/Xnd,u.

Definition 2.4 A sequence X,, converges almost everywhere (or converges a.e. for short), denoted
Xy —ae X, if Xp(w) = X(w) for all w € Q\ N where u(N) = 0 (i.e. for a.e. w). Note that
{X,}, X, are all defined on one measure space (2, A). If u is a probability measure, 4 = P with
P(Q) =1, we will write —, . for —,...

Proposition 2.6 Let {X,}, X be finite measurable functions. Then [X, — X] = N7, UrL,
NX_ [| Xm — X| < 1/k], and is a measurable set.

Corollary 1 Let {X,}, X be finite measurable functions. Then X,, —, . X if and only if
P2y Uiz [[ X = X[ 2 €)= 0
for all € > 0. If u(2) < o0, X,, —4.. X if and only if
p(Up— (| X — X| > €)= 0 as n— 00
for all € > 0.
Proof. First note that
[Xn — X]° = UpZy M0 Un=n | X = X[ 2 1/R] = U2, Ay
with Ap 5 and Ag = NS By with B, N\ in n. Applying prop 1.2 gives the result. O
Definition 2.5 (Convergence in measure; convergence in probability.) A sequence of fi-
nite measurable functions X,, converge in measure to a measurable function X, denoted X,, —, X,
if
Pl Xn = X[ 2 e]) =0

for all ¢ > 0. If p is a probability measure, p() = 1, call p = P, write X,, —, X, and say X,
converge in probability to X.

Proposition 2.7 Let X, ’s be finite a.e.
(i) If X,, —, X then there exist a subsequence {nj} such that X, —,. X.
(ii) If p(Q) < o0 and X, —,.. X, then X,, —, X.

Theorem 2.3 (Dominated Convergence Theorem) If | X,,| < Y a.e. with Y integrable, and
if X, —, X (or X, =4 X), then [|X,, — X|dp — 0 and lim [ X, dp = [ Xdp.
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Proof. We give the proof under the assumption X,, —,. X. Then 7, = |X,, — X| — 0 a.e.
and Z, < |X,|+|X|<2Y = Z. Thus Z — Z, > 0 and by Fatou’s lemma

/Zdu = /h_m(Z— Zy)dp < li_m/(Z — Zp)dp = /Zdu—E/anu,
and this implies
M/anm/p(n—)ﬂdugo.
Thus
[ Xa= [ X1=1 (%, - X)dul < [ 1%, = Xldu—o.

a

Definition 2.6 Let X be a finite meaurable function on a probability space (€2, A, P) (so that
P(Q2) =1). Then X is called a random variable and

Px(B)=P(X € B)= P({w € Q: X(w) € B})

for all B € B is called the (induced) probability distribution of X (on R). The df associated with
Px is denoted by Fy and is called the df of the random variable X. Thus (R, B, Px) is a probability
space.

Theorem 2.4 (Theorem of the unconscious statistician.) If g is a finite measurable function
from R to R, then

| atx@nar) = [ gwars) = [ a@yirx).

Proposition 2.8 (Interchange of integral and limit or derivative.) Suppose that X (w,1)is
measurable for each ¢ € (a,b).

(i) If X(w,t)is a.e. continuous in ¢ at tg and |X(w,?) < Y(w) a.e. for |t —#p| < 6 with Y integrable,
then [ X(-,¢)dp is continuous in ¢ at tg.

(ii) Suppose that 2 X (w,1) exists for a.e. w, all t € (a,b), and | X (w,1)| < Y(w) integrable a.e.
for all t € (a,b). Then

%/Qx(w,t)du(w):/Q%X(w,t)du(w).

Proof.  (ii). By the mean value theorem
X(w,t4+h)—X(t) 0
= —X(w,1)]i=s
h ot (@, 1)le=
for some t < s <t+ h. Also the left side of the display converges to %X(w,t) as h — 0 for a.e. w,

and by the equality of the display and the hypothesized bound, the difference quotient on the left
side of the display is bounded in absolute value by Y. Therefore

%/X(w,t)d,u(w) = lim 1 {/X(w,t—l— h)dp(w) — /X(w,t)d,u(w)}

h—0 h
N E X(wvt‘l'h)_X(wvt)
= { I }d“(“)

_ / %X(w,t)d,u(w)

where the last equality holds by the dominated convergence theorem. O
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3 Absolute Continuity, Radon-Nikodym Theorem, Fubini’s The-
orem

Let (2, A, 1) be a measure space, and let X be a non-negative measurable function on . For

A € Q, set
E/Xd,u:/ laXdu.
A Q

Then v is another measure on (Q,.4) and v is finite if and only if X is integrable (X € Lq(p)).

Definition 3.1 The measure v defined by ?? is said to have density X with respect to p.
Note that p(A) = 0 implies that v(A) = 0.
Definition 3.2 If y, v are any two measures on (£,.4) such that u(A) = 0 implies v(A) = 0 for

any A € A, then v is said to be absolutely continuous with respect to p, and we write v << pu. We
also say that v is dominated by p.

Theorem 3.1 (Radon-Nikodym theorem.) Let (92,4, 1) be a o—finite measure space, and let
v be a measure on (2, A) with v << p. Then there exists a measurable function X > 0 such that

v(A)= [, Xpforall A€ A. The function X = d; is unique in the sense that if ¥ is another such
function, then ¥ = X a.e. with respect to p. X is called the Radon-Nikodym derivative of v with
respect to p.

Proof. See Billingsley (1986), page 376. O

Corollary 1 (Change of Variable Theorem.) Suppose that v, u are o —finite measures defined
on a measure space (2, A) with v << p, and suppose that Z is a measurable function such that

[ Zdv is well-defined. Then for all A € A,

/Zdl/—/ Z—d,u

Proof. (i) If Z = 1p; then

/1Bdl/:1/(AﬂB):/ /1B—d,u
A ANB d,u

(ii) If Z = 3" %14, then

Zdv = Zi/l.dl/
/A Z At



12 CHAPTER 0. MEASURES, INTEGRATION, CONVERGENCE

(iii) If Z > 0, let Z,, > 0 be simple functions / Z. Then
/ Zdvy = lim/ Zndy by the monotone convergence thm.
A A
T /Z dl/d b ¢ (i)
= lim n— art (ii
a5 y P
dv
= / Z—du by the monotone convergence thm.
A dp
(iv) If Z is measurable, Z = ZT — Z~ where one of ZT, Z~ is v—integrable, then

/Zdl/ = /Z+dV—/Z dv
A

_ / Z+ du / Z‘—du by (iii)

= / Z—d,u

Example 3.1 Let (Q,.A, P) be a probability space; often this will be (R", B,,, P). Often in statis-
tics we suppose that P has a density f with respect to a o—finite measure p on (9,.4) so that

P(A):/Afdu for A€ A

If uis Lebesgue measure on R™, then f is the density function. If u is counting measure on a
countable set, then f is the frequency function or mass function.

Proposition 3.1 (Scheffé’s theorem.) Suppose that v,(A) = [, fudu, that v(A) = [, fdu
where f,, are densities and v,(2) = v(Q2) < oo for all n, and that f, — f a.e. p. Then

sup [vn(A) — v(A)| = %/Q fo = f|— 0.

AcA
Proof. Tor A € A,

o) =) = | [ (= Dyl

J b= sid < [ 12 Pl

sup [1a(A) = v(A)| < [ 15z = Sld

AeA

IN

and this implies that

Let g, = f — fn. Now g7 — 0 a.e. u, and ¢gf < f which is integrable. Thus by the dominated
convergence theorem [ ¢gFdu — 0. But

0=/gnduz/Q(f—fn)duz/g(gi—g;)du,
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so [gFrdu = [ g, du, and hence

/Ignlduz/gidu+/g;du=2/gidu—>0,

proving the claimed convergence. To prove that equality holds as claimed in the statement of the
proposition, note that for the event B = [f — f,, > 0] we have

sup [vn(A) = v(A)] 2 |va(B) - v(B)| = (fn = F)dul
AeA [f—fn20]

N /+>0 il = /

= > 1= flan.

But on the other hand
) =) = | [ fud= [ gan
= 1 [/~ f)dud
:|/ f(mw+/ (f = fu)dul

/gn dp,

sup [ A) = ()] < [ gtdp =35 [ 15~ fld.

AeA

IN

S50

Now supppose that (X, X, x) and (Y,Y,r) are two o—finite measure spaces. If A € X', B € Y,

a measurable rectangle is a set of the form A x B C X x Y.
Let Y xY=0({AXxB:A€cX,B € Y}). Define a measure 7 on (X x Y, X' x V) by

R(A X B) = u(A(B)
for measurable rectangles A x B.

Theorem 3.2 (Fubini - Tonelli theorem.) Suppose that f: X x Y — R is X' x Y—measurable
and f > 0. Then

/ fla,y)dv(y) is X - measurable ,
Y

/ fla,y)du(x) is Y - measurable ,
X

and

e = [{ ] s b = [ { ] e o).

If feLi(m)(so [x,y|fldm < o), then (1) holds.



