CHAPTER 13.

SUFFICIENCY AND UNBIASED ESTIMATION

1. Conditional probability and expectation
2. Sufficiency
3. Exponential families and sufficiency
4. Uses of Sufficiency
5. Ancillarity and completeness
6. Unbiased estimation
7. Nonparametric unbiased estimation; U - statistics
1. Conditional Probability and Expectation

References:
Section 1.5, Lehmann, TPE;
Section 2.4, Lehmann, TSH;
Billingsley, 1979, pages 395 - 407.

Notation: Suppose that X is an integrable rv on a probability space (Ω, \mathcal{A}, P), and that $\mathcal{A}_0 \subset \mathcal{A}$ is a sub-σ-field. Typically $\mathcal{A}_0 = T^{-1}(\mathcal{B})$ where T is another random variable on $(\Omega, \mathcal{A}, P), T : (\Omega, \mathcal{A}) \to (T, \mathcal{B})$.

Definition 1.1. A conditional expectation of X given \mathcal{A}_0, denoted $E(X \mid \mathcal{A}_0)$, is an integrable \mathcal{A}_0-measurable random variable satisfying

\[
\int_{\mathcal{A}_0} E(X \mid \mathcal{A}_0) dP = \int_{\mathcal{A}_0} X dP \quad \text{for all } A_0 \in \mathcal{A}_0.
\]

Proposition 1.2. $E(X \mid \mathcal{A}_0)$ exists.
Proof. Consider $X \geq 0$. Define ν on \mathcal{A}_0 by

\[
\nu(A_0) = \int_{\mathcal{A}_0} X dP \quad \text{for } A_0 \in \mathcal{A}_0.
\]

The measure ν is finite since X is integrable, and ν is absolutely continuous with respect to $P|_{\mathcal{A}_0}$, hence by the Radon-Nikodym theorem there is an \mathcal{A}_0-measurable function f such that

\[
\int_{\mathcal{A}_0} X dP = \nu(A_0) = \int_{\mathcal{A}_0} f dP.
\]

This function f has the desired properties; i.e. $f = E(X \mid \mathcal{A}_0)$. If $X = X^+ - X^-$, then $E(X^+ \mid \mathcal{A}_0) = E(X^- \mid \mathcal{A}_0)$ works. \Box

Theorem 1.4. (Properties of conditional expectations). Let X, Y, Y_n be integrable rv’s on (Ω, \mathcal{A}, P). Let \mathcal{D} be a sub-σ-field of \mathcal{A}. Let g be measurable. Then for any versions of the conditional expectations the following hold:

(i) (Linearity) $E(aX + bY \mid \mathcal{D}) = a E(X \mid \mathcal{D}) + b E(Y \mid \mathcal{D})$ a.s.

(ii) $E(Y \mid \mathcal{D}) = E[E(Y \mid \mathcal{D})].$

(iii) (Monotonicity) $X \leq Y$ a.s. P implies $E(X \mid \mathcal{D}) \leq E(Y \mid \mathcal{D})$ a.s.

(iv) (MCT) If $0 \leq Y_n \uparrow Y$ a.s. P, then $E(Y_n \mid \mathcal{D}) \uparrow E(Y \mid \mathcal{D})$ a.s.

(v) (Fatou) If $0 \leq Y_n$ a.s. P, then $E(\lim Y_n \mid \mathcal{D}) \leq \lim E(Y_n \mid \mathcal{D})$ a.s.

March 14, 1997
(vi) (DCT) If \(|Y_n| \leq X\) for all \(n\) and \(Y_n \to Y\) a.s. \(P\), then
\[E(Y_n | D) \to E(Y | D)\] a.s.

(vii) If \(Y\) is \(D\)-measurable and \(XY\) is integrable, then
\[E(XY | D) = Y E(X | D)\] a.s.

(viii) If \(F(Y)\) and \(D\) are independent, then
\[E(Y | D) = EY\] a.s.

(ix) (Stepwise smoothing). If \(D \subset E \subset A\), then
\[E[E(Y | E) | D] = E(Y | D)\] a.s.

(x) If \(F(Y, X_1)\) is independent of \(F(X_2)\), then
\[E(Y | X_1, X_2) = E(Y | X_1)\] a.s.

(xi) \(c_r\), Holder, Liaponov, Minkowski, and Jensen inequalities hold for
\[E(D | D)\].
Jensen: \(g(E(Y | D)) \leq E[g(Y) | D]\) a.s. \(P | D\) for \(g\) convex and
\(g(Y)\) integrable.

(xii) If \(Y_n \to r Y\) for \(r \geq 1\), then
\[E(Y_n | D) \to r E(Y | D)\].

(xiii) \(g\) is a version of \(E(Y | D)\) if and only if \(E(XY) = E(Xg)\) for all
bounded \(D\)-measurable \(rV\)'s \(X\).

(xiv) If \(P(D) = 0\) or \(1\) for all \(D \in D\), then
\[E(Y | D) = EY\] a.s.

In the case \(A_0 = T^{-1}(B)\) where \(T : (\Omega, A) \to (T, B)\), the assertion
that \(f = E(X | A_0)\) measurable is equivalent to stating that \(f(\omega) = g(T(\omega))\)
for all \(\omega \in \Omega\) where \(g\) is a \(B\) - measurable function on \(T\); see lemma 1, TSH,
page 37. Thus for \(A_0 = T^{-1}(B)\) with \(B \in B\), the change of variable theorem
(lemma 2) TSH page 38 yields
\[\int_{A_0} f \, dP = \int_{T^{-1}(B)} f \, dP = \int_{T^{-1}(B)} g(T) \, dP = \int_B g \, dP_T\]
where \(P_T\) is the measure induced on \((T, BB)\) by \(P_T(B) \equiv P(T^{-1}(B))\). We
may write
\[f(\omega) = E(X | A_0)(\omega) = E(X | T(\omega)), \quad A_0 \text{- measurable},\]
or view it as the \(B\) - measurable function \(g\) on \(T\)
\[g(t) \equiv E(X | t), \quad B \text{- measurable}.\]

For \(X = 1_A\), \(A \in A\), the conditional expectation is called conditional
probability. Its defining equation is thus
\[P(A_0 \cap A) = \int_{A_0} f \, dP \quad \text{for all} \quad A_0 \in A_0,\]
and we denote it by \(P(A | A_0)\) on \(\Omega\) and by \(P(A | t)\) on \(T\) when
\(A_0 \equiv T^{-1}(B)\) where \(T : (\Omega, A) \to (T, B)\). Thus for each fixed set \(A \in A\),

March 14, 1997
we have defined uniquely a.s. P_T a function $P(A \mid t)$. But in elementary
classes we think of $P(A \mid t)$ as a distribution on (Ω, \mathcal{A}) for each fixed t. The
following theorem says that this is usually justified.

Theorem 1.5. (Existence of regular conditional probabilities). If (Ω, \mathcal{A}) is
Eudidean, then there exist determinations of the functions $P(A \mid t)$ on \mathcal{T} such
that for each fixed t $P(A \mid t)$ is a probability measure over \mathcal{A}. We denote
them by $P_{X \mid t}(A), A \in \mathcal{A}$. (These are called regular conditional probabilities.)

Theorem 1.6. If X is a random vector and $f(X)$ is integrable, then

$$E\{f(X) \mid t\} = \int_{\mathbf{x}} f(x) dP_{X \mid t}(x)$$

for all t except possibly in some set B having $P_T(B) = 0$.

March 14, 1997
2. Sufficiency

References:
Section 1.5, Lehmann, TPE;
Sections 1.9 and 2.5, Lehmann, TSH.

Notation: The typical statistical setup is often
\[\text{Prob}(X \in A) = P_\theta(A) \quad \text{when} \quad \theta \in \Theta \] is true
where \((X, A, P_\theta)\) is a probability space for each \(\theta \in \Theta\).

Definition 2.1. \(T : (X, A) \rightarrow (T, B)\) is sufficient for \(\theta\) (or for
\(P \equiv \{P_\theta : \theta \in \Theta\}\)) if there exist versions of \(P_\theta(A | t)\) (or of their densities
\(p_\theta(x | t)\)) which do not depend on \(\theta\).

Example 2.2. Let \(X_1, \cdots, X_n\) be i.i.d. Bernoulli(\(\theta\)) with \(0 < \theta < 1\); let
\(T = \sum_1^n X_i\). Then \(T\) is sufficient for \(\theta\) since
\[
p_\theta(x | t) = \frac{p_\theta(x, t)}{p_\theta(t)} = \frac{\theta^{\sum x_i}(1 - \theta)^{n - \sum x_i}}{\binom{n}{t}\theta^t(1 - \theta)^{n-t}} = \frac{1}{\binom{n}{t}}
\]
for all \(\theta\) and all \(x\) having \(p_\theta(t) > 0\).

Example 2.3. Let \(X_1, \cdots, X_n\) be i.i.d. Poisson(\(\theta\)) with \(0 < \theta < \infty\); let
\(T = \sum_1^n X_i\). Then \(T\) is sufficient for \(\theta\) since
\[
p_\theta(x | t) = \frac{p_\theta(x, t)}{p_\theta(t)} = \frac{e^{-n\theta}\theta^{\sum x_i}/\prod x_i!}{e^{-n\theta}(n\theta)^t/t!} = \left(\frac{t}{x_1 \cdots x_n}\right)^{1/n}.
\]

Example 2.4. Let \(X_1, \cdots, X_n\) be i.i.d. with continuous d.f. \(F\). then the order
statistics are sufficient for \(F\); equivalently \(IF_n \equiv n^{-1} \sum_{i=1}^n 1_{[X_i \leq \cdot]}\) is sufficient
for \(F\). (See TSH pages 40 - 42.)

Example 2.5. Let \((X, A)\) be a measurable space and let \((X^n, A^n)\) be its
\(n\) - fold product space. For any \(P \in \mathcal{M} \equiv \{\text{all prob. measures on } A\}\), let \(P^n\)
denote the distribution of \(X_1, \cdots, X_n\) i.i.d \(P\). Let \(IP_n \equiv n^{-1} \sum_{i=1}^n \delta_{X_i}\)
be the empirical measure. Then \(IP_n\) is sufficient for \(P \in \mathcal{M}\). For the proof, see
the end of this section.

Theorem 2.6. (Neyman - Fisher - Halmos - Savage Factorization theorem). If
the distributions \(\{P_\theta : \theta \in \Theta\}\) have densities \(p_\theta\) w.r.t. a \(\sigma\) - finite measure \(\mu\),
then \(T\) is sufficient for \(\theta\) if and only if there exist nonnegative \(B\) - measurable
functions \(g_\theta\) on \(T\) and a nonnegative \(A\) - measurable function \(h\) on \(X\) such that

March 14, 1997
\[P_\theta(x) = g_\theta(T(x))h(x) \quad \text{a.e. (X, A, \mu)}. \]

Proof. TSH, theorem 2.8 and corollary 1, pages 48 - 49. \(\square \)

Example 2.7. (Markov dependent Bernoulli trials). Suppose that \(X_i \sim \text{Bernoulli}(p) \), \(i = 1, \cdots, n \) as in example 2.2, but now suppose that the \(X_i \) form a Markov chain with

\[P(X_i = 1 \mid X_{i-1} = 1) = \lambda, \quad i = 2, 3, \cdots, n. \]

Then the remaining transition probabilities are all determined, and

\[P(X_i = 1 \mid X_{i-1} = 0) = (1 - \lambda)p/q, \quad P(X_i = 0 \mid X_{i-1} = 1) = (1 - \lambda), \]
\[P(X_i = 0 \mid X_{i-1} = 0) = (1 - 2p + \lambda p)/q, \]

and

\[\Theta = \{ (p, \lambda) : (2p - 1)/p \not\in [0, 1], 0 \leq p \leq 1 \}. \]

Then

\[P_\theta(X = x) = \frac{(1 - 2p + \lambda p)}{q^{n-2}} a^r b^s c^t \]

where

\[r = \sum_{i=2}^{n} x_{i-1} x_i, \quad a = \lambda(1 - 2p + \lambda p)/[p(1 - \lambda)^2] \]
\[s = \sum_{i=1}^{n} x_i, \quad b = (1 - \lambda)^2 pq/(1 - 2p + \lambda p)^2 \]
\[t = x_1 + x_n \]

Thus \((R, S, T) \equiv (\sum_{i=2}^{n} X_{i-1} X_i, \sum_{i=1}^{n} X_i, X_1 + X_n) \) is sufficient for \(\Theta \) by the factorization theorem; see Klotz, *Ann. Statist.*, 1, 373 - 379.

Example 2.8. (Univariate normal). Let \(X_1, \cdots, X_n \) be i.i.d. \(N(\mu, \sigma^2) \). Then \((\sum X_i, \sum X_i^2) \) or \((X, S^2) \) (with \(S^2 \equiv \sum (X_i - \bar{X})^2/(n-1) \)) is sufficient for \((\mu, \sigma^2) \) by the factorization theorem.

Example 2.9. (Multivariate normal). Let \(X_1, \cdots, X_n \) be i.i.d. \(N_k(\mu, \Sigma^2) \). Then \((\sum X_i, \sum X_i X_i^T) \) or \((\bar{X}, \hat{\Sigma}) \) (with \(\hat{\Sigma} \equiv n^{-1} \sum X_i X_i^T - \bar{X} \bar{X}^T \)) is sufficient for \((\mu, \Sigma) \) by the factorization theorem.

Example 2.10. Suppose that \(X_1, \cdots, X_n \) are i.i.d. Exponential(\(\mu, \sigma \)):

\[p_\theta(x) = \sigma^{-1} \exp(- (x - \mu)/\sigma)1_{[\mu, \infty)}(x). \]

Then \((\min X_i, \sum_{i=1}^{n} (X_i - \min X_i)) \) is sufficient for \((\mu, \sigma) \) by the factorization theorem.

March 14, 1997
Example 2.11. If \(Y = X \beta + \epsilon \) in \(\mathbb{R}^n \) where \(\epsilon \sim N_n(0, \sigma^2 I) \), then \(\hat{\beta} \equiv (X^T X)^{-1} X^T Y \) and \(SS_E \equiv ||Y - X \hat{\beta}||^2 \) are sufficient for \((\beta, \sigma^2) \) by the factorization theorem.

Example 2.12. If \(X_1, \ldots, X_n \) are i.i.d. \(N(\mu, c^2 \mu^2) \) with \(c^2 \) known, then \((X, S^2) \) is sufficient for \(\mu \).

Example 2.13. Let \(X_1, \ldots, X_n \) be i.i.d. Exponential(\(\theta \)), \(p_\theta(x) = \theta \exp(-\theta x)1_{[0, \infty)}(x) \). Let \(x_0 > 0 \) be a fixed number, and suppose we observe only \(Y_i \equiv X_i / x_0 \), \(\delta_i = 1[x_i \leq x_0] \), \(i = 1, \ldots, n \). Then

\[
p_\theta(y, \delta) = \prod_{i=1}^n [\theta e^{-\theta y}]^{\delta_i} [e^{-\theta x_0}]^{1-\delta_i} = \theta^N \exp(-\theta T)
\]

where \(N \equiv \sum_{i=1}^n \delta_i \equiv \) the number of observations failed by time \(x_0 \) and

\[
T = \sum_{i=1}^n Y_i \delta_i + x_0(n - N) \equiv \text{total time on test}.
\]

Thus \((N, T) \) is sufficient for \(\theta \) by the factorization theorem.

Proof for example 2.5: First, let

\[
S_n \equiv \{ A \in A^n : \pi A = A \ \text{for all} \ \pi \in \Pi \};
\]

and claim that

\[
P^n(A \mid S_n) = \frac{1}{n!} \sum_{\pi \in \Pi} 1_A(\pi X) \ \text{a.s.} \ P^n.
\]

To see this, for any integrable function \(f : X^n \to \mathbb{R} \), let \(Y = f(X) \), and set

\[
f_0(\underline{x}) = \frac{1}{n!} \sum_{\pi \in \Pi} f(\pi \underline{x}) = \frac{1}{n!} \ # \ of \ permutations \ of \ \underline{x} \ in \ A
\]

if \(f = 1_A \). Then \(f_0 \) is \(S_n \)-measurable, since it is a symmetric function of its arguments. Also, since the \(X \)'s are identically distributed, for \(A_0 \in S_n \) (\(\equiv A_0 \)),

\[
\int_{A_0} f(\underline{x})dP^n(\underline{x}) = \int_{A_0} f(\pi \underline{x})dP^n(\underline{x})
\]

for all \(\pi \in \Pi_n \). Summing across this equality on \(\pi \) yields

\[
\int_{A_0} f(\underline{x})dP^n(\underline{x}) = \int_{A_0} f_0(\underline{x})dP^n(\underline{x}).
\]

March 14, 1997
and this implies that
\[E(f(X) | S_n) = E(Y | S_n) = f_0(X) \in mS_n. \]
3. Exponential Families and Sufficiency

Definition 3.1. Suppose that \((X, A) = (R^m, B^m)\) for some \(m \geq 1\), and that \(X \sim P_\theta\) has density

\[
p_\theta(x) = c(\theta) \exp \left[\sum_{j=1}^{k} Q_j(\theta) T_j(x) \right] h(x)
\]

with respect a \(\sigma - \)finite measure \(\mu\) on some subset of \(R^m\). The \(p_\theta\) is a \(k - \)parameter exponential family.

Example 3.2. (Bernoulli) If \(X = (X_1, \cdots, X_n)\) are i.i.d. Bernoulli(\(\theta\))

\[
p_\theta(x) = \theta^{\sum x_i (1 - \theta)^n - \sum x_i} = e^{n \log(1 - \theta)} \exp \left[\log(\theta/(1 - \theta)) \sum x_i \right]
\]

on \(\{0,1\}^n\) is an exponential family.

Example 3.3. (Normal) If \(X = (X_1, \cdots, X_n)\) are i.i.d. \(N(\mu, \sigma^2)\), \(\theta = (\mu, \sigma^2)\), then

\[
p_\theta(x) = (2\pi\sigma^2)^{-n/2} \exp \left(- \frac{(x - \mu)^2}{2\sigma^2} \right) \\
= (2\pi\sigma^2)^{-n/2} e^{-n/2\sigma^2} \exp \left(- \frac{1}{2\sigma^2} \sum x_i^2 + (\mu/\sigma^2) \sum x_i \right)
\]

is an exponential family.

Counterexample 3.4. (Shifted exponential distribution). Suppose that \(X_1, \cdots, X_n\) are i.i.d. with the shifted Exponential\((\mu, \sigma)\) distribution

\[
p_\theta(x) = \sigma^{-1} \exp \left(- \frac{x - \mu}{\sigma} \right) 1_{[\mu, \infty)}(x).
\]

Then

\[
p_\theta(x) = \sigma^{-n} \exp \left[- \sum_{i=1}^{n} \frac{(X_i - \mu)}{\sigma} \right] 1_{[\mu, \infty)}(\min x_i)
\]

is not an exponential family. As noted in section 2, the factorization theorem still works and shows that \(\sum (X_i - \min X_i)\) are sufficient. Note that a support set depending on \(\theta\) is not allowed for an exponential family.

Example 3.5. (Inverse Gaussian) This distribution is given by the density

\[
p(x; \mu, \lambda) = \left\{ \frac{\lambda}{2\pi} \right\}^{1/2} x^{-3/2} \exp \left(- \lambda(x - \mu)^2/2\mu^2 x \right), \ x > 0.
\]

Here \(\mu\) is the mean, and \(\lambda\) is a precision parameter. It sometimes helps to reparametrize using \(\alpha = \lambda/\mu^2\), yielding

\[
p(x; \alpha, \lambda) = (2\pi x^3)^{-1/2} \exp \left((\alpha\lambda)^{1/2} - \frac{1}{2} \log \lambda - \frac{1}{2} \alpha x - \frac{\lambda}{2} x^{-1} \right).
\]

March 14, 1997
so that for a sample of size \(n \), \(\left(\sum X_i, \sum X_i^{-1} \right) \) is sufficient for the natural parameter \((\alpha/2, \lambda/2) \).

Theorem 3.6. For the \(k \) - parameter exponential family \(T = (T_1(X), \ldots, T_k(X)) \) is sufficient.

Proof. This follows immediately from the factorization theorem. \(\Box \)

Remark 3.7. If
\[
p_\theta(x) = c(\theta) \exp\left[\sum_{j=1}^{k} \theta_j T_j(x) \right] h(x), \quad \theta \in \Theta \subset R^k,
\]
with respect to \(\mu \), then \(p_\theta(x) \) is said to have its **natural parameterization**. Note that \(\Theta \) is convex in this parametrization since, for \(0 < \lambda < 1 \), \(\lambda \equiv 1 - \lambda \), \(\theta, \theta^* \in \Theta \subset R^k \),
\[
\int \exp\left[\sum_{j=1}^{k} \left(\lambda \theta_j + \lambda \theta_j^* \right) T_j(x) \right] h(x) d\mu(x)
= \int \left\{ \exp\left[\sum_{j=1}^{k} \theta_j T_j(x) \right] \right\}^\lambda \left\{ \exp\left[\sum_{j=1}^{k} \theta_j^* T_j(x) \right] \right\}^{\lambda^*} h(x) d\mu(x)
\leq \left\{ \int \exp\left[\sum_{j=1}^{k} \theta_j T_j(x) \right] h(x) d\mu(x) \right\}^\lambda \left\{ \int \exp\left[\sum_{j=1}^{k} \theta_j^* T_j(x) \right] h(x) d\mu(x) \right\}^{\lambda^*}
\]
by Hölder’s inequality with \(p = 1/\lambda \), \(q = 1/\lambda^* \).

Theorem 3.8. If \(X \) has the \(k = r + s \) parameter exponential family density
\[
p_{\theta, \xi}(x) = c(\theta, \xi) \exp\left[\sum_{i=1}^{r} \theta_i U_i(x) + \sum_{j=1}^{s} \xi_j T_j(x) \right] h(x)
\]
w.r.t. \(\mu \), then the marginal distribution of \(T \) is the exponential family

(i) \[
p_{\theta, \xi}(t) = c(\theta, \xi) \exp\left[\sum_{j=1}^{s} \xi_j t_j \right] H_\theta(t),
\]
and the conditional distribution of \(U \) given \(T = t \) is of the exponential form
\[
p_{\theta}(u \mid t) = c_t(\theta) \exp\left[\sum_{i=1}^{r} \theta_i u_i \right] \tilde{H}_t(u).
\]

Proof. See TSH, page 52; lemma 2.8. \(\Box \)

March 14, 1997
4. Applications of Sufficiency

Our first application of sufficiency is to show quite generally that nothing is lost in terms of risk if we base decisions on a sufficient statistic.

Theorem 4.1. Let \(X \sim P_\theta \in P \), \(\theta \in \Theta \), and let \(T = T(X) \) be sufficient for \(P \). Suppose the loss function is \(L: \Theta \times A \to \mathbb{R}^+ \). Then for any procedure \(d = d(\cdot | X) \in D \) there exists a (possibly randomized) procedure \(d^*(\cdot | T) \) depending on \(X \) only through \(T(X) \) which has the same risk function as \(d(\cdot | X) \): \(R(\theta, d^*) = R(\theta, d) \) for all \(\theta \).

Proof. First we give the proof for a finite action space \(A = \{a_1, \ldots, a_k\} \). Define a new rule \(d^* \) by

\[
d^*(a_i | T) \equiv E\{d(a_i | X) | T\};
\]

by sufficiency \(d^* \) does not depend on \(\theta \). Then

\[
R(\theta, d) = E_\theta L(\theta, d(\cdot | X)) = \int_x \sum_{i=1}^k L(\theta, a_i) d(a_i | x) dP_\theta(x) \]

\[
= \sum_{i=1}^k L(\theta, a_i) \mathbb{E}_{\theta}\{d(a_i | X)\} \]

\[
= \sum_{i=1}^k L(\theta, a_i) \mathbb{E}_{\theta}\{\mathbb{E}[d(a_i | X) | T]\} \]

\[
= \sum_{i=1}^k L(\theta, a_i) \mathbb{E}_{\theta}\{d^*(a_i | T)\} \]

\[
= \int_T \sum_{i=1}^k L(\theta, a_i) d^*(a_i | t) dP_\theta^T(t) \]

\[
= R(\theta, d^*),
\]

completing the proof in the case that \(A \) is finite.

Now we prove the statement for a general action space \(A \) under the assumption that regular conditional expectations exist. Our proof will use the following lemma:

Lemma 4.2. If \(f \geq 0 \), then

\[
\int f \, d\mu = \int_0^\infty \mu(\{x : f(x) > h\}) \, dh.
\]
Proof.

\[\int f \, d\mu = \int_X \int_{(0,f(x))} dh \, d\mu(x) = \int_0^{\infty} \int_{\{x : f(x) > h\}} d\mu(x) \, dh. \]

Now for the general proof: for a.e. \((P_T) \) fixed value of \(T = t \), \(P(\cdot \mid T = t) \) is a probability distribution that does not depend on \(\theta \) (since \(T \) is sufficient). Thus for \(B \in \mathcal{B}_A \) (a \(\sigma \)-field of subsets of the action space \(A \)) we may define

\[d^*(B \mid t) = \int_X d(B \mid x) \, dP_{X \mid T}(x \mid t) \]

\[= \int_X (\text{bounded measurable function of } x) \, dP_{X \mid T}(x \mid t) \]

\[= E\{d(B \mid X) \mid T = t\}. \]

Thus \(d^* : \mathcal{B}_A \times T \to [0, 1] \) is a decision rule. Then

\[R(\theta, d) = \int_X \int_A L(\theta, a) \, d(da \mid x) \, dP_\theta(x) \]

\[= \int_X \int_0^{\infty} d(\{a : L(\theta, a) > h\} \mid x) \, dh \, dP_\theta(x) \]

by the lemma applied to the inner integral

\[= \int_0^{\infty} \int_X d(\{a : L(\theta, a) > h\} \mid x) \, dP_\theta(x) \, dh \]

by Fubini

\[= \int_0^{\infty} \int_T \int_X d(\{a : L(\theta, a) > h\} \mid x) \, dP_{X \mid T}(x \mid t) \, dP_T^T(t) \, dh \]

by computing conditionally on \(T \)

\[= \int_0^{\infty} \int_T d^*(\{a : L(\theta, a) > h\} \mid t) \, dP_T^T(t) \, dh \]

by the definition of \(d^* \)

\[= \int_T \int_0^{\infty} d^*(\{a : L(\theta, a) > h\} \mid t) \, dh \, dP_T^T(t) \text{Fubini} \]

\[= \int_T \int_A L(\theta, a) \, d^*(da \mid t) \, dP_T^T(t) \]

by the lemma applied to the inner integral

\[= R(\theta, d^*). \]

Here is a related result which does not involve sufficiency per se, but illustrates the role of convexity of the loss function \(L(\theta, a) \).

March 14, 1997
Proposition 4.3. If \(L(\theta, \cdot) \) is convex for each \(\theta \in \Theta \) and if \(A \) is convex, then for any rule \(\phi \in D \) there is a nonrandomized rule \(\phi^* \) which is at least as good:
\[
R(\theta, \phi^*) \leq R(\theta, \phi) \quad \text{for all } \theta.
\]

Proof.
\[
R(\theta, \phi) = \int_X \int_A L(\theta, a) \phi(da | x) dP_\theta(x)
\]
\[
\geq \int_X L(\theta, \int_A a \phi(da | x)) dP_\theta(x)
\]
by Jensen’s \leq since \(L \) is convex
\[
= \int_X L(\theta, \phi^*(x)) dP_\theta(x)
\]
\[
= R(\theta, \phi^*). \quad \blacksquare
\]

Note that we can think of \(\phi^* \) as either
\[
\phi^*(B | x) = \delta_{\int_A a \phi(da | x)}(B), \quad \phi^*: B_A \times X \to [0, 1],
\]
or as
\[
\phi^*(x) = \int_A a \phi(da | x), \quad \phi^*: X \to A.
\]

Theorem 4.4. Let \(X \sim P_\theta \in P \equiv \{P_\theta: \theta \in \Theta\} \) and let \(T \) be sufficient for \(P \). Suppose that \(L(\theta, a) \) is a convex function of \(a \) for each \(\theta \in \Theta \) and that \(S \) is an estimator of \(g(\theta) \) (possibly randomized, \(S = \phi(\cdot | X) \)) with finite risk
\[
R(\theta, S) = E_\theta L(\theta, S) < \infty \quad \text{for all } \theta \in \Theta.
\]

Let \(S^* \equiv E(S | T) \). Then
\[
(i) \quad R(\theta, S^*) \leq R(\theta, S) \quad \text{for all } \theta \in \Theta.
\]
If \(L(\theta, a) \) is a strictly convex function of \(a \), then strict inequality holds in (i) unless \(S = S^* \) a.s.

Proof. By Jensen’s inequality for conditional expectations we have
\[
E[L(\theta, S) | T] \geq L(\theta, E(S | T)) \quad \text{a.s.}
\]
Hence
\[
R(\theta, S) = E_\theta L(\theta, S)
\]
\[
\geq E_\theta \{E[L(\theta, S) | T]\}
\]
\[
\geq E_\theta \{L(\theta, E(S | T))\}
\]
\[
= E_\theta L(\theta, S^*) = R(\theta, S^*). \]

March 14, 1997
If L is strictly convex, then the inequality is strict unless $S = S^*$ a.s. \square
5. Ancillarity and Completeness

The notion of sufficiency involves lack of dependence on \(\theta \) of a conditional distribution. But it is also of interest to know what functions \(V \equiv V(X) \) have unconditional distributions which do not depend on \(\theta \).

Definition 5.1. Let \(X \sim P_\theta \in \mathcal{P} = \{ P_\theta : \theta \in \Theta \} \). A statistic \(V = V(X) \) (\(V : (X, A) \to (V, C) \)) is **ancillary** if \(P_\theta(V(X) \in C) \) does not depend on \(\theta \) for all \(C \subset C \). \(V \) is **first-order ancillary** if \(E_\theta V(X) \) does not depend on \(\theta \).

Definition 5.2. Let \(X \sim P_\theta \) and suppose that \(T \) is sufficient. Then \(P_T = \{ P_\theta^T : \theta \in \Theta \} \) is **complete** (or \(T \) is **complete**) if \(E_\theta h(T) = 0 \) for all \(\theta \in \Theta \) implies \(h(T) = 0 \) a.s. \(P_T \). Equivalently, \(T \) is complete if no non-constant function \(h(T) \) is first-order ancillary.

Theorem 5.3. (Completeness of an exponential family). Suppose that \(X \) has the exponential family distribution with its natural parametrization as in remark 13.3.7, \(T = (T_1, \ldots, T_k) \), and \(P_T = \{ P_\theta^T : \theta \in \Theta_0 \} \). Then \(P_T \) is complete provided \(\Theta_0 \) contains a \(k \) - dimensional rectangle.

Proof. Uniqueness of Laplace transforms. See TSH page 132.

Here are some examples of ancillarity and completeness.

Example 5.4. (Bernoulli). If \((X_1, \ldots, X_n) \) are i.i.d. Bernoulli(\(\theta \)), then \(T = \sum X_i \sim \text{Binomial}(n, \theta) \) is sufficient and complete by 13.5.3.

Example 5.5. (Normal; one-sample). If \(X = (X_1, \ldots, X_n) \) are i.i.d. \(N(\mu, \sigma^2) \), then \((\bar{X}, S^2) \) is sufficient and complete by theorem 13.5.3.

Example 5.6. (Normal; two-samples). If \(X = (X_1, \ldots, X_m) \) are i.i.d. \(N(\mu, \sigma^2) \), \(Y = (Y_1, \ldots, Y_n) \) are i.i.d \(N(\nu, \tau^2) \) and independent of the \(X_i \)'s, then \((\bar{X}, \bar{Y}, S_X^2, S_Y^2) \) is sufficient and complete by theorem 13.5.3.

Example 5.7. (Normal; two-samples with equal means). If the model is as in example 5.6 but with \(\mu = \nu \), then \((\bar{X}, \bar{Y}, S_X^2, S_Y^2) \) is sufficient, but it is not compete since \(\bar{X} - \bar{Y} \sim N(0, \sigma^2/m + \tau^2/n) \) is first-order ancillary: \(E_\theta (\bar{X} - \bar{Y}) = \mu - \mu = 0 \), but \(h(T) \equiv \bar{X} - \bar{Y} \neq 0 \). [A consequence is that there is no UVMUE of \(g(\theta) = \mu \) in this model. Question: what is the MLE and what is its asymptotic behavior?]

Example 5.8. (Uniform(0, \(\theta \))). If \(X = (X_1, \ldots, X_n) \) are i.i.d Uniform(0, \(\theta \)) for all \(\theta \), then \(T = \max X_i = X(n) \) is sufficient and complete:

\[
E_\theta h(T) = \int_0^\theta h(t) \frac{n}{\theta} t^{n-1} \, dt = 0 \quad \text{for all } \theta ;
\]

which implies that

March 14, 1997
\[\int_0^\theta h(t) t^{n-1} \, dt = 0 \quad \text{for all } \theta ; \]

which implies, since \(h = h^+ - h^- \), that

\[\int_0^\theta h^+(t) t^{n-1} \, dt = \int_0^\theta h^-(t) t^{n-1} \, dt = 0 \quad \text{for all } \theta ; \]

which implies, by taking differences over \(\theta \) and then passing to the \(\sigma \)–field of sets generated by the intervals (the Borel \(\sigma \)–field), that

\[\int_A h^+(t) t^{n-1} \, dt = \int_A h^-(t) t^{n-1} \, dt = 0 \quad \text{for all Borel sets } A. \]

By taking \(A = [t : h(t) > 0] \) in this last equality we find that

\[\int_{[t: h(t) > 0]} h^+(t) t^{n-1} \, dt = 0 \]

which implies that \(h^+(t) = 0 \) a.e. Lebesgue. Choosing \(A = [t : h(t) < 0] \) yields \(h^-(t) = 0 \) a.e. Lebesgue, and hence \(h = 0 \) a.e. Lebesgue. Thus we conclude that

\(P_\theta(h(T) = 0) = 1 \quad \text{for all } \theta \)

or \(h(T) = 0 \) a.s. \(P_T \).

Example 5.9. (Uniform(\(\theta - 1/2, \theta + 1/2 \))). If \(X = (X_1, \ldots, X_n) \) are i.i.d. Uniform(\(\theta - 1/2, \theta + 1/2 \), \(-\infty < \theta < \infty \)), then \(T = (X_1, X_n) \) is sufficient, but \(V(X) = X_n - X_1 \) is ancillary and hence \(T \) is not complete:

\[E_\theta[X_n - X_1 - \frac{n-1}{n+1}] = \left\{ \left(\frac{n}{n+1} + \theta - \frac{1}{2} \right) - \left(\frac{1}{n+1} + \theta - \frac{1}{2} \right) - \frac{n-1}{n+1} \right\} = 0 \]

for all \(\theta \).

Example 5.10. (\(N(\theta, 1) \)). If \(X = (X_1, \ldots, X_n) \) are i.i.d. \(N(\theta, 1) \), then \(V(X) = (X_1 - \bar{X}, \ldots, X_n - \bar{X})^T \sim N_n(0, I - n^{-1}11^T) \) is ancillary. [Note that \(X \) is equivalent to \((\bar{X}, V(X))\).]

Example 5.11. (Logistic(\(\theta, 1 \)) or Cauchy(\(\theta, 1 \))). If \(X = (X_1, \ldots, X_n) \) are i.i.d. Logistic(\(\theta, 1 \)), then \(T(X) = (X_1, \ldots, X_n) \) is sufficient for \(\theta \) (in fact \(T \) is minimal sufficient; see Lehmann TPE page 43), but \(V(X) = v(T(X)) = (X_n - X_1, \ldots, X_n - X_{n-1}) \) has a distribution which is not a function of \(\theta \) and hence \(V \) is ancillary; thus \(T \) is not complete.

Example 5.12. (Nonparametric family; sufficiency of order statistics; ancillarity of the ranks). If \(X = (X_1, \ldots, X_n) \) are i.i.d \(F \in \mathcal{F}_c \equiv \{ \text{all continuous df's} \} \), then \(T(X) = (X_1, \ldots, X_n) \) is sufficient for \(F \) from example 13.2.4?. As will be seen below, \(T \) is complete for \(F \in \mathcal{F}_c \equiv \{ \text{all df's with a density function f w.r.t. Lebesgue measure } \lambda \} \subset \mathcal{F}_c \). If \(R \equiv (R_1, \ldots, R_n) \equiv V(X) \) with \(R_i \equiv \{ \text{number of } X_j \text{'s} \leq X_i \} \), then \(X \) is equivalent to \((T, R)\) and

March 14, 1997
$V(X) = R$ is ancillary: \(P_F(R = r) = 1/n! \) for all \(r \in \Pi \equiv \{ \text{all permutations of } \{1, \ldots, n\} \} \). In fact, as we saw in 581 HW # ??, \(T \) and \(R \) are independent:

$$P_F(T \in A, R = r) = \frac{1}{n!} \int_{A} n!dF^n(x), \quad A \in B^n(\text{ordered}), \ r \in \Pi.$$

This phenomenon is quite general, as is shown by the following theorem.

Theorem 5.13. (Basu). If \(T \) is complete and sufficient for the family \(\mathbf{P} = \{P_\theta : \theta \in \Theta\} \), then any ancillary statistic \(V \) is independent of \(T \).

Proof. Since \(V \) is ancillary, \(P_\theta(V \in A) \equiv p_A \) does not depend on \(\theta \) for all \(A \). Since \(T \) is sufficient for \(\mathbf{P} \), \(P(V \in A|T) \) does not depend on \(\theta \), and \(E_\theta P(V \in A|T) = P(V \in A) \equiv p_A \), or

$$E_\theta \{P(V \in A|T) - p_A\} = 0 \quad \text{for all } \theta.$$

Hence by completeness \(P(V \in A|T) = p_A \) a.s. \(\mathbf{P} \). Hence \(V \) is independent of \(T \). \(\square \)

Now we will prove the completeness of the order statistics claimed in example 5.10 above.

Theorem 5.14. (Completeness of the order statistics). Let \(\mathbf{F} \) be a convex class of absolutely continuous d.f.’s which contains all uniform densities. If \(X = (X_1, \ldots, X_n) \) are i.i.d. \(F \in \mathbf{F} \), then \(T(X) = (X_{(1)}, \ldots, X_{(n)}) \) is a complete statistic for \(F \in \mathbf{F} \).

Proof. We have to show that \(E_F h(T) = 0 \) for all \(F \in \mathbf{F} \) implies \(P_F(h(T) = 0) = 1 \) for all \(F \in \mathbf{F} \).

Step 1: A function \(\delta(x) \) (such as \(\delta(x) \equiv h(T(x)) \)) is a function of \(T \) only if it is symmetric in its arguments; \(\delta(\pi x) = \delta(x) \) with \(\pi x \equiv (x_{\pi(1)}, \ldots, x_{\pi(n)}) \) for any permutation \(\pi = (\pi(1), \ldots, \pi(n)) \) of \((1, \ldots, n) \).

Step 2: Let \(f_1, \ldots, f_n \) be \(n \) densities corresponding to \(F_1, \ldots, F_n \in \mathbf{F} \), and let \(\alpha_1, \ldots, \alpha_n > 0 \). Then \(f(x) = \sum_1^n \alpha_i f_i/\sum_1^n \alpha_i \) is a density corresponding to \(F \in \mathbf{F} \), and \(E_F h(T) = 0 \) implies

$$\int \cdots \int \delta(x_1, \ldots, x_n) f(x_1) \cdots f(x_n) dx = 0$$

or

$$\int \cdots \int \delta(x_1, \ldots, x_n) \prod_{j=1}^n \left(\sum_{i=1}^n \alpha_i f_i(x_j) \right) dx = 0$$

for all \(\alpha_1, \ldots, \alpha_n > 0 \). The left side may be rewritten as a polynomial in \(\alpha_1, \ldots, \alpha_n \), which is identically zero, and hence its coefficients must all be zero. In particular, the coefficient of \(\alpha_1 \cdots \alpha_n \) must be zero. This coefficient is
\[C \equiv \sum_{\pi \in \Pi} \int \cdots \int \delta(x_1, \ldots, x_n) f_1(x_{\pi(1)}) \cdots f_n(x_{\pi(n)}) \, dx \]
\[= \sum_{\pi \in \Pi} \int \cdots \int \delta(\pi x) \prod_{i=1}^{n} f_i(x_i) \, dx \]
\[= \sum_{\pi \in \Pi} \int \cdots \int \delta(x) \prod_{i=1}^{n} f_i(x_i) \, dx \quad \text{by symmetry of } \delta \]
\[= n! \int \cdots \int \delta(x) \prod_{i=1}^{n} f_i(x_i) \, dx . \]

Now let \(f_i(x) = (b_i - a_i)^{-1}1_{[a_i, b_i]}(x) , \quad i = 1, \ldots, n \) ; i.e. uniform densities on \([a_i, b_i]\). Hence \(C = 0 \) implies
\[\int_{a_1}^{b_1} \cdots \int_{a_n}^{b_n} \delta(x) \, dx = 0 , \]
hence the integral of \(\delta \) over any \(n \)-dimensional rectangle is 0 , and this implies that \(\delta = 0 \) except on a set of Lebesgue measure 0 . Thus \(P_F(h(T) = 0) = 1 \) for all \(F \in \mathcal{F} \).

For another method of proof, see Lehmann, TPE, problem #1.5.28, page 68.

Remarks on Sufficiency and Ancillarity

Suppose w have our choice of two experiments:

(i) We observe \(X \sim P^X_\theta \);

(ii) We observe \(T \sim P^T_\theta \), and then conditional on \(T = t \) we observe \(X \sim P_{X|T} \).

Then the distribution of \(X \) is \(P^X_\theta \) in both cases. Thus it seems reasonable that:

A. Inferences about \(\theta \) should be identical in both models.

B. Only the experiment of observing \(T \sim P^T_\theta \) is informative about \(\theta \).

We are thus lead to:

Sufficiency principle: If \(T \) is sufficient for \(\theta \) in a given model, then identical conclusions should be drawn from data points \(x_1 \) and \(x_2 \) having \(T(x_1) = T(x_2) \). Thus \(T \) partitions the sample space \(\mathcal{X} \) into regions on which identical conclusions are to be drawn. The adequacy of this principle in a decision theoretic framework was demonstrated in 13.4.1

Testing the adequacy of the model: The adequacy of the model can be tested by seeing whether the data \(X \) given \(T = t \), behave in accord with the known (if
the model is true) conditional distribution \(P_{X|Y=t} \).

Recall that a sufficient statistic \(T \) induces a partition of the sample space; and in fact it is this partition, rather than the particular inducing the partition, that is the fundamental object.

No coarser partition of the sample space that retains sufficiency is possible, then \(T \) is called minimal sufficient. See theorem 5.3, corollary 5.1, lemma 5.1, and the example in Lehmann, TPE, pages 41 - 43.

Consider again the typical statistical setup \(X \sim P_\theta \) on \((X, A)\) for some unknown \(\theta \in \Theta \).

Definition 5.15. If \(X = (T, V) \) where the distribution of \(V \) is independent of \(\theta \), then \(V \) is called an ancillary statistic. Then \(T \) is called conditionally sufficient for \(\theta \): we have \(f_\theta(t, v) = f_\theta(t|v)f(v) \).

More generally, suppose that \(\theta = (\theta_1, \theta_2) \) where \(\theta_2 \) is a nuisance parameter and \(\Theta = \Theta_1 \times \Theta_2 \). Now suppose that \(X = (T, V) \) where \(P^V_\theta = P^V_{\theta_2} \) and \(P^T_{\theta|V=v} = P^T_{\theta_2|V=v} \) for all \(v \). Then \(V \) is called ancillary for \(\theta_1 \), in the presence of \(\theta_2 \): \(f_{\theta_1, \theta_2}(t, v) = f_{\theta_1}(t|v)f_{\theta_2}(v) \). The leads to the following conditionality principle:

Conditionality Principle: Conclusions about \(\theta_1 \) are to be drawn as if \(V \) were fixed at its observed \(v \). Conditioning on ancillaries leads to partitioning the sample space (just as sufficiency does). The degree to which these sets contain differing amounts of information about \(\theta_1 \) determines the benefits to be derived from such conditioning.

Examples showing the reasonableness of this principle appear in Cox and Hinkley (197?), pages 32, 34, 38. They concern:

- Random sample size.
- Mixtures of two normal distributions
- Conditioning on the independent variables in multiple regression.
- Two measuring instruments.
- Configurations in location - scale models.

Examples showing difficulties with this principle center on nonuniqueness and lack of general methods for constructing them.
6. Unbiased Estimation

One of the classical ways of restricting the class of estimators which are to be considered is by imposing the restriction of unbiasedness. This is a rather severe restriction, and in fact, if a complete sufficient statistic \(T \) is available, then there exists a unique uniform minimum variance unbiased estimator, or UMVUE.

Theorem 6.1. (Lehmann - Scheffé). Suppose that \(T \) is complete and sufficient for \(\theta \). Let \(S \) be unbiased for \(g(\theta) \) with finite variance. Then \(S^* = E(S|T) \) is the unique UMVUE of \(g(\theta) \): for any unbiased estimator \(\bar{d} = d(X) \) of \(g(\theta) \),

\[
R(\theta, S^*) = E_\theta(g(\theta) - S^*)^2 \leq E_\theta(g(\theta) - \bar{d}(X))^2 = R(\theta, \bar{d})
\]

for all \(\theta \).

Proof. First,

\[
E_\theta S^* = E_\theta E(S|T) = E_\theta S = g(\theta),
\]

so \(S^* \) is unbiased. Also \(\text{Var}_\theta[S^*] \leq \text{Var}_\theta[S] \) by Blackwell - Rao. Moreover, \(S^* \) does not depend on the choice of \(S \): if \(S_1 \) is unbiased, then

\[
E_\theta(S^* - S_1^*) = E_\theta[E(S|T) - E(S_1|T)]
\]

\[
= E_\theta(S) - E_\theta(S_1)
\]

\[
= g(\theta) - g(\theta) = 0
\]

for all \(\theta \in \Theta \). Thus \(S^* = S_1^* \) a.s. \(P_T \).

Remark 6.2. Note that by the Rao - Blackwell theorem 13.4.2, an analogous result for UM(Risk)UE holds when \(L(\theta, \cdot) \) is convex for each \(\theta \) in the class of unbiased estimates. See Lehmann, TPE, pages 79 - 80.

For a little on the asymptotic efficiency of UMVUE’s in parametric problems, see Portnoy, *Ann. Statist. 5* (1977), 522 - 529.

Methods for finding UMVUE estimators. 6.3. When \(T \) is sufficient and complete we can produce UMVUE’s by several different approaches:

A. Produce an estimator of \(g(\theta) \) that is a function of \(T \) and is unbiased.

B. Find an unbiased estimator \(S \) of \(g(\theta) \) and compute \(E(S|T) \).

C. Solve \(E_\theta d(T) = g(\theta) \) for \(\bar{d} \).

Example 6.4. (Normal(\(\mu, \sigma^2 \))). Suppose that \(X_1, \cdots, X_n \) are i.i.d. \(N(\mu, \sigma^2) \). Then \((\bar{X}, S^2)\) is sufficient and complete by theorems 13.3.6 and 13.5.3.
A. For estimation of \(g(\theta) = \mu \), \(E_\theta(\bar{X}) = \mu \), so \(\bar{X} \) is the UMVUE of \(g(\theta) = \mu \).

B. If \(\mu = 0 \) is known, then \(Y \equiv \sum_{i=1}^{n} X_i^2 \) is sufficient and complete, and \(Y/\sigma^2 \sim \chi_n^2 \), so

\[
E(\frac{Y}{\sigma^2})^{r/2} = E(\chi_n^2)^{r/2} = K_{n,r}^{-1} = \frac{2^{r/2}\Gamma(n/2)}{\Gamma(n/2)}
\]

for \(r > -n \) and \(K_{n,r}Y^{r/2} \) is the UMVUE of \(g(\theta) \equiv \sigma^r \).

C.(i) If \(\theta = (\mu, \sigma^2) \) as in A, then \(Y \equiv \sum_{i=1}^{n} (X_i - X)^2 \) has \((Y/\sigma^2) \sim \chi_{n-1}^2 \), so \(K_{n-1,r}Y^{r/2} = K_{n-1,r}(n-1)^{r/2}S^r \) is the UMVUE of \(\sigma^r \) by method A.

C.(ii) If \(g(\theta) = \mu/\sigma \), then \(\bar{X}K_{n-1,1}S^{-1} \) is the UMVUE of \(g(\theta) \) by independence of \(\bar{X}, S \) (under normality only!) and method A.

C.(iii) If \(g(\theta) \equiv \mu + z_p \sigma \equiv x_p \) where \(P(X \leq x_p) = p \) for a fixed \(p \in (0, 1) \), then \(\bar{X} + z_pK_{n-1,1}S \) is the UMVUE.

C.(iv) If \(\sigma = 1 \) is known and \(g(\theta) \equiv P_\mu(X \leq x) = \Phi(x - \mu) \) with \(x \in \mathbb{R} \) fixed, then \(\Phi((x - \bar{X})/\sqrt{1 - 1/n}) \) is the UMVUE. [Question: What is the UMVUE of this probability if \(\sigma \) is unknown?]

Proof. This goes by method B: \(S(\bar{X}) = 1_{[X_i \leq x]} \) is an unbiased estimator of \(g(\theta) = P_\mu(X \leq x) \); and

\[
S^* \equiv E(S \mid T) = P(X, \leq x \mid \bar{X})
\]

\[
= P(X_1 - \bar{X} \leq x - \bar{X} \mid \bar{X})
\]

\[
= P(X_1 - \bar{X} \leq x - \bar{X} \mid \bar{X} = \bar{x}) \text{ on } \bar{X} = \bar{x}
\]

\[
= \Phi((x - \bar{x})/\sqrt{1 - 1/n}) \text{ on } \bar{X} = \bar{x}
\]

by Basu’s theorem since the ancillary \(X_1 - \bar{X} \sim N(0, (1 - 1/n)) \) is independent of \(\bar{X} \).

Example 6.5. (Bernoulli(\(\theta \))). Let \(X_1, \ldots, X_n \) be i.i.d. Bernoulli(\(\theta \)).

(i). Then \(\bar{X} = T/n \) has \(E_\theta \bar{X} = \theta \) and hence is the UMVUE of \(\theta \).

(ii). If \(g(\theta) = \theta(1 - \theta) \), \((T/n)(n - T)/(n - 1) \) is the UMVUE.

Proof. Here we use method C: Let \(d(t) \) be the estimator; then we want to solve

\[
E_\theta d(T) = \sum_{t=0}^{n} d(t) \binom{n}{t} \theta^t (1 - \theta)^{n-t} = \theta(1 - \theta) \equiv g(\theta)
\]

Equivalently,

\[
\sum_{t=0}^{n} d(t) \binom{n}{t} \frac{\theta^t}{(1 - \theta)^t} = \frac{\theta(1 - \theta)}{(1 - \theta)^n}
\]

March 14, 1997
or
\[
\sum_{t=0}^{n} d(t) \binom{n}{t} \left(\frac{\theta}{1 - \theta} \right)^t = \frac{\theta}{\left(1 - \theta\right)} \left(1 + \frac{\theta}{1 - \theta}\right)^{n-2}.
\]

By setting \(\rho \equiv \theta/(1 - \theta) \) and expanding the power on the right side we find that
\[
\sum_{t=0}^{n} d(t) \binom{n}{t} \rho^t = \rho(1 + \rho)^{n-2} = \frac{\theta}{\left(1 - \theta\right)} \left(1 + \frac{\theta}{1 - \theta}\right)^{n-2} = \rho \sum_{k=0}^{n-2} \binom{n-2}{k} \rho^k
\]
\[
= \sum_{t=1}^{n-1} \binom{n-2}{t-1} \rho^t.
\]
Equating coefficients of \(\rho^t \) on both sides yields \(d(0) = d(n) = 0 \),
\[
d(t) = \binom{n-2}{t-1}/\binom{n}{t}, \quad t = 1, \ldots, n-1,
\]
or
\[
d(t) = \frac{t(n-t)}{n(n-1)}, \quad t = 0, \ldots, n.
\]

(iii). If \(g(\theta) = \theta^r \) with \(r \leq n \), then
\[
S^* = S^*(T) = \frac{T}{n} \frac{T-1}{n-1} \cdots \frac{T-r+1}{n-r+1}
\]
is the UMVE.

Proof. Method B: \(\theta^r = P_\theta(X_1 = \cdots = X_r = \cdot) \), so \(S \equiv 1_{\{X_1 = \cdots = X_r = 1\}} \) is an unbiased estimator, and the UMVE is \(S^* = E(S \mid T) : \)
\[
S^* = E(S \mid T = t) = P(X_1 = \cdots = X_r = 1 \mid T = t)
\]
\[
= \begin{cases}
0 & \text{if } t < r \\
\theta^r \binom{n-r}{t-r}(1 - \theta)^{n-r} / \binom{n}{t}(1 - \theta)^{n-t} & \text{if } t \geq r
\end{cases}
\]
\[
= \left\{ \frac{(n-r)}{(t-r)} / \binom{n}{t} \right\} 1 \{ t \geq r \}
\]
\[
= \frac{t(n-t)}{n(n-1)} \cdots \frac{t-r+1}{n-r+1} 1 \{ t \geq r \}.
\]

Example 6.6. (Two normal samples with equal means). Suppose that \(X = (X_1, \ldots, X_m) \) are i.i.d. \(N(\mu, \sigma^2) \) and that \(Y = (Y_1, \ldots, Y_n) \) are i.i.d. \(N(\mu, \tau^2) \). A UMVE estimate of \(g(\theta) = \mu \) does not exist.

Proof. Suppose that \(a = \tau^2/\sigma^2 \) is known. Then the joint density is given by
\[
\text{const. \cdot exp}(-\frac{1}{2\tau^2} \left(a \sum_{i=1}^{m} X_i^2 - \sum_{j=1}^{n} Y_j^2 \right) + \frac{\mu}{\tau^2} \left(a \sum_{i=1}^{m} X_i + \sum_{j=1}^{n} Y_j \right))
\]

March 14, 1997
so

\[
T_a = \left(a \sum_{i=1}^{m} X_i^2 - \sum_{j=1}^{n} Y_j^2, a \sum X_i + \sum Y_j \right)
\]

is a complete sufficient statistic. Since

\[
E\left(\sum X_i + \frac{1}{a} \sum Y_j \right) = \mu + \frac{1}{a} \mu,
\]

\[
S_a(X,Y) = \left(\sum X_i + \left(1/a\right) \sum Y_j \right)/(m + (1/a)n)
\]

is a UMVU estimate for \(\mu \). Note that \(S_a \) is unbiased for the original model for any \(a > 0 \). Suppose there exists a UMVUE of \(g(\theta) = \mu \) in the original model, say \(S^* \). Then \(\text{Var}_\theta(S^*) \leq \text{Var}_\theta(S_a) \), hence also when \(\tau^2 = a\sigma^2 \); but then \(S_a \) is the unique UMVUE, which implies \(S^* = S_a \). But since \(a \) can be arbitrary, this is a contradiction; \(S^* \) cannot be equal to two different estimators at the same time. \(\square \)

Also see Lehmann, TPE, example 6.1, page 444. If \(\sigma^2 \) and \(\tau^2 \) are known, then the estimator

\[
\lambda \overline{X} + (1 - \lambda) \overline{Y} \quad \text{with} \quad \lambda \equiv \frac{\tau^2/n}{\sigma^2/m + \tau^2/n}
\]

has minimal variance over convex combinations of \(\overline{X} \) and \(\overline{Y} \); and if \(\sigma^2 \) and \(\tau^2 \) are unknown, then a perfectly reasonable estimator is obtained by replacing \(\lambda \) by

\[
\hat{\lambda} \equiv \frac{\hat{\tau}^2/n}{\hat{\sigma}^2/m + \hat{\tau}^2/n}
\]

where \(\hat{\tau} \) and \(\hat{\sigma} \) are estimates of \(\tau \) and \(\sigma \).

Example 6.7. (An inadmissible UMVUE). Suppose that \(X_1, \ldots, X_n \) are i.i.d. \(N(\theta,1) \), \(g(\theta) = \theta^2 \). Then

\[
E_\theta \left\{ \overline{X}^2 - \frac{1}{n} \right\} = \text{Var}_\theta(\overline{X}) + \left\{ E_\theta(\overline{X}) \right\}^2 - \frac{1}{n} = \theta^2,
\]

so \(\overline{X}^2 - 1/n \) is the UMVUE of \(\theta^2 \). But it is inadmissible since sometimes \(\overline{X}^2 - 1/n \leq 0 \) whereas \(\theta^2 \geq 0 \). Thus the estimator \(\delta(X) = (\overline{X}^2 - 1/n) \setminus 0 \) has smaller risk: Lemma 5.1, TPE, page 113.

Proof. If \(g(\theta) \in [a,b] \) for all \(\theta \in \Theta \), then

\[
R(\theta,d) = E_\theta L(\theta,d)
\]

\[
= E_\theta L(\theta,d)\{1[\mu(x) < \theta] + 1[\mu(x) > \theta]
\]

\[
+ E_\theta L(\theta,d)1[\mu \leq a(x) \leq \delta] \cdot
\]

March 14, 1997
Example 6.8. (Another inadmissible UMVUE). Suppose that X_1, \ldots, X_n are i.i.d. $\mathcal{N}(0, \sigma^2)$. Then $T = \sum_{i=1}^n X_i^2$ is sufficient and complete so the MLE $T/n = n^{-1} \sum_{i=1}^n X_i^2$ is the UMVUE of σ^2 since $E_{\sigma^2}(T/n) = \sigma^2$. But T/n is inadmissible for squared error loss since: consider estimates of the form $\hat{\sigma}(T) = c T$; then

$$R(\sigma^2, \hat{\sigma}) = E_{\sigma^2}(\sigma^2 - c T)^2$$

$$= E\{c \sigma^2 (T/\sigma^2 - n) + (nc - 1)\sigma^2\}^2$$

$$= c^2 \sigma^4 2n + (nc - 1)^2 \sigma^4$$

$$= \sigma^4 \{1 - 2nc + n(n+2)c^2\}$$

which is minimized by $c = (n+2)^{-1}$. Thus $d_{1/(n+2)}(T) = T/(n+2)$ has minimum squared error in the class d_σ. It is, in fact admissible; see TPE page 274, and Ferguson pages 134 - 136.

See Ferguson pages 123 - 124 for a nice description of a bioassay problem in which sufficiency was used to good advantage.
7. Nonparametric Unbiased Estimation; U - statistics

Suppose that P is a probability distribution on some sample space (X, A) and suppose that X_1, \cdots, X_m are i.i.d. P. Let $h : X^m \to R$ is a symmetric "kernel" function:

$$h(\pi x) \equiv h(x_{\pi(1)}, \cdots, x_{\pi(m)}) = h(x_1, \cdots, x_m) = h(x)$$

for all $x \in X^m$ and $\pi \in \Pi_m$; if h is not symmetric we can symmetrize it: replace h by

$$h_s(x) = \frac{1}{m!} \sum_{\pi \in \Pi_m} h(\pi x).$$

Note that

$$E_P h(X_1, \cdots, X_m) = \int \cdots \int h(x_1, \cdots, x_m) \, dP(x_1) \cdots dP(x_m) \equiv g(P).$$

Now suppose that X_1, \cdots, X_n are i.i.d. P with $n \geq m$, write $X \equiv (X_1, \cdots, X_n)$, and let

$$U_n = U_n(X) = \frac{1}{n^m} \sum_{\{i_1, \cdots, i_m\}} h(X_{i_1}, \cdots, X_{i_m})$$

where $\sum_{\{i_1, \cdots, i_m\}}$ denotes summation over the $\binom{n}{m}$ combinations of m distinct elements $\{i_1, \cdots, i_m\}$ of $\{1, \cdots, n\}$. U_n is called an mth - order U - statistic. Clearly U_n is an unbiased estimator of $g(P)$:

$$E_P U_n = g(P).$$

Moreover, U_n is a symmetric function of the data:

$$U_n(X) = U_n(\pi X)$$

for all $\pi \in \Pi_n$. All this becomes more explicit when $X = R$ and we write F instead of P for the probability measure described in terms of its distribution function. Then we write the empirical measure IP_n in terms of the empirical distribution function IF_n, and this is equivalent to the order statistics $T \equiv X_{(\cdot)} \equiv (X_{(1)}, \cdots, X_{(n)})$, and $U_n = U_n(X_{(\cdot)})$. In fact, if

$$S = h(X_1, \cdots, X_m)$$

so that $E_P S = g(F)$, then

$$S^* \equiv E\{S \mid T\} = U_n.$$
Example 7.1. Let $F_2 \equiv \{ F \in F_\omega : E_F X^2 < \infty \}$,
\[
g(F) \equiv E_F X = \int x \, dF(x) .
\]
Then
\[
\overline{X} \equiv \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} \sum_{i=1}^{n} X(i)
\]
is the UMVUE of $g(F)$ (since $T(\overline{X}) = (X(1), \cdots, X(n))$ is sufficient and complete for F_2. Note that $E(X_1 | T(X)) = \overline{X}$.

Example 7.2. If $F_2 \equiv \{ F \in F_\omega : E_F X^2 < \infty \}$ and
\[
g(F) \equiv (E_F X)^2 = E_F(X_1 X_2) ,
\]
Then
\[
U_n = \frac{1}{\binom{n}{2}} \sum_{1 \leq i < j \leq n} X_i X_j
\]
is the unique UMVUE of $g(F) = (E_F X)^2$.

Example 7.3. If $F_4 \equiv \{ F \in F_\omega : E_F X^4 < \infty \}$ and
\[
g(F) \equiv \text{Var}_F(X) = \frac{1}{2} E_F(X_1 - X_2)^2 ,
\]
Then
\[
U_n = \frac{1}{\binom{n}{2}} \sum_{1 \leq i < j \leq n} (X_i - \overline{X})^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2 = S^2
\]
is the unique UMVUE of $g(F) = \sigma^2(F)$.

Example 7.4. If $F \in F_\omega$
\[
g(F) \equiv F(x_0) = \int 1_{(-\infty, x_0]}(x) \, dF(x) ,
\]
then $U_n = \sum_{i=1}^{n} 1_{(-\infty, x_0]}(X_i) = IF_n(x_0)$ is the unique UMVUE of $g(F)$.

Example 7.5. Suppose that $(X_1, Y_1), \cdots, (X_n, Y_n)$ are i.i.d. F on R^2. Set
\[
g(F) \equiv \int \int [F(x, y) - F(x, \infty) F(\infty, y)]^2 dF(x, y)
\]
\[
= \int \cdots \int h(z_1, \cdots, z_5) \, dF(z_1) \cdots dF(z_5)
\]
where $z_i \equiv (x_i, y_i), i = 1, \cdots, 5$, and
\[
h(z_1, \cdots, z_5) = \frac{1}{4} \psi(x_1, x_2, x_3) \psi(x_1, x_4, x_5) \psi(y_1, y_2, y_3) \psi(y_1, y_4, y_5)
\]
where
\[
\psi(u_1, u_2, u_3) = 1_{[v_2 \leq u_1]} - 1_{[u_3 \leq u_1]} .
\]
Remark 7.6. Note that U_n has a close relative, the mth order V-statistic V_n defined by

$$V_n = \frac{1}{n^m} \sum_{i_1 = 1}^{n} \cdots \sum_{i_m = 1}^{n} h(X_{i_1}, \ldots, X_{i_m})$$

$$= \int \cdots \int_{x^n} h(x_1, \ldots, x_m) dIP_n(x_1) \cdots dIP_n(x_m)$$

in which the sum is extended to include all of the diagonal terms.

Remark 7.7. A necessary condition for $g(P)$ to have an unbiased estimate is that $g(\alpha P_1 + (1 - \alpha)P_2)$ be a polynomial (in α) of degree $m \leq n$.

Proof. If $g(P) = \int \cdots \int h(x) = dP^n(x)$, then

$$g(\alpha P_1 + (1 - \alpha)P_2)$$

$$= \int \cdots \int h(x) d\{\alpha P_1(x_1) + (1 - \alpha)P_2(x_1)\} \cdots \{\alpha P_1(x_m) + (1 - \alpha)P_2(x_m)\}$$

is a polynomial of degree m.

Remark 7.8. There is a lot of theory and probability tools available for U-statistics. See Serfling (1980), chapter 5, and Lehmann, Nonparametrics, (1975), appendix 5. For some very interesting work on U-processes, see e.g. Arcones and Giné, Ann. Prob. 21 (1993), 1494 - 1542, a topic which was apparently initiated by Silverman (1983).