Stat 426 : Homework 3.

Moulinath Banerjee

March 8, 2004

Announcement: For purposes of the homework, you can cite any results in the handouts or the text-book or any others proved in class, without proof. The homework carries a total of 62 points. The maximum possible score is 60 points.

- 1. Consider the standard estimator of σ^2 based on X_1, X_2, \ldots, X_n i.i.d. $N(\mu, \sigma^2)$. This is

$$s^2 = \frac{1}{n - 1} \sum_{i=1}^{n} (X_i - \bar{X})^2.$$

We will show that s^2 is consistent for σ^2 - i.e. s^2 converges in probability to σ^2.

To this end, define $Y_i = X_i - \mu$ and show that

$$\sum_{i=1}^{n} (X_i - \bar{X})^2 = \sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} Y_i^2 - n \bar{Y}^2.$$

Thus,

$$s^2 = \frac{n}{n - 1} \left(\frac{1}{n} \sum_{i=1}^{n} Y_i^2 - \bar{Y}^2 \right).$$

How are the Y_i’s distributed? Now, use the Weak Law of Large Numbers to show that s^2 converges in probability to σ^2. (8 points)

- 2. (a) **Two sample problems and confidence intervals:** Let X_1, X_2, \ldots, X_n be a sample from a $N(\mu_X, \sigma_X^2)$ distribution and Y_1, Y_2, \ldots, Y_m be a sample from a $N(\mu_Y, \sigma_Y^2)$ distribution and let the X_i’s be independent of the Y_j’s. For example, you can think of the X_i’s as a random sample of SAT scores for one year and the Y_j’s as a random sample of SAT scores from a different year.

(i) Suppose first that σ_X^2 and σ_Y^2 are known. How would you construct a confidence interval of a fixed level $1 - \alpha$ for the difference of the population means, i.e. $\mu_X - \mu_Y$?

Hint: What is the distribution of $\bar{X} - \bar{Y}$? Can you construct a pivot out of this?
(ii) Now, suppose that \(\sigma_X^2 \) and \(\sigma_Y^2 \) are unknown. Let

\[
s_X^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2
\]

be the usual unbiased estimator of the variance \(\sigma_X^2 \) and let

\[
s_Y^2 = \frac{1}{m-1} \sum_{i=1}^{m} (Y_i - \overline{Y})^2
\]

be the usual unbiased estimator of \(\sigma_Y^2 \). How would you find a confidence interval for the ratio of variances \(\sigma_X^2 / \sigma_Y^2 \) using \(F \)-distribution tables?

(iii) Now let \(\sigma_X^2 = \sigma_Y^2 = \sigma^2 \) and suppose that \(\sigma^2 \) is unknown. What is the distribution of

\[
(n - 1) \sigma_X^2 + (m - 1) \sigma_Y^2
\]

How would you use this result to find a confidence interval for \(\sigma^2 \)?

(iv) What is the distribution of \(\overline{X} - \overline{Y} \) when we have the set-up in (iii)? How would you find a confidence interval for \(\mu_X - \mu_Y \) in this case? Also suggest a level \(\alpha \) test for testing \(H_0 : \mu_X = \mu_Y = 0 \).

(v) **Behrens-Fisher Problem:** Finally consider the most general situation: \(X_1, X_2, \ldots, X_n \) are i.i.d. \(N(\mu_X, \sigma_X^2) \) and \(Y_1, Y_2, \ldots, Y_m \) are i.i.d. \(N(\mu_Y, \sigma_Y^2) \). Both \(\sigma_X^2 \) and \(\sigma_Y^2 \) are unknown; we seek to find a confidence interval for \(\mu_X - \mu_Y \). Consider the following quantity:

\[
D = \frac{(\overline{X} - \overline{Y}) - (\mu_X - \mu_Y)}{\sqrt{s_X^2/n + s_Y^2/m}}.
\]

The exact distribution of \(D \) is difficult to obtain. Argue that as the sample sizes \(n \) and \(m \) both become large the above quantity behaves approximately like a \(N(0,1) \) random variable; therefore it becomes an approximate pivot.

Use this fact to get an approximate level \(1 - \alpha \) confidence interval for \(\mu_X - \mu_Y \). \((4 + 4 + 4 + 7 + 8 = 27 \text{ points}) \)

• 3. Let \(U \) and \(V \) be i.i.d. \(N(0,1) \) random variables. Let \(X = U \) and \(Y = U/V \). Use the change of variable theorem to compute the joint density of \((X,Y) \). Hence deduce the marginal density of \(Y = U/V \). Do you recognize this as something you have seen before?

Next, let \(G = U/|V| \). Show that \(G \) follows a \(t \) distribution on 1 degree of freedom. **Without using the formula for the \(t \) density** show that \(G \) and \(Y \) have the same distribution. \((6 + 6 = 12 \text{ points}) \)
• 4. If X and Y are independent exponential random variables with the same parameter λ, then show that X/Y follows an F distribution and identify the degrees of freedom. (8 points)

• 5. Suppose that X follows Exponential λ. How can you use $\Psi(\lambda, X) = \lambda X$ to construct a 95% confidence interval for λ? (7)