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Abstract

We consider estimation of the regression function in a semiparametric binary regression
model defined through an appropriate link function (with emphasis on the logistic link) using
likelihood-ratio based inversion. The dichotomous response variable ∆ is influenced by a set of
covariates that can be partitioned as (X,Z) where Z (real valued) is the covariate of primary
interest and X (vector valued) denotes a set of control variables. For any fixed X, the conditional
probability of the event of interest (∆ = 1) is assumed to be a non–decreasing function of Z.
The effect of the control variables is captured by a regression parameter β. We show that the
baseline conditional probability function (corresponding to X = 0) can be estimated by isotonic
regression procedures and develop a likelihood ratio based method for constructing asymptotic
confidence intervals for the conditional probability function (the regression function) that avoids
the need to estimate nuisance parameters. Interestingly enough, the calibration of the likelihood
ratio based confidence sets for the regression function no longer involves the usual χ2 quantiles,
but those of the distribution of a new random variable that can be characterized as a functional
of convex minorants of Brownian motion with quadratic drift. Confidence sets for the regression
parameter β can however be constructed using asymptotically χ2 likelihood ratio statistics. The
finite sample performance of the methods are assessed via a simulation study.

Keywords: convex minorants, likelihood ratio statistic, school attendance, semiparametric
binary regression.

1 INTRODUCTION

Binary regression models are used frequently to model the effects of covariates on dichotomous
outcome variables. A general formulation of parametric binary regression models runs as follows.
If ∆ is the indicator of the outcome and X is a set of (d–dimensional) covariates believed to influence
the outcome, one can write g̃(µ(X)) = βT X, where the regression function µ(X) = P (∆ = 1 |
X) and g̃ is a smooth monotone increasing function from (0, 1) to (−∞,∞) and is called the
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“link function”. Such models are very well–studied in the statistical literature (see, for example,
McCullagh and Nelder (1989)) from both computational and theoretical angles. Some commonly
used link functions are the logit (logistic regression), the probit and the complementary log-log link.
In this paper, our interest is in situations where in addition to X, we have an additional (real–
valued) covariate Z whose effect on the outcome variable is known qualitatively. More specifically,
larger values of Z tend to make the outcome (∆ = 1) more likely. The effect of Z in the model can
be incorporated as follows. Write,

g̃(µ(X,Z)) = βT X + ψ(Z) (ψ increasing). (1.1)

Note that (a) µ(X,Z), the conditional probability of the outcome, is increasing in Z for fixed X
and (b) the nonparametric component affects the conditional probability of an outcome additively
on the scale of the link function.1 Models of this kind are useful in a variety of settings and are
therefore of considerable interest. See, for example, Dunson (2003) and Dunson and Neelon (2003)
where nonparametric estimation of ψ as in (1.1) above is done in a Bayesian framework; for more
general treatments, where the conditional mean of the outcome variable is monotone in one of
the regressors, see Manski and Tamer (2002) and Magnac and Maurin (2007). See also, related
work by Manski (1988) and Magnac and Maurin (2004), and some earlier work by the first author
(Ghosh, Banerjee and Biswas (2004, 2008)) on monotone binary regression models considered in a
fully nonparametric setting.

This paper treats a semiparametric binary regression model of the type described in (1.1),
from the angle of likelihood inference, based on i.i.d. observations {∆i, Xi, Zi}ni=1 from the
distribution of (∆, X, Z). Our inference strategies are based on the maximization of the underlying
likelihood function (to be described in Section 2). More specifically, we focus on testing the
hypotheses: (a) H0 : β = β0 and (b) H̃0 : ψ(z0) = θ0 for some fixed point z0, using the likelihood
ratio statistic (henceforth LRS).

The key contributions of our approach are two–fold. The first is the break from the more
conventional smoothness assumptions on the nonparametric component ψ; indeed, our smoothness
assumptions are minimal as we only require the function to be continuously differentiable. Rather,
we impose a shape constraint on ψ that is dictated by background knowledge about the effect of Z
on the outcome. One major advantage of this approach stems from the fact that shape constraints
automatically ”regularize” the estimation problem in the sense that the underlying likelihood
function can be meaningfully maximized without penalization or kernel smoothing. Thus, this
procedure avoids the well–known problems of choosing a penalization or smoothing parameter.

Secondly, the use of likelihood ratio statistics for making inferences on β and ψ, provides a
simple but elegant way of constructing confidence sets, not only for these parameters but also for
the conditional probability function/regression function (µ(x, z) = E (∆ = 1 | X = x, Z = z)) – a
quantity of significant interest– circumventing the problem of estimating nuisance parameters. We

1The assumption that ψ is increasing is not restrictive; if the dependence on Z is decreasing, one can use the
transformed covariate Z̃ ≡ −Z.
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elaborate on this in what follows.

We show that the LRS for testing H0 has a limiting χ2
d distribution as in regular parametric

problems, while that for testing H̃0 : ψ(z0) = θ0 converges in distribution to a ”universal” random
variable D; ”universal” in the sense that it does not depend on the underlying parameters of the
model or the point of interest z0. 2 This latter result is a new and powerful one as it can be
used to obtain confidence sets for µ(x, z) by inverting likelihood ratio tests for testing a family of
hypotheses of type (b). We emphasize that the computation of the LRS is completely objective
and does not involve smoothing/penalization as discussed above. Furthemore, calibration of the
likelihood ratio test only involves knowledge of the quantiles of (the asymptotic pivot) D, which
are well tabulated. Hence, nuisance parameters need not be estimated from the data. Of course,
we reap a similar advantage while constructing confidence sets for the regression parameter β (or
a sub–parameter as is discussed in Section 3) which involves inverting a family of likelihood ratio
tests as in (a), calibrated via the usual χ2 quantiles. In contrast, note that inferences for β and ψ
(equivalently µ) could also be done using the limit distributions of the corresponding maximum
likelihood estimates. However, we do not adopt this route as these distributions involve nuisance
parameters that are difficult to estimate. One could argue that nuisance parameter estimation in
this context could be obviated through the use of resampling techniques like subsampling (Politis,
Romano and Wolf (1999)) or the m out of n bootstrap (the usual Efron–type bootstrap will not
work in this situation (Sen, Banerjee and Woodroofe (2008)). But this once again introduces
the problem of choosing m, the ”block size”, which can be regarded as a variant of a smoothing
parameter.

Thus, the likelihood ratio method is much more automated and objective than its competitors.

As far as technicalities are concerned, the methodology and asymptotic theory developed in
this paper is markedly different from those used in the smoothing literature. This arises from
the fact that maximum likelihood estimation under monotonicity constraints can typically be
reduced to an isotonic regression problem (for a comprehensive review see Robertson, Wright and
Dykstra (1988) and more recently, Silvapulle and Sen (2004)). It is well–known in the isotonic
regression literature that the asymptotic behavior of estimates (like the MLEs of ψ in our model)
obtained through such regression cannot be analyzed using standard CLTs as they are highly
non–linear functionals of the empirical distribution3; rather they are asymptotically distributed as
the derivatives of convex minorants of Gaussian processes, which are non–normal. These technical
details are discussed in later sections.

The rest of the paper is organized as follows. Maximum likelihood estimation and novel
2This limit distribution does not belong to the χ2

1 family but can be thought of as an analogue of the χ2
1distribution

in nonregular statistical problems involving n1/3 rate of convergence for maximum likelihood estimators and non–
Gaussian limit distributions. Indeed, the maximum likelihood estimator ψ̂n converges to the true ψ at rate n1/3 in
this problem, while the rate of convergence of β̂ is

√
n.

3This is in contrast to estimates based on smoothing methods, which are essentially linear functionals of the
empirical distribution, which enables the use of CLTs and leads to asymptotic normality.
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likelihood ratio-based inferential procedures for a general link function are discussed in Section 2.
In Section 3, for concreteness, we focus primarily on the logit link, which is the most widely used
link function in statistical data analysis and discuss the asymptotic results and the associated
methodology for construction of confidence sets in the setting of this model. We also indicate
in Section 3 that similar results continue to hold for other commonly used link functions, like
the probit link or the complementary log–log link. Proofs of some of the results in Section 3 are
collected in the Appendix (Section 4).

2 COMPUTING MLES AND LIKELIHOOD RATIOS

The density function of the random vector (∆, X, Z) is given by p(δ, x, z) = µ(x, z)δ (1 −
µ(x, z))1−δ f(z, x), where f(z, x) is the joint density of (Z,X) with respect to Leb × µ where
Leb denotes Lebesgue measure on [0,∞) and µ is some measure defined on Rd. We construct the
likelihood function for the data, as:

Ln(β, ψ, {∆i, Xi, Zi}ni=1) = Πn
i=1 µ(Xi, Zi)∆i (1− µ(Xi, Zi))1−∆i f(Zi, Xi) . (2.2)

In what follows, we denote the true underlying values of the parameters (β, ψ) by (β0, ψ0). Using
a link function g̃ (satisfying Condition C: For δ = 1 or 0, the function v(s) := δ log h̃(s) + (1 −
δ) log(1− h̃(s)) is concave for s ∈ (−∞,∞)4), with inverse function h̃, the log–likelihood function
for the sample, up to an additive factor that does not involve any of the parameters of interest, is
given by ln(β, ψ) ≡ log Ln(β, ψ, {∆i, Xi, Zi}ni=1) =

∑n
i=1 l(β, ψ,∆i, Xi, Zi)where

l(β, ψ, δ, x, z) = δ log h̃(βT x+ ψ(z)) + (1− δ) log(1− h̃(βT x+ ψ(z))). (2.3)

We next introduce some notation and define some key quantities that will be crucial to the
subsequent development. Let Z(1), Z(2), . . . , Z(n) denote the ordered values of the Zi’s; let ∆(i)

and X(i) denote the indicator and covariate values associated with Z(i). Also, let ui ≡ ψ(Z(i)) and
Ri(β) = βT X(i). Denote the vector (u1, u2, . . . , un) by u and define the function g as: g(β,u) ≡
−ln(β, ψ) =

∑n
i=1 φ(∆(i), Ri(β), ui) where φ(δ, r, u) = −δ log h̃(r + u)− (1− δ) log(1− h̃(r + u)).

Note that the monotone function ψ is identifiable only up to its values at the Z(i)’s; hence we identify
ψ with the vector u. Let (β̂n, ûn) = argminβ∈Rd,{u:u1≤u2≤...≤un} g(β,u) . The unconstrained MLE
of (β, ψ) is given by (β̂n, ψ̂n) where ψ̂n is the (unique) right–continuous increasing step function
that assumes the value ûi,n (the i’th component of ûn) at the point Z(i) and has no jump points
outside of the set {Z(i)}ni=1.

Next, for a fixed β, let û(β)
n = argmin{u:u1≤u2≤...≤un} g(β,u). Define ψ̂

(β)
n to be the (unique)

right–continuous increasing step function that assumes the value û
(β)
i,n (the i’th component of

4It is easy to check that all three standard link functions used in binary regression: (a) the logit link for which
h̃(s) = es/(1 + es), (b) the probit link for which h̃(s) = Φ(s), Φ denoting the normal cdf and (c) the complementary
log-log link for which h̃(s) = 1− e−e

s

, satisfy this property. The concavity of v implies the convexity of the function
g(β,u), to be introduced soon, in its arguments and guarantees a unique minimizer that may be obtained by using
standard methods from convex optimization theory.
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û(β)
n ) at the point Z(i) and has no jump points outside of the set {Z(i)}ni=1. Then, note that:

β̂n = argminβ g(β, û(β)
n ) and ψ̂n = ψ̂

(β̂n)
n .

2.1 The Likelihood Ratio Statistic for Testing the Value of β

The likelihood ratio statistic for testing H0 : β = β0 is given by:

lrtbetan = 2 (ln(β̂n, ψ̂n)− ln(β0, ψ̂
(β0)
n )) . (2.4)

Our computation of MLEs, (β̂n, ψ̂n, ψ̂
(β0)
n ), in this semiparametric problem relies heavily on the

convexity of g(β,u) and is based on the following proposition.

Proposition 1: Let f(γ1, γ2) be a real–valued function defined on Rk1 × C where γ1 varies
in Rk1 and γ2 ∈ C, where C is a closed convex subset of Rk2. Assume that f is a continuously
differentiable strictly convex function that is minimized (uniquely) at the point (γ?1 , γ

?
2). Consider

the following updating algorithm. Start at an arbitrary point (γ0
1 , γ

0
2) in Rk1 × C. Having defined

(γm1 , γ
m
2 ) at stage m (m ≥ 0), set γm+1

2 ≡ argminγ2∈C f(γm1 , γ2) and γm+1
1 as the (unique) solution

to (∂/∂ γ1) f(γ1, γ
m+1
2 ) = 0. Then, irrespective of the starting value, the sequence of points

{γm1 , γm2 }m≥0 converges to (γ?1 , γ
?
2).

Remark 1: We do not provide a proof of this proposition in this paper. The proposition
follows as a direct consequence of Theorem 2.2 in Jongbloed (1998) on the convergence of an
iteratively defined sequence using an algorithmic map which is adapted from a general convergence
theorem (Theorem 7.2.3) from Bazaraa et. al. (1993). 5

Consider first, the computation of the unconstrained MLEs (β̂n, ψ̂n). The function g is
defined on Rd × C̃, where C̃ ≡ {u = (u1, u2, . . . , un) : u1 ≤ u2 ≤ . . . ≤ un} is a closed convex cone
in Rn. Setting f in Proposition 1 to be g, γ1 = β and γ2 = u, it is easy to check that g is a
continuously differentiable and strictly convex function that attains a unique minimum at (β̂n, ûn).
Thus, we are in the setting of Proposition 1 above. We next provide a step–by–step outline of the
algorithm to evaluate (β̂n, ψ̂n).

Computing the unconstrained MLEs:

Step 1. At Stage 0 of the algorithm, propose initial estimates (β̂(0)
n , û

(0)
n ). Also, set an initial tolerance

level η > 0, small.

Step 2a. At Stage p ≥ 0 of the algorithm, current estimates (β̂(p)
n ,un

(p)) are available. At Stage p+ 1,

first update the second component to un
(p+1) by minimizing g(β̂n

(p)
,u) over u ∈ C̃, using the

5Additional remark: Note that the step of updating γm1 to γm+1
1 which involves solving (∂/∂ γ1) f(γ1, γ

m+1
2 ) = 0

is also a minimization step. Since f(γ1, γ
m+1
2 ) is a continuously differentiable strictly convex function of γ1, it is

uniquely minimized at the point where its derivative is 0. Thus, we could alternatively have written: γm+1
1 ≡

argminγ1∈Rk1 f(γ1, γ
m+1
2 ).
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modified iterative convex minorant algorithm (MICM) due to Jongbloed (1998). Note that
un

(p+1) is precisely the vector {ψ̂(β)
n (Z(i))}ni=1, for β = β̂

(p)
n .

Step 2b. Having updated to un
(p+1), next update β̂(p)

n to β̂(p+1)
n by solving (∂/∂ β) g(β,un

(p+1)) = 0
using, for example, the Newton–Raphson procedure. In terms of the log–likelihood function,

this amounts to solving (∂/∂ β)ln(β, ψ) = 0 for ψ = ψ̂
(β̂

(p))
n

n .

Step 3. (Checking convergence) If ∣∣∣∣∣g(β̂(p+1)
n ,un(p+1))− g(β̂(p)

n ,un(p))

g(β̂(p)
n ,un(p))

∣∣∣∣∣ ≤ η
then stop and declare (β̂(p+1)

n ,un(p+1)) as the MLEs. Otherwise, set p = p+ 1 and return to
Step 2a.

We now elaborate on Step 2a, the most involved segment of the above algorithm, that requires
iterative quadratic optimization techniques under order constraints. This is precisely the problem
of evaluating ψ̂

(β)
n , the MLE of ψ for a fixed β. In particular, recall that ψ̂(β0)

n is the MLE of ψ
under H0 : β = β0.

Characterizing and computing ψ̂
(β)
n : This is characterized by the vector û(β)

n = (û(β)
1,n ≤

û
(β)
2,n . . . ≤ û

(β)
n,n) that minimizes g(β,u) over all u1 ≤ u2 ≤ . . . ≤ un. 6 Before proceeding further,

we introduce some notation. For points {(x0, y0), (x1, y1), . . . , (xk, yk)} where x0 = y0 = 0 and
x0 < x1 < . . . < xk, consider the left-continuous function P (x) such that P (xi) = yi and such
that P (x) is constant on (xi−1, xi). We will denote the vector of slopes (left–derivatives) of the
greatest convex minorant (henceforth GCM) of P (x) computed at the points (x1, x2, . . . , xn) by
slogcm {(xi, yi)}ni=0.

The solution û(β)
n can be viewed as the slope of the greatest convex minorant (slogcm) of a

random function defined in terms of û(β)
n itself. This self–induced/self–consistent characterization

proves useful both for computational purposes and for the asymptotic theory. For the sake of
notational convenience, we will denote g(β,u) in the following discussion by ξ(u) (suppressing the
dependence on β) and û(β)

n by û = (û1, û2, . . . , ûn). For 1 ≤ i ≤ n, set di = 5ii ξ(û). Define the
function η as follows:

η(u) =
n∑
i=1

[
ui − ûi +5i ξ(û) d−1

i

]2
di =

n∑
i=1

[
ui −

(
ûi −5i ξ(û) d−1

i

)]2
di . (2.5)

6Without loss of generality one can assume that ∆(1) = 1 and ∆(n) = 0. If not, the effective sample size for the
estimation of the parameters is k2 − k1 + 1 where k1 is the first index i such that ∆(i) = 1 and k2 is the last index

such that ∆(i) = 0. It is not difficult to see that one can set û
(β)
i,n = −∞ for all i < k1 and û

(β)
i,n = ∞ for all i > k2

without imposing any constraints on the other components of the minimizing vector.
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It can be shown that û minimizes η subject to the constraints that u1 ≤ u2 ≤ . . . ≤ un (see Section
4.2 in the appendix for the details) and hence furnishes the isotonic regression of the function
h(i) = ûi − 5i ξ(û) d−1

i on the ordered set {1, 2, . . . , n} with weight function di ≡ 5ii ξ(û). It is

well known that the solution û = (û1, û2, . . . , ûn) = slogcm
{∑i

j=1 di ,
∑i

j=1 h(i) di
}n
i=0

. See, for
example Theorem 1.2.1 of Robertson et.al.(1988) and more generally, Chapter 1 of that book
for an extensive discussion of isotonic regression.

Since û is unknown, an iterative scheme is resorted to. For a fixed vector v ≡ (v1, v2, . . . , vn) ∈ C,
set dv,i = 5ii ξ(v) and define the function ηv(u) ≡

∑n
i=1 [ui − (vi − 5i ξ(v) d−1

v,i]
2 dv, i. Pick an

initial guess for û, say u(0) ∈ C, set v = u(0) and compute u(1) by minimizing ηv(u) over C; then,
set v = u0, obtain u(2) by minimizing ηv(u) again, and proceed thus, until convergence. Generally,
with v = u(j), we have: u(j+1) = slogcm

{∑i
j=1 dv,i ,

∑i
j=1 (vi −5i ξ(v) d−1

v,i) dv,i
}n
i=0

.

Remark 2: Certain convergence issues might arise with such a straightforward iterative
scheme, since the algorithm could hit inadmissible regions in the search space. Jongbloed (1998)
addresses this issue by using a modified iterated convex minorant (henceforth MICM) algorithm;
see Section 2.4 of his paper for a discussion of the practical issues and a description of the relevant
algorithm which incorporates a line search procedure to guarantee convergence to the minimizer.
As this is a well–established algorithm in the isotonic regression literature, we do not discuss these
subtleties any further, but refer the reader to Jongbloed’s paper.

Remark 3: We have also not explicitly addressed the convergence issue. This is discussed
in Jongbloed (1998). The iterations are stopped when the (necessary and sufficient) conditions
that characterize the unique minimizer of ξ are satisified to a pre–specified degree of tolerance.
For a discussion of these conditions, see Section 4.2.

2.2 The Likelihood Ratio Statistic For Testing the Value of ψ at a point

We next turn our attention to the likelihood ratio test for testing H̃0 : ψ(z0) = θ0 with −∞ <
θ0 <∞. This requires us to compute the constrained maximizers of β and ψ, say (β̂n,0, ψ̂n,0) under
H̃0 : ψ(z0) = θ0. As in the unconstrained case, this maximization can be achieved in two steps.
For each β, one can compute ψ̂(β)

n,0 = argmaxψ:ψ(z0)=θ0 ln(β, ψ). Then, β̂n,0 = argmaxβ ln(β, ψ̂(β)
n,0)

and ψ̂n,0 = ψ̂
(β̂n,0)
n,0 . The likelihood ratio statistic for testing H̃0 : ψ(z0) = θ0 is given by:

lrtpsin = 2 (ln(β̂n, ψ̂n)− ln(β̂n,0, ψ̂n,0)) . (2.6)

Note that the monotone function ψ̂
(β)
n,0 is identifiable only up to its values at the Z(i)’s (and at

the fixed point z0 where it is required to equal θ0) and we identify this function with the vector
û(β)
n,0 ≡ (û(β)

1,n,0, û
(β)
2,n,0, . . . , û

(β)
n,n,0) where û(β)

i,n,0 = ψ̂
(β)
n,0(Z(i)). We will discuss the characterization of

this vector shortly.
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Before proceeding further, we introduce some notation. First, let m denote the number
of Z values that are less than or equal to z0. Then, we have Z(m) < z0 < Z(m+1)

(with probability 1). Note that any monotone function ψ that satisfies H̃0 will have:
ψ(Z(m)) ≤ θ0 ≤ ψ(Z(m+1)). Define C̃0 to be the closed convex subset of Rn comprising all
vectors u with u1 ≤ u2 ≤ . . . ≤ um ≤ θ0 ≤ um+1 ≤ . . . ≤ un. If ûn,0 ≡ (û1,n,0, û2,n,0, . . . , ûn,n,0)
denotes the vector {ψ̂n,0(Z(i))}ni=1, then (βn,0, ûn,0) = argminβ∈Rd,u∈C̃0 g(β,u). Since the function
g is a continuously differentiable strictly convex function defined on the closed convex set Rd × C̃0

and assumes a unique minimum at (βn,0, ûn,0), we can invoke Proposition 1 as before. The
algorithm, which is similar to that in the preceding subsection, is formally presented below.

Computing the constrained MLEs under H̃0:

Step 1. At Stage 0 of the algorithm, propose initial estimates (β̂(0)
n,0, û

(0)
n,0). Also, set an initial tolerance

level η > 0, small.

Step 2a. At Stage p ≥ 0 of the algorithm, current estimates (β̂(p)
n,0,u

(p)
n,0) are available. At Stage p+ 1,

first update the second component to un,0
(p+1) by minimizing g(β̂(p)

n,0,u) over u ∈ C̃0. Note

that u(p+1)
n,0 is precisely the vector {ψ̂βn,0(Z(i))}ni=1, for β = β̂

(p)
n,0.

Step 2b. Next, update β̂
(p)
n,0 to β̂

(p+1)
n,0 by solving (∂/∂ β) g(β,u(p+1)

n,0 ) = 0 using, say, the Newton–
Raphson method.

Step 3. (Checking convergence) If
∣∣∣∣g(β̂(p+1)

n,0 ,u
(p+1)
n,0 )−g(β̂(p)

n,0,u
(p)
n,0)

g(β̂
(p)
n,0,u

(p)
n,0)

∣∣∣∣ ≤ η, then stop and declare

(β̂(p+1)
n,0 ,u(p+1)

n,0 ) as the MLEs. Otherwise, set p = p+ 1 and return to Step 2a.

It remains to elaborate on Step 2a, which involves computing ψ̂(β)
n,0 for some β.

Characterizing ψ̂
(β)
n,0 : Finding ψ̂

(β)
n,0 amounts to minimizing g(β,u) =

∑n
i=1 φ(∆(i), Ri(β), ui)

over all u1 ≤ u2 . . . ≤ um ≤ θ0 ≤ um+1 ≤ . . . ≤ un. For the remainder of this discussion, we
denote the minimizing vector û(β)

n,0 by û(0). Finding û(0) can be reduced to solving two separate
optimization problems. These are [1] Minimize g1(β, u1, u2, . . . , um) ≡

∑m
i=1 φ(∆(i), Ri(β), ui) over

u1 ≤ u2 ≤ . . . ≤ um ≤ θ0, and, [2] Minimize g2(β, um+1, um+2, . . . , un) ≡
∑n

i=m+1 φ(∆(i), Ri(β), ui)
over θ0 ≤ um+1 ≤ um+2 ≤ . . . ≤ un.

Consider [1] first. This is a problem that involves minimizing a smooth convex function
over a convex set and one can easily write down the Kuhn–Tucker conditions characterizing
the minimizer. It is easy to see that the solution (û(0)

1 , û
(0)
2 , . . . , û

(0)
m ) can be obtained as

follows: Minimize g1(β,u1) where u1 ≡ (u1, u2, . . . , um) over C1, the closed convex cone
in Rm defined as {u1 : u1 ≤ u2 ≤ . . . ≤ um}, to obtain ũ1 ≡ (ũ1, ũ2, . . . , ũm). Then,
(û(0)

1 , û
(0)
2 , . . . , û

(0)
m ) = (ũ1 ∧ θ0, ũ2 ∧ θ0, . . . , ũm ∧ θ0). The minimization of g1(β, ·) over C1

requires use of the MICM and follows the same technique as described in the preceding
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subsection in connection with estimating ψ̂(β)
n . On the other hand, the solution vector to [2], say

(û(0)
m+1, û

(0)
m+2, . . . , û

(0)
n ), is given by (û(0)

m+1, û
(0)
m+2, . . . , û

(0)
n ) = (ũm+1 ∨ θ0, ũm+2 ∨ θ0, . . . , ũn ∨ θ0)

where (ũm+1, ũm+2, . . . , ũn) = argminum+1≤um+2≤...≤ung2(β, um+1, um+2, . . . , un) and uses the
MICM, as in [1]. Finally û(0) = (û(0)

1 , û
(0)
2 , . . . , û

(0)
n ).

3 ASYMPTOTIC RESULTS

In this section we present asymptotic results for the estimation of β and ψ. For the sake of
concreteness and ease of exposition, we present results explicitly in the setting of logistic regression.
The semiparametric logistic model is given by log µ(X,Z)

1−µ(X,Z) = βT X + ψ(Z). The above display is
equivalent to writing:

µ(X,Z) =
eβ

T X Λ(Z)
1 + eβT X Λ(Z)

, where Λ(Z) = eψ(Z). (3.7)

The parameter space for β is taken to be a bounded subset of Rd. We denote it by B. The parameter
space for Λ = eψ is the space of all nondecreasing cadlag (i.e. right-continuous with left-hand limits)
functions from [0, τ ] to [0,M ] where M is some large positive constant. Let (β0,Λ0) denote the
true model parameters (thus, Λ0 = eψ0). We make the following assumptions:

(A.1) The true regression parameter β0 is an interior point of B.

(A.2) The covariate X has bounded support. Hence, there exists x0 such that P (‖X‖ ≤ x0) = 1.
Also E(Var(X | Z)) is positive definite with probability one.

(A.3) Let Λ0(0) = 0. Let τΛ0 = inf{z : Λ0(z) = ∞}. The support of Z is an interval [σ, τ ] with
0 < σ < τ < τΛ0 .

(A.4) We assume that 0 < Λ0(σ−) < Λ0(τ) < M . Also, Λ0 is continuously differentiable on [σ, τ ]
with derivative λ0 bounded away from 0 and from ∞.

(A.5) The marginal density of Z, which we denote by fZ , is continuous and positive on [σ, τ ].

(A.6) The function h? ? defined below in (3.8) defined below has a version which is differentiable
componentwise with each component possessing a bounded derivative on [σ, τ ].

Remarks: The boundedness of B along with assumptions (A.1)–(A.3) are needed to deduce the
consistency and rates of convergence of the maximum likelihood estimators. In particular, the
boundedness of the covariate X does not cause a problem with applications. The utility of the
assumption that the conditional dispersion of X given Z is positive definite is explained below.
(A.4) and (A.5) are fairly weak regularity conditions on Λ0 and the distribution of Z. The
assumption (A.6) is a technical assumption and is required to ensure that one can define appropriate
approximately least favorable submodels; these are finite–dimensional submodels of the given
semiparametric model, with the property that the efficient score function for the semiparametric
model at the true parameter values can be approximated by the usual score functions from these
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submodels. They turn out to be crucial for deriving the limit distribution of the likelihood ratio
statistic for testing the regression parameter.

We now introduce the efficient score function for β in this model. The log density function for
the vector (∆, Z,X) is given by:

lβ,Λ(δ, z, x) = δ (log Λ(z) + βT x)− log (1 + Λ(z) exp(βT x)) + log f(z, x) .

The ordinary score function for β in this model is:

l̇β(β,Λ)(δ, z, x) = (∂/∂ β) lβ,Λ(δ, x, z) = xΛ(z)Q((δ, z, x);β,Λ) ,

where

Q((δ, z, x);β,Λ) =
δ

Λ(z)
− eβ

T x

1 + Λ(z) eβT x
.

The score function for Λ is a linear operator acting on the space of functions of bounded variation
on [σ, τ ] and has the form:

l̇Λ(β,Λ)(h(·))(δ, z, x) = h(z)Q((δ, z, x);β,Λ) .

Here h is a function of bounded variation on [σ, τ ]. To compute the form of this score function, we
consider curves of the form Λ + t h for t ≥ 0 where h is a non–decreasing non–negative function on
[σ, τ ]. Computing

BΛ(h) =
∂

∂ t
lβ,Λ+t h(δ, x, z) |t=0 ,

we get BΛ(h) = h(z)Q((δ, z, x);β,Λ). The linear operator BΛ now extends naturally to the closed
linear span of all non–decreasing h’s, which is precisely the space of all functions of bounded
variation on [σ, τ ].

The efficient score function for β at the true parameter values (β0,Λ0), which we will denote by l̃
for brevity, is given by

l̃ = l̇β(β0,Λ0)− l̇Λ(β0,Λ0)h?

for functions h? = (h?1, h
?
2, . . . , h

?
d) of bounded variation, such that h?i minimizes the distance

Eβ0,Λ0(l̇β,i(β0,Λ0)− l̇Λ(β0,Λ0)h(·))2 ,

for h varying in the space of functions of bounded variation on [σ, τ ]. Here

l̇β,i(β0,Λ0) = x(i) Λ(z)Q((δ, z, x);β0,Λ0)

is the i’th component of the ordinary score function for β (and x(i) is the i’th component of x). It
is not difficult to see that h?i must satisfy

E [BΛ0(h) (l̇β,i(β0,Λ0)−BΛ0(h?i ))] = 0 ,
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for all h. This simplifies to

E [Q2((∆, Z,X);β0,Λ0)h(Z) [X(i) Λ0(Z)− h?i (Z)]] = 0 .

For the above to be satisfied it suffices to have:

E [Q2((∆, Z,X);β0,Λ0) [X(i) Λ0(Z)− h?i (Z)] | Z] = 0 ,

whence

h?i (Z) = Λ0(Z)
E(X(i)Q2((∆, Z,X);β0,Λ0) | Z)
E(Q2((∆, Z,X);β0,Λ0) | Z)

.

In vector notation we can therefore write

h?(Z) = Λ0(Z)h? ?(Z) ≡ Λ0(Z)
Eβ0,Λ0(X Q2((∆, Z,X);β0,Λ0) | Z)
Eβ0,Λ0(Q2((∆, Z,X);β0,Λ0) | Z)

. (3.8)

The assumption (A.2) that E(Var(X | Z)) is positive definite ensures that l̃, the efficient score
function for β, is not identically zero, whence the efficient information Ĩ0 = Disp(l̃) ≡ Eβ0,Λ0(l̃ l̃T )
is positive definite (Note that Eβ0,Λ0(l̃) = 0). This entails that the MLE of β will converge at

√
n

rate to beta0 and have an asymptotically normal distribution with a finite dispersion matrix.

Let θ̃0 = eθ0 . Now, consider the problem of testing H0 : β = β0 based on our data, but
under the (true) constraint that Λ(z0) = θ̃0. Thus, we define:

lrtbeta0
n = 2 log

argmaxΛ(z0)=θ̃0
ln(β,Λ)

argmaxβ=β0,Λ(z0)=θ̃0
ln(β,Λ)

. (3.9)

Thus,
lrtbeta0

n = 2 ln(β̂n,0, Λ̂n,0)− 2 ln(β0, Λ̂
(β0)
n,0 ) ,

where Λ̂n,0 = exp(ψ̂n,0) and Λ̂(β0)
n,0 = exp(ψ̂(β0)

n,0 ). We now state a theorem describing the asymptotic
behavior of β̂n and β̂n,0 (which we subsequently denote by β̃n) and the likelihood ratio statistics
lrtbetan as defined in (2.4) and lrtbeta0

n above.

Theorem 3.1 Under Conditions (A.1) – (A.7), both β̂n and β̃n are asymptotically linear in the
efficient score function and have the following representation:

√
n (β̂n − β0) =

1√
n
Ĩ−1

0

n∑
i=1

l̃(∆i, Zi, Xi) + rn (3.10)

and
√
n (β̃n − β0) =

1√
n
Ĩ−1

0

n∑
i=1

l̃(∆i, Zi, Xi) + sn (3.11)

where rn and sn are op(1). Hence both
√
n (β̂n − β0) and

√
n (β̃n − β0) converge in distribution to

N(0, Ĩ−1
0 ).
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Furthermore,
lrtbetan = n(β̂n − β0)T Ĩ0 (β̂n − β0) + op(1) , (3.12)

while
lrtbeta0

n = n(β̃n − β0)T Ĩ0 (β̃n − β0) + op(1) . (3.13)

It follows that both lrtbetan and lrtbeta0
n are asympotically distributed like χ2

d.

We next state asymptotic results concerning the nonparametric component of the model. In order
to do so, we introduce the following processes. For positive constants c and d define the process
Xc,d(z) := cW (z) + d z2, where W (z) is standard two-sided Brownian motion starting from 0.
Let Gc,d(z) denote the GCM of Xc,d(z). Let gc,d(z) be the right derivative of Gc,d. This is a
non–decreasing function that can be shown to be a piecewise constant, with finitely many jumps
in any compact interval. Next, let Gc,d,L(h) denote the GCM of Xc,d(h) restricted to the set
h ≤ 0 and gc,d,L(h) denote its right–derivative process. For h > 0, let Gc,d,R(h) denote the GCM
of Xc,d(h) restricted to the set h > 0 and gc,d,R(h) denote its right–derivative process. Define
g0
c,d(h) = (gc,d,L(h) ∧ 0) 1(h ≤ 0) + (gc,d,R(h) ∨ 0) 1(h > 0). Then g0

c,d(h), like gc,d(h), is a non–
decreasing function that is piecewise constant, with finitely many jumps in any compact interval
and differs (almost surely) from gc,d(h) on a finite interval containing 0. In fact, with probability
1, g0

c,d(h) is identically 0 in some (random) neighborhood of 0, whereas gc,d(h) is almost surely
non-zero in some (random) neighborhood of 0. Also, the interval Dc,d on which gc,d and g0

c,d

differ is Op(1). For more detailed descriptions of the processes gc,d and g0
c,d, see Banerjee (2000),

Banerjee and Wellner (2001) and Wellner (2003). Thus, g1,1 and g0
1,1 are the unconstrained and

constrained versions of the slope processes associated with the “canonical” process X1,1(z). By
Brownian scaling, the slope processes gc,d and g0

c,d can be related in distribution to the canonical
slope processes g1,1 and g0

1,1. This is the content of the following proposition.

Lemma 3.1 For any M > 0, the following distributional equality holds in the space L2[−M,M ]×
L2[−M,M ]:(

gc,d(h), g0
c,d(h)

) D=
(
c (d/c)1/3g1,1

(
(d/c)2/3h

)
, c (d/c)1/3g0

1,1

(
(d/c)2/3h

))
.

Here L2[−M,M ] denotes the space of real–valued functions on [−M,M ] with finite L2 norm (with
respect to Lebesgue measure).

This is proved in Banerjee (2000), Chapter 3.

Let z0 be an interior point of the support of Z. Define the (localized) slope processes Un
and Vn as follows:

Un(h) = n1/3 (ψ̂(β0)
n (z0 + hn−1/3)− ψ0(z0)) and Vn(h) = n1/3 (ψ̂(β0)

n,0 (z0 + hn−1/3)− ψ0(z0)) .

The following theorem describes the limiting distribution of the slope processes above.
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Theorem 3.2 Define,

C(z0) =
∫

eβ
T
0 x+ψ0(z0)

(1 + eβ
T
0 x+ψ0(z0))2

f(z0, x) dµ(x) .

Assume that 0 < C(z0) <∞. Let

a =

√
1

C(z0)
and b =

1
2
ψ
′
0(z0) ,

where ψ
′
0 is the derivative of ψ0. The processes (Un(h), Vn(h)) converge finite dimensionally to

the processes (ga,b(h), g0
a,b(h)). Furthermore, using the monotonicity of the processes Un and Vn, it

follows that the convergence holds in the space L2[−K,K]× L2[−K,K] for any K > 0.

Setting h = 0 in the above theorem, we find that

n1/3 (ψ̂(β0)
n (z0)− ψ0(z0))→d ga,b(0) ≡d a (b/a)1/3 g1,1(0) ≡d (8 a2 b)1/3 Z ,

where Z ≡ argminh∈R (W (h) + h2) and its distribution is referred to in the statistical literature
as Chernoff’s distribution. See, for example, Groeneboom and Wellner (2001) for a detailed
description. The above display utilizes the result that g1,1(0) ≡d 2 Z (since this result is not
used in our proposed methodology for constructing confidence sets, discussed below, we do not
establish this result in our paper). The random variable Z arises extensively in nonparametric
problems involving cube-root asymptotics – problems where estimates of parameters converge at
rate n1/3 and in particular, is typically found to characterize the pointwise limit distribution of
maximum likelihood estimators of monotone functions in nonparametric/semiparametric models.
The distribution of Z is non-Gaussian and symmetric about 0. It can, in fact, be shown that

n1/3 (ψ̂n(z0)− ψ0(z0))→d (8 a2 b)1/3 Z

where ψ̂n ≡ ψ̂β̂nn is the unconstrained MLE of ψ. This is not surprising in view of the fact that√
n(β̂n−β0) = Op(1), so that β̂n converges to β0 at a faster rate than n1/3, the convergence rate for

ψ̂β̂nn . Since the quantiles of Z are well–tabulated, this result can be used to construct asymptotic
confidence sets of any pre-assigned level for ψ0(z0) (equivalently Λ0(z0)), but the procedure requires
estimating the constants a and b which turns out to be a tricky affair (one needs to estimate
the joint density of the covariates that appears in the defining integral for C(z0) in addition to
the derivative of ψ0 at the point z0, which is quite difficult, especially at modest sample sizes).
Resampling techniques, like subsampling (m out of n bootstrap without replacement) as discussed
in Politis, Romano and Wolf (1999), can circumvent the estimation of the nuisance parameters a
and b, but are computationally quite intensive. To avoid these difficulties, we do not construct
MLE based confidence sets for ψ0(z0) in this paper; rather, we resort to inversion of the likelihood
ratio statistic for testing the value of ψ0 at a pre-fixed point of interest. Our next theorem is crucial
for this purpose.
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Theorem 3.3 The likelihood ratio statistic for testing H̃0 : ψ(z0) = θ0, as defined in (2.6),
converges in distribution to D where

D =
∫ (

(g1,1(z))2 − (g0
1,1(z))2

)
dz .

The random variable D can be considered to be a non-regular analogue of the usual χ2
1 random

variable, in the sense that just as the χ2
1 distribution describes the limiting likelihood ratio statistic

for testing a real– valued parameter in a regular parametric model, similarly, the distribution of
D describes the limiting likelihood ratio statistic for testing the value of a monotone function at
a point in conditionally parametric models (see Banerjee (2007)) and more generally in pointwise
estimation of monotone functions.

Construction of confidence sets for parameters of interest via likelihood ratio
based inversion: Denote the likelihood ratio statistic for testing the null hypothesis ψ(z0) = θ
by lrtpsin(θ). The computation of the likelihood ratio statistic is dicussed, in detail, in
Section 2. By Theorem 3.3, an approximate level 1 − α confidence set for ψ0(z0) is given by
Sψ0(z0) ≡ {θ : lrtpsin(θ) ≤ q(D, 1 − α)}, where q(D, 1 − α) is the (1 − α)’th quantile of the
distribution of D (for α = 0.05, this is approximately 2.28). Noting that Λ0(z0) = exp(ψ0(z0)), the
corresponding confidence set for Λ0(z0) is simply exp(Sψ0(z0)). Furthermore, the corresponding
confidence set for the baseline conditional probability function, E(∆ | X = 0, Z = z0) is simply
eSψ0(z0)/(1 + eSψ0(z0)).

Confidence sets for the regression function at values X = x0, Z = z0, i.e. µ(x0, z0) =
E(∆ | X = x0, Z = z0) can also be constructed in a similar fashion. This requires redefining the
covariate X, so as to convert µ(x0, z0) to a baseline conditional probability. Set X̃ = X−x0. Then
µ(x0, z0) = P (∆ = 1 | X̃ = 0, Z = z). Define µ̃(x̃, z) = E (∆ | X̃ = x̃, Z = z). We have,

µ̃(x̃, z) = µ(x̃+ x0, z) =
eβ

T
0 (x̃+x0) Λ0(z)

1 + eβ
T
0 (x̃+x0) Λ0(z)

=
eβ

T
0 x̃ Λ̃0(z)

1 + eβ
T
0 x̃ Λ̃0(z)

where Λ̃0(z) = eβ
T
0 x0 Λ0(z), with ψ̃0(z) ≡ log Λ̃0(z) = βT0 x0 + ψ0(z). This is exactly the model

considered at the beginning of Section 3 in terms of new covariates (X̃, Z) and satisfies the regularity
conditions A.1 – A.6 (with X replaced by X̃). Now, µ(x0, z0) = µ̃(0, z0) = eψ̃0(z0)/(1 + eψ̃0(z0)).
An approximate level 1− α confidence set for ψ̃0(z0), say S̃ψ̃0(z0) can be found in exactly the same

fashion as before; i.e. S̃ψ̃0(z0) = {θ : l̃rtpsin(θ) ≤ q(D, 1 − α)}, where l̃rtpsin(θ) is the likelihood

ratio statistic for testing ψ̃(z0) = θ and is computed in exactly the same way as the statistic in
(2.6), but using the covariates X̃ and Z, instead of X and Z. Correspondingly, the confidence set

for µ̃(0, z0) is eS̃ψ̃0(z0)/(1 + e
S̃ψ̃0(z0)). This principle is applied extensively to construct confidence

sets for the conditional probabilites in the data analysis example in Section 4.

The construction of joint confidence sets is also of importance in certain applications. Thus, one
may be interested in a joint confidence set for (µ(x0, z0), µ(x0, z1)) for z0 < z1. To this end consider
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the hypothesis H̃0,1 : ψ(z0) = θ0, ψ(z1) = θ1 where z0 < z1 and θ0 < θ1. A natural statistic to
test this hypothesis is Mn ≡ max(lrtpsi(z0)

n (θ0), lrtpsi(z1)
n (θ1)) where lrtpsi(z0)

n (θ0) is the likelihood
ratio statistic for testing ψ(z0) = θ0 and lrtpsi(z1)

n (θ1), the likelihood ratio statistic for testing
ψ(z1) = θ1. It can be shown that when the null hypothesis is true, lrtpsi(z0)

n (θ0) and lrtpsi(z1)
n (θ1)

are asymptotically independent and Mn converges in distribution to D(2) ≡ max(D1,D2) where D1

and D2 are identical copies of D. The quantiles of this distribution are well–tabulated and joint
confidence sets for (ψ(z0), ψ(z1)) are therefore readily constructed by inversion. This leads to joint
confidence sets for (µ(x0, z0), µ(x0, z1)) by centering X around x0, as in the previous paragraph.

Consider the pair (θ, θ′) (with θ ≤ θ′) and let l̃rtpsi
(z0)

n (θ) and l̃rtpsi
(z1)

n (θ′) denote, respectively,
the likelihood ratio statistics for testing ψ̃(z0) = θ and ψ̃(z1) = θ′, these being computed in exactly
the same way as the statistic in (2.6) but using covariates (X̃, Z) instead of (X,Z). Let:

S̃ψ̃0(z0),ψ̃0(z1) = {(θ, θ′) : θ ≤ θ′,max(l̃rtpsi
(z0)

n (θ), l̃rtpsi
(z1)

n (θ′)) ≤ q(D(2), 1− α)} .

This set has a simple characterization as a polygon in R2 (it is either a triangle or a trapezium or

a pentagon). Let Sψ̃0(z0) = {θ : l̃rtpsi
(z0)

n (θ) ≤ q(D(2), 1 − α)} and Sψ̃0(z1) = {θ′ : l̃rtpsi
(z1)

n (θ′) ≤
q(D(2), 1− α)}. Then:

S̃ψ̃0(z0),ψ̃0(z1) = (Sψ̃0(z0) × Sψ̃0(z1)) ∩ C2

where C is the cone given by {(θ, θ′) ∈ R2 : θ ≤ θ′}. A two–dimensional joint confidence set of level
1− α for (µ(x0, z0), µ(x0, z1)) is given by:

{(eθ/(1 + eθ), eθ
′
/(1 + eθ

′
)) : (θ, θ′) ∈ S̃ψ̃0(z0),ψ̃0(z1)} .

This method can be extended to provide confidence sets at more than 2 points. However, for a
fixed sample size, the performance of this procedure will deteriorate as the number of zi’s increases,
owing to the finite sample dependence among the pointwise likelihood ratio statistics.

Confidence sets for the finite dimensional regression parameter β0 can be constructed in the
usual fashion as: {β : lrtbetan(β) ≤ qχ2

d,1−α
}, where lrtbetan(β) is the likelihood ratio statistic for

testing the null hypothesis that the true regression parameter is β (see (2.7)), and qχ2
d,1−α

is the
(1 − α)’th quantile of the χ2

d distribution. This method can be adapted to construct confidence
sets for a sub–vector of the regression parameters as well. So, consider a situation where the
regression parameter vector can be partitioned as β = (η1, η2). Let β0 = (η10, η20) denote the
true parameter value and suppose that we are interested in a confidence set for η10. Let d1 and
d2 denote the dimensions of η1 and η2 respectively. To test H0 : η1 = η10, the log–likelihood
function ln(β, ψ) is maximized over all β of the form (η10, η2) (where η2 varies freely in Rd2)
and ψ monotone increasing. If we identify ψ, as before, with the vector u = {ψ(Z(i))}ni=1,
then, g(η2,u) ≡ −ln((η10, η2), ψ) is a continuously differentiable strictly convex function defined
on Rd2 × C and its minimizer can be obtained using Proposition 1. If (η̂2, û

(η10)
n ) denotes the

minimizer of g, then the constrained MLEs of (β, ψ) under H0 are: ((η10, η̂2), ψ̂(η10)
n ) where ψ̂(η10)

n )
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is the (unique) right–continuous increasing step function that assumes the value û(η10)
i,n (the i’th

component of û(η10)
n ) at the point Z(i) and has no jump points outside of the set {Z(i)}ni=1. The

likelihood ratio statistic for testing H0 is then given by:

2 [ln(β̂n, ψ̂n)− ln((η10, η̂2), ψ̂(η10)
n )]

and converges to the χ2
d1

distribution. Therefore, a level 1 − α confidence set for the sub–vector
η10 can be readily computed via inversion and calibration using χ2

d1
quantiles. We skip the details.

General Link Functions: Under regularity conditions analogous to those described at
the beginning of this section, similar results are obtained for more general link functions, so long
as the inverse link h̃ satisfies Condition (C) described in Section 2. Thus, for any h̃ satisfying the
concavity constraints, (a) the likelihood ratio statistic for testing β = β0 as described in (2.4)
converges to a χ2

d distribution and (b) the likelihood ratio statistic for testing H̃0 : ψ(z0) = θ0 as
described in (2.6) converges in distribution to D (when H̃0 is true). Confidence sets for β, ψ(z0)
and µ(x0, z0) as well as a sub–vector of β may be obtained by methods analogous to those used in
the logistic regression framework. Once again, owing to space constraints, we skip the details.

4 APPENDIX

Proof of Theorem 3.1: For simplicity, we assume that X is 1–dimensional, so that β is also
1–dimensional. This will make the proof easier to understand, without any essential loss of
generality. Also, in what follows, Pβ,Λ will denote the distribution of (∆, Z,X) under parameter
value (β,Λ) and pβ,Λ the corresponding density. Also p0 denotes the density under the true values
(β0,Λ0) and P0 ≡ Pβ0,Λ0 .

The consistency of (β̂n, Λ̂n) for (β0,Λ0) and of Λ̂n,0 for Λ0 can be established via a standard
consistency proof. Here we only provide a sketch. We can use the method of Wald (see, for example,
Theorem 5.14 of Van der Vaart (1998)) with criterion function mβ,Λ = log (pβ,Λ + pβ0,Λ0)/2. It
is not difficult to see that Pn(mβ̂n,Λ̂n

) ≥ Pn(mβ,Λ) for any (β,Λ) and P0(mβ0,Λ0) ≥ P0(mβ,Λ) for
any (β,Λ) where P0 is the distribution under (β0,Λ0). Equipping the parameter space with the
Euclidean topology on Rd times the weak topology on the space of bounded cadlag functions
defined on [0, τ ] renders it compact. Furthermore, the criterion functions are uniformly bounded.
Conditions (5.12) and (5.13) on page 48 of Van der Vaart (1998) are then easily verified and
Theorem 5.14 can be invoked to conclude that β̂n converges in probability to β0 under the usual
Euclidean topology and that Λ̂n converges to Λ0 in the weak topology on the interval [σ, τ ] (on
which Λ0 is identifiable). Pointwise convergence of Λ̂n to Λ0 (in probability) for any σ < x < τ is
easily deduced. Invoking the uniform continuity of Λ0 on any compact interval strictly contained
in [σ, τ ] along with the monotonicity of the functions Λ̂n and Λ0 allows us to strengthen this to
convergence in probability under the topology of uniform convergence on compact subsets of [σ, τ ].

In what follows, we will freely use the facts that (a) (β̂n, Λ̂n) converges to (β0,Λ0) in the
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product topology τ1 × τ2 where τ1 is the Euclidean topology on Rd and τ2 is the topology of
uniform convergence on compact sets. Also, Λ̂n,0 converges to Λ0 under τ2. Another result that
we will need is a rate of convergence of Λ̂n and Λ̂n,0 to Λ0 in an L2 metric. We have:∫ τ

σ
(Λ̂n(u)− Λ0(u))2 du = Op(n−2/3) and

∫ τ

σ
(Λ̂n,0(u)− Λ0(u))2 du = Op(n−2/3) .

This can be deduced by using arguments similar to those in Section A.3 of Murphy and Van der
Vaart (1997) for the Cox model with interval censored data, where a rate of convergence for the
MLE of Λ is deduced from the rate of convergence of of density estimators with respect to (an
appropriate modification of) the Hellinger distance. See also Theorem 3.3 of Huang (1996).

We will use Theorem 3.1 of Murphy and Van der Vaart (1997) to establish that lrtbetan,
the likelihood ratio statistic for testing β = β0 is asymptotically χ2

1 and has the representation
(3.12); in the process, we will establish the asymptotically linear representation of the MLE β̂ in
the efficient score function (display (3.10)). We start by constructing the “approximately least
favorable” one–dimensional submodels that satisfy conditions (3.6) and (3.7) on Page 1482 of
Murphy and Van der Vaart (1997). For parameter values (β,Λ) we define the corresponding
submodel

st(β,Λ) = (t,Λt(β,Λ)) ≡ (t,Λ + (θ − t)φ(Λ)h? ? ◦ Λ−1
0 ◦ Λ) .

Here φ is a function mapping [0,M ] into [0,∞), such that (i) φ(y) = y on [Λ0(σ),Λ0(τ)], (ii)
y 7→ φ(y)/y is Lipschitz and (iii) φ(y) ≤ c (y ∧ M − y) for a sufficiently large constant c that
depends on (θ0,Λ0) only. By the assumption that [Λ0(σ−),Λ0(τ)] ⊂ (0,M) such a function φ
exists. It is not difficult to show that for t sufficiently close to θ, (t,Λt(θ,Λ)) is a valid parameter.

We next compute the scores from these approximately least favorable submodels. Let
p(δ, z, x; t,Λ, β) denote the density function under parameter value (t,Λt(β,Λ)) and l(δ, z, x; t,Λ, β)
denote the log–density. We have

l(δ, x, z; t,Λ, β) = δ log Λt(β,Λ)(z) + δ t x− log (1 + Λt(β,Λ)(z) et x) .

Straightforward computations yield that the score function is:

l̇(δ, x, z; t,Λ, β) =
δ

Λt(β,Λ)(z)
[−φ(Λ(z))h? ? ◦ Λ−1

0 ◦ Λ(z)] + δ x

− 1
1 + Λt(β,Λ)(z) et x

[
−φ(Λ(z))h? ? ◦ Λ−1

0 ◦ Λ(z) etx + Λt(β,Λ)(z)x etx
]
.

As (t, β,Λ) converges to (β0, β0,Λ0) (the convergence is taken to be with respect to the product
of the Euclidean topology on R2 and the topology of uniform convergence on compact subsets of
[σ, τ ]), it is easy to verify that

l̇(δ, x, z; t,Λ, β)→ δ

Λ0(z)
[−Λ0(z)h? ?(z)] + δ x− 1

1 + Λ0(z) eβ0 x
[−Λ0(z)h? ?(z) + Λ0(z)x eβ0 x] ,

17



almost everywhere with respect to P0, the true measure and this is precisely l̃(δ, x, z), the efficient
score function (as can be checked by arranging terms).

Next, we note that the class of functions l̇(δ, x, z; t,Λ, β) with β and t ranging in a neighborhood of
β0 and Λ ranging over the class of increasing cadlag functions on [0, τ ] and taking values in [0,M ]
is a uniformly bounded and Donsker class. We can write the score function as:

−δ
[

φ(Λ(z))/Λ(z)
1 + (β − t) (φ(Λ(z))/Λ(z))h? ? ◦ Λ−1

0 ◦ Λ(z)

]
+δ x−Λt(β,Λ)(z)x etx − φ(Λ(z))h? ? ◦ Λ−1

0 ◦ Λ(z) etx

1 + Λt(β,Λ)(z) etx
.

In the wake of standard preservation properties of Donsker classes of functions (see pages 192 – 193
of Van der Vaart and Wellner (1996)) it suffices to show that each of the above three components
is uniformly bounded and Donsker. Conside the first component. Since the class of functions {Λ}
being considered here is uniformly bounded and is contained in the class of monotone functions on
[σ, τ ], Theorem 2.7.5. of Van der Vaart and Wellner (1996) can be invoked (with minor modification)
to conclude that this is a universally Donsker class. Since y 7→ φ(y)/y is bounded and Lipschitz, the
composition of this function with the class {Λ}, i.e. the class {φ(Λ)/Λ} is bounded and Donsker,
by Theorem 2.10.6 of Van der Vaart and Wellner (1996). Next, using (A.4) and (A.6), it is easily
verfied that the function h? ? ·Λ−1

0 has a uniformly bounded derivative and is therefore Lipschitz; it
follows then that h? ? ·Λ−1

0 ·Λ is bounded and Donsker. Since the product of a number of uniformly
bounded Donsker classes is Donsker and addition of constants preserves the Donsker property,
conclude that {1 + (β − t) (φ(Λ(z))/Λ(z))h? ? ·Λ−1

0 ·Λ(z)} is a Donsker class. Furthermore if (β, t)
vary in a sufficiently small neighborhood of β0, then

1 + (β − t) (φ(Λ(z))/Λ(z))h? ? · Λ−1
0 · Λ(z) ≥ 1− | β − t | G ‖h? ? · Λ−1

0 ‖∞ ≥ 1− ε > 0 ,

if | β − t |< ε/(G ‖h? ? · Λ−1
0 ‖∞) where G = sup | φ(y)/y | and 1 > ε > 0 is preassigned. It follows

that {(1 + (β − t) (φ(Λ(z))/Λ(z))h? ? · Λ−1
0 · Λ(z))−1} is also bounded and Donsker. Conclude,

using preservation properties yet again, that the first term is a bounded Donsker class.

To show that the third term is Donsker, note that each of the following classes {φ(Λ)},
{Λt(β,Λ)}, {h? ? · Λ−1

0 · Λ}, {etx} are bounded Donsker classes as t and β range in a bounded
neighborhood of β0 and Λ ranges in the class of nondecreasing cadlag functions on [0,M ]; also
the class {(1 + Λt(β,Λ)(z) etx)−1} is bounded above by 1. Now, employ standard preservation
properties to arrive at the desired conclusion. The second term is of course a fixed bounded
function, hence Donsker. Thus, we conclude that the class of score functions considered above is
indeed Donsker and uniformly bounded.

Furthermore, the class

F = {g(δ, z, x; t,Λ, β) = (1/p(δ, z, x; t,Λ, β)) (∂2/∂t2) p(δ, z, x; t,Λ, β)}

as (β, t,Λ) vary in a sufficiently small neighborhood of (β0, β0,Λ0) is a Glivenko–Cantelli class of
functions (this can be shown by employing techniques similar to those used to show that the score
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functions above are Donsker). Furthermore g(δ, z, x; t,Λ, β) → g(δ, z, x;β0,Λ0, β0) almost surely
under P0 (the true underlying distribution generating the data), as (t,Λ, β)→ (β0,Λ0, β0). It now
follows from the discussion on Pages 71-77 of Banerjee (2000) that Condition (3.8) on Page 1482
of Murphy and Van der Vaart (1997) is satisfied.

Next, we need to verify the “unbiasedness condition” – this is condition (3.9) of Murphy
and Van der Vaart (1997) and in this case can be written as:

√
nPn (l̇(δ, x, z;β0, Λ̂(β0)

n , β0)− l̃)→p 0 .

By the consistency of Λ̂(β0)
n for Λ0 and the facts that (i) the class of score functions obtained from

the least favorable submodels are Donsker and (ii) P0 l̃ = 0, the above condition is equivalent to
√
nP0 (l̇(δ, x, z;β0, Λ̂

(β0)
n , β0)) →p 0. For notational convenience, abbreviate l̇(δ, x, z;β0,Λ, β0) to

l̇(Λ) and Λ̂(β0)
n to Λ̂0. We have,

P0

(
l̇(Λ̂0)

)
= (P0 − Pβ0,Λ̂0

)(l̇(Λ0)) + (P0 − Pβ0,Λ̂0
)(l̇(Λ̂0)− l̇(Λ0)) . (4.14)

To write this decomposition we use the fact that Pβ,Λ(l̇(.;β,Λ, β)) = 0 for all (β,Λ). It now suffices
to show that each of the two terms on the right side of the above display is op(n−1/2). Consider
the first term. This can be written as:

(P0 − Pβ0,Λ̂0
)(l̇(Λ0)) = P0

{
(l̇(Λ0))

[
p0 − pβ0,Λ̂0

p0
− l̇Λ(β0,Λ0)(Λ0 − Λ̂0)

]}
. (4.15)

Here we are using the fact that l̇(Λ0) is the efficient score function and hence orthogonal to all
functions in the span of l̇Λ(β0,Λ0). We now simplify the expression

p0 − pβ0,Λ̂0

p0
− l̇Λ(β0,Λ0)(Λ0 − Λ̂0)

using a simple Taylor expansion. We have:

p(β0, Λ̂0) = p(β0,Λ0 + (Λ̂0 − Λ0))

= p(β0,Λ0) +
{
d

dt
p(β0,Λ0 + t(Λ̂0 − Λ0))

}
t=0

+
1
2
d2

dt2
p(β0,Λ0 + t∗(Λ̂0 − Λ0))

for some 0 < t∗ < 1. Here t∗ can depend on the point of evaluation of the density ( note that the
arguments (δ, x, z) are being suppressed). But

(d/dt){p(β0,Λ0 + t(Λ̂0 − Λ0))}t=0 = l̇Λ(β0,Λ0)(Λ̂0 − Λ0)× p(β0,Λ0)

and using this we get:

p(β0,Λ0)− p(β0, Λ̂0)
p(β0,Λ0)

= l̇Λ(β0,Λ0)(Λ0 − Λ̂0)− 1
p(β0,Λ0)

1
2
d2

dt2
p(β0,Λ0 + t∗(Λ̂0 − Λ0)) .
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Now using (4.15) it follows that

(P0 − Pβ0,Λ̂0
)
[
l̇(Λ0)

]
= −P0

[
l̇(Λ0)

1
p0

1
2
d2

dt2
p(β0,Λ0 + t∗(Λ̂0 − Λ0))

]
. (4.16)

We now compute
(
d2/dt2

)
p(β0,Λ0 + t∗h) where h denotes Λ̂0−Λ0. Straightforward differentiation

yields that

d2

dt2
p(β0,Λ0 + th) =

d

dt

[
d

dt

[
δ + (1− 2 δ)

1
1 + eβ0 x(Λ0 + th)(z)

] ]
= (1− 2 δ) e2β0 x h2(z)

2
(1 + eβ0 x(Λ0 + th)(z))3

.

In writing p(β0,Λ0 + th) above, the joint density of (X,Z) has been absorbed into the dominating
measure; call the resulting measure µdom. From the above display, easily we have:∣∣∣∣ d2

dt2
p(β0,Λ0 + th)

∣∣∣∣ ≤ h2K (4.17)

for all t (where K is a constant not depending upon t), provided that Λ0 + t h ≥ 0. This is indeed
the case for h = Λ̂0 − Λ0. Thus we get,

| (P0 − Pβ0,Λ̂0
)(l̇(Λ0)) | ≤

∫
| l̇ (Λ0) | 1

p0

∣∣∣∣ d2

dt2
p(β0,Λ0 + t∗(Λ̂0 − Λ0))

∣∣∣∣ p0 dµdom(δ, x, z)

≤ K
′
∫

(Λ̂0 − Λ0)2(z)dµdom(δ, x, z)

= K
′′
∫ τ

σ
(Λ̂0 − Λ0)2(z)fZ(z)dz .

Here the K’s are constants. Since fZ is continuous on [σ, τ ] it attains its maximum, showing that∣∣∣(P0 − Pβ0,Λ̂0
)[l̇(Λ0)]

∣∣∣ ≤ K ′′ ∫ τ

σ
(Λ̂0 − Λ0)2(z)fZ(z)dy ≤ K ′′′

∫ τ

σ
(Λ̂0 − Λ0)2(z)dy .

Now,
∫ τ
σ (Λ̂0−Λ0)2(z)dz is Op(n−2/3), and hence certainly op(n−1/2) showing that so is the left side

of the above display. Consider the second term in (4.14). To tackle this term, note first of all, that

| l̇(Λ̂0)− l̇(Λ0) | ≤ C | Λ̂0 − Λ0 | (4.18)

for some constant C not depending on δ, x, z. Now write the second term as:∫
(l̇(Λ̂0)− l̇(Λ0))(p0 − pβ0,Λ̂0

)dµdom(δ, z, x) =
∫

(l̇(Λ̂0)− l̇(Λ0))[lΛ(β0,Λ0)(Λ0 − Λ̂0) p(β0,Λ0)

−1
2
d2

dt2
p(β0,Λ0 + t∗(Λ̂0 − Λ0))]dµdom

=
∫

(l̇(Λ̂0)− l̇(Λ0))lΛ(β0,Λ0)(Λ0 − Λ̂0) p(β0,Λ0) dµdom

−
∫

(l̇(Λ̂0)− l̇(Λ0))
1
2
d2

dt2
p(β0,Λ0 + t∗(Λ̂0 − Λ0))dµdom .
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Now lΛ(β0,Λ0)(Λ0 − Λ̂0) = (Λ0 − Λ̂0)Q(x;β0,Λ0) . Using this along with the fact that Q(x;β0,Λ0)
is bounded, the bound on 1

2
d2

dt2
p(β0,Λ0 + t∗(Λ̂0−Λ0)) obtained through (4.17), the inequality (4.18)

and the uniform boundedness of | l̇(Λ̂0)− l̇(Λ0) | and the boundedness of the density of Y , we find
that the sum of the absolute values of the integrals in the last expression of the above display is
bounded by:

C1

∫ τ

σ
(Λ̂0 − Λ0)2dy + C2

∫ τ

σ
(Λ̂0 − Λ0)2dy

showing that ∣∣∣∣ ∫ (l̇(Λ̂0)− l̇(Λ0))(p0 − pβ0,Λ̂0
)dµdom(δ, z, x)

∣∣∣∣ ≤ C3

∫ τ

σ
(Λ̂0 − Λ0)2dy

and as before we conclude that
∫

(l̇(Λ̂0) − l̇(Λ0))(p0 − pβ0,Λ̂0
)dµdom(δ, z, x) is op(n−1/2). This

completes the proof that the unbiasedness condition holds.

It only remains to show the asymptotic linearity of the MLE in the efficient score function
– in other words, establishing the representation (3.17). (3.10). Since β̂ maximizes the function

t 7→ Pn log p(t,Λt(β̂, Λ̂))

over t, it follows that:
Pn(l̇(·; β̂, Λ̂, β̂)) = 0 .

Let Gn denote the empirical process
√
n (Pn−P0). By the Donsker property of the class of functions

l̇(·; t,Λ, β) and the consistency of (β̂, Λ̂) we have that:

Gn(l̇(·; β̂, Λ̂, β̂)− l̇(·;β0,Λ0, β0))→P 0 .

The preceding two displays then jointly imply that:

−
√
nP0(l̇(·; β̂, Λ̂, β̂)) = Gn(l̇(·;β0,Λ0, β0)) + op(1) .

By exactly the same arguments as used to show that
√
nP0 l̇(·;β0, Λ̂0, β0)→P 0 we can show that√

nP0 l̇(·;β0, Λ̂, β0) →P 0; we need to replace Λ̂0 everywhere in that chain of arguments by Λ̂ and
use that

∫ τ
σ (Λ̂−Λ0)2(y)dy is Op(n−2/3). Adding

√
nP0 l̇(·;β0, Λ̂, β0) to the left side of the preceding

display and using the fact that it converges in probability to 0 gives

−
√
nP0(l̇(·; β̂, Λ̂, β̂)) +

√
nP0(l̇(·;β0, Λ̂, β0)) = Gn(l̇(·;β0,Λ0, β0)) + op(1) . (4.19)

Now define κ̈(·; t,Λ) = ∂
∂t l̇(·; t,Λ, t). Then,

P0 (κ̈(·; t,Λ)) = P0

[
(∂/∂t)l̇(·; t,Λ, t)

]
= (∂/∂t)P0

[
l̇(·; t,Λ, t)

]
.
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Denote the left side of (4.19) by L. Then

L = −
√
n
[
P0

(
l̇(·; β̂, Λ̂, β̂)

)
− P0

(
l̇(·;β0, Λ̂, β0)

)]
= −

√
n

[
∂

∂t
P0

(
l̇(·; β̃, Λ̂, β̃)

)] (
β̂n − β0

)
= −

√
n

[
P0

(
∂

∂t
l̇(·; t, Λ̂, t) |t=β̃

)] (
β̂n − β0

)
= −

√
n
[
P0

(
κ̈(·; β̃, Λ̂)

)] (
β̂n − β0

)
where β̃ lies between β̂n and β0 and does not depend on (δ, z, x). We now claim that:[

P0

(
κ̈(·; β̃, Λ̂)

)]
→P −I0 ,

as (β̂n, Λ̂n) →P (β0,Λ0). This is proved in the following way. Denote the quantity on the left
hand side of the above display by Mn. It is easy to check that κ̈(·; t,Λ) is uniformly bounded as
(t,Λ) range in a finite neighborhood of (β0,Λ0). Also κ̈(·; t,Λ) → κ̈(·;β0,Λ0) for P0 almost every
x as (t,Λ) → (β0,Λ0). Hence by the DCT P0 (κ̈i(·; t,Λ)) → P0 (κ̈(·;β0,Λ0)) and consequently
P0

(
κ̈(·; β̃, Λ̂n)

)
→P P0 (κ̈(·;β0,Λ0)). Thus Mn →P P0 (κ̈(·;β0,Λ0)). We now need to show that

this equals −I0. Now, ∫
l̇(·;β,Λ, β) p(·;β,Λ) dµdom = 0

for all (β,Λ). Differentiating this relation with respect to β gives:

0 =
∫

∂

∂β

(
l̇(·;β,Λ, β) p(·;β,Λ)

)
dµdom

=
∫
κ̈(·;β,Λ) p(·, β,Λ)dµdom +

∫
l̇(·;β,Λ, β) l̇β(·;β,Λ)p(·;β,Λ)dµdom ,

where l̇β(·;β,Λ) is the ordinary score function for β. For β = β0 and Λ = Λ0 we then have:∫
κ̈(·;β0,Λ0) p(·;β0,Λ0)dµdom = −

∫
l̇(·;β0,Λ0, β0) l̇β(·;β0,Λ0)T p(·;β0,Λ0)dµdom

= −
∫
l̃0

(
l̃0 + l̇β(·;β0,Λ0)− l̃0

)T
p0 dµdom

= −I0

since l̃0 ⊥ l̇β(·;β0,Λ0)− l̃0. This completes the proof of the claim.

Now from (4.19) and the display following it, we have,

−
√
nMn(β̂n − β0) =

√
n (Pn − P0) l̃0 + op(1)

=
√
nPn l̃0 + op(1)
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and this can be rewritten as
√
n
(
β̂n − β0

)
= −M−1

n

√
nPn l̃0 −M−1

n op(1)

= I−1
0

√
nPn l̃0 + op(1)

by Slutsky’s theorem, completing the proof of asymptotic efficiency.

Hence, facts (3.10) and (3.12) are established. The asymptotically linear representation for
β̃n and the limiting χ2 distribution for lrtbeta0

n may be established by similar steps. Some
additional care needs to be exercised, since the parameter space for Λ is now restricted by fixing
the value at the point z0. Roughly the intuition is the following: The unconstrained MLE of β, is√
n–consistent and asymptotically efficient for the given model. The unconstrained likelihood ratio

statisitic for testing β = β0, which we denote by lrtbetan is asymptotically χ2. These properties
will be preserved even when we compute the above statistics under the single (true) constraint that
Λ(z0) = θ0. In fact, the same asymptotic representations for the above statistics will continue to
hold when we constrain Λ at finitely many points. Note however, that the limit distribution of the
MLE will generally be affected under infinitely many constraints on Λ. This is easily seen when we
constrain Λ on the support of Z. In this case Λ is completely known and the asymptotic variance
of β is the inverse of the ordinary information for θ as opposed to the efficient information. 2

Proof–sketch of Theorem 3.2: The proof of this theorem relies on extensive use of
“switching relationships” which allow us to translate the behavior of the slope of the convex
minorant of a random cumulative sum diagram (this is how the estimators ψ̂(β0)

n and ψ̂
(β0)
n,0 are

characterized) in terms of the minimizer of a stochastic process. The limiting behavior of the
slope process can then be studied in terms of the limiting behavior of the minimizer of this
stochastic process by applying argmin continuous mapping theorems. Switching relationships on
the limit process allow interpretation of the behavior of the minimizer of the limit process in
terms of the slope of the convex minorant of the limiting versions of the cumulative sum diagrams
(appropriately normalized).

The first step is to establish finite–dimensional convergence of the processes (Un(h), Vn(h))
to (ga,b(h), g0

a,b(h)). Thus, it is shown that for any (h1, h2, . . . , hk), the random vector(
{Un(hi)}ki=1, {Vn(hi)}ki=1

)
→d

(
{ga,b(hi)}ki=1, {g0

a,b(hi)}ki=1

)
,

in the space R2k. Next, to deduce the convergence in L2[−K,K]×L2[−K,K] note firstly that Un(h)
and Vn(h) are monotone functions. Now, given a sequence (ψn, φn) in L2[−K,K]×L2[−K,K] such
that ψn and φn are monotone functions and (φn, ψn) converges pointwise to (φ, ψ) (where (φ, ψ)
is in L2[−K,K]× L2[−K,K]), we can conclude that (ψn, φn)→ (ψ, φ) in L2[−K,K]× L2[−K,K]
. It follows, in the wake of distributional convergence of all the finite - dimensional marginals of
(Un, Vn) to those of (ga,b(h), g0

a,b(h)), that

(Un(h), Vn(h))→d (ga,b(h), g0
a,b(h))
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in L2[−K,K] × L2[−K,K] (this parallels the result of Corollary 2 following Theorem 3 of Huang
and Zhang (1994)).

In the remainder of this proof we will sketch the proof of convergence of Un(h) to ga,b(h)
for any h; the general proof of finite–dimensional convergence is cumbersome to write out and
contains minor extensions of the ideas expounded here. In what follows, we denote ψ̂(β0)

n by ψ̃.
For a fixed ψ we define the following processes:

Wn,ψ(r) = Pn
[(

∆− exp(ψ(Z) + βT0 X)
1 + exp(ψ(Z) + βT0 X)

)
1(Z ≤ r)

]
,

Gn,ψ(r) = Pn
[(

exp(ψ(Z) + βT0 X)
(1 + exp(ψ(Z) + βT0 X))2

)
1(Z ≤ r)

]
,

and
Bn,ψ(r) = Wn,ψ(r) +

∫ r

0
ψ(z) dGn,ψ(z) .

We will denote by Wn, Gn, Bn the above processes when ψ = ψ̃.

We can now use “the switching relationship” for the unconstrained MLE ψ̃(z) to get:

ψ̃(z) ≤ a⇔ argminr≥0 [Bn(r)− aGn(r)] ≥ Zz (4.20)

where Zz is the largest Z value not exceeding z. By argmin we denote the largest element in the
set of minimizers. This can be chosen to be one of the Zi’s. The above equivalence is a direct
characterization of the fact that the vector {ψ̃(Z(i))}ni=1 is the vector of slopes (left–derivatives) of
the cumulative sum diagram formed by the points {Gn(Z(i)), Bn(Z(i))}ni=0, computed at the points
{Gn(Z(i))}ni=1. The easiest way to verify this is by drawing a picture.

Now, Un(h0) = n1/3 (ψ̃(z0 + h0 n
−1/3)− ψ0(z0)). We want to find

limn→∞ P (n1/3 (ψ̃(z0 + h0 n
−1/3)− ψ0(z0)) ≤ x) .

Now, define
An = {n1/3 (ψ̃(z0 + h0 n

−1/3)− ψ0(z0)) ≤ x} .

Consider the event An. We have

n1/3 (ψ̃(z0 + h0 n
−1/3)− ψ0(z0)) ≤ x ⇔ ψ̃(z0 + h0 n

−1/3) ≤ ψ0(z0) + xn−1/3

⇔ argminr
[
Bn(r)− (ψ0(z0) + xn−1/3)Gn(r)

]
≥ Z(z0+h0 n−1/3)

⇔ argminr
[
Vn(r)− xn−1/3Gn(r)

]
≥ Z(z0+h0 n−1/3) ,
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where the second bidirectional implication in the above display follows from the first on using
(4.20), and Vn(r) = Bn(r)− ψ0(z0)Gn(r). Thus,

An =
{
n1/3

(
argminr

[
Vn(r)− xn−1/3Gn(r)

]
− z0

)
≥ n1/3 (Z(z0+h0 n−1/3) − z0)

}
=

{
argminh

[
Vn(z0 + hn−1/3)− xn−1/3Gn(z0 + hn−1/3)

]
≥ h0 + op(1)

}
= {argminh Mn(h)− xGn(h) ≥ h0 + op(1)} ,

where
Mn(h) = n2/3

[
Vn(z0 + hn−1/3)− Vn(z0)

]
and

Gn(h) = n1/3
[
Gn(z0 + hn−1/3)−Gn(z0)

]
.

The process Mn(h) − xGn(h) converges in the space Bloc(R) (here Bloc(R) is the space of real–
valued functions on the real line that are bounded on every compact set and equipped with the
topology of uniform convergence on compact sets) to the process L(h) ≡ ãW (h) + b̃ h2−xC(z0)h .
Here ã =

√
C(z0), b̃ = ψ′0(z0)C(z0)/2 and W (h) is a fixed two-sided Brownian motion process

starting from 0. This result is obtained by using the fact that the process Mn(h) converges to the
limiting process ãW (h) + b̃ h2 under the topology of uniform convergence on compact sets. The
convergence of Mn(h) can be deduced from the convergence of the process

P̃n,ψ0(h) = n2/3
[
(Bn,ψ0(z0 + hn−1/3)−Bn,ψ0(z0))− ψ0(z0) (Gn,ψ0(z0 + hn−1/3)−Gn,ψ0(z0))

]
to ãW (h) + b̃ h2 along with the fact that suph∈[−M,M ] | ψ̃(z0 + hn−1/3) − ψ0(z0) |= Op(n−1/3)
which entails that suph∈[−K,K] | P̃n,ψ0(h) − Mn(h) |→p 0, for every K > 0. Furthermore, the
process Gn(h) converges uniformly in probability on every [−K,K] to the deterministic process
C(z0)h.

The convergence in distribution of argminh Mn(h) − xGn(h) to argminh L(h) is accomplished by
appealing to an appropriate argmin continuous mapping theorem. The key facts that guarantee
the convergence of the minimizers are (i) the fact that the limiting process possesses a unique
minimizer almost surely and (ii) the minimizers of the finite sample processes are tight. This
involves application of an appropriate “rate theorem” for minimizers of stochastic processes (for
example Theorem 3.2.5 or Theorem 3.4.1 of Van der Vaart and Wellner (1996)). The computations
are tedious but straightforward and skipped here. For a flavor of the key steps involved in
establishing tightness, we refer the reader to Section 3.2.3 of Van der Vaart and Wellner (1996) and
in particular Example 3.2.15 (current status data) which is naturally related to binary regression.

It follows that

limn→∞ P (n1/3 (ψ̃(z0 + h0 n
−1/3)− ψ0(z0)) ≤ x) = P (argminR ãW (h) + b̃ h2 − xC(z0)h ≥ h0) .

(4.21)
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We now use the switching relationships on the limit process. From the work of Groeneboom (1989)
it follows that

argminR ãW (h) + b̃ h2 − xC(z0)h > h0 ⇔ gã,b̃(h0) < xC(z0) ,

with probability one. Therefore,

limn→∞ P (n1/3 (ψ̃(z0 + h0 n
−1/3)− ψ0(z0)) ≤ x) = P (gã,b̃(h0) < xC(z0)) .

On noting that:
1

C(z0)

(
gã,b̃(·), g

0
ã,b̃

(·)
)
≡d (ga,b(·), g0

a,b(·)) ,

with a and b as defined in the statement of the theorem (this follows readily from Lemma 3.1). 2

4.1 Further Details About The Unconstrained And Constrained MLEs From
Section 2

Details of the “self–consistent” characterization of û(β)
n in Section 2: As in Section 2,

we denote the function g(β,u) in the discussion that follows by ξ(u). This is strictly convex in
u ≡ (u1, u2, . . . , un) and for simplicity we denote û(β)

n , its minimizer over the region C := {u :
u1 ≤ u2 ≤ . . . ≤ un}, by û (suppressing the dependence on n and β). Let 5j ξ(u) denote the j’th
partial derivative of ξ with respect to u. Using the Kuhn–Tucker theorem for optimizing a convex
function over a closed convex set, we find that û = (û1, û2, . . . , ûn) is uniquely characterized by the
conditions:

n∑
j=i+1

5j ξ(û) ≥ 0 , for i = 1, 2, . . . , (n− 1) (4.22)

and
n∑
j=1

5j ξ(û) = 0 . (4.23)

Consider now, the following (quadratic) function ξ̃(u) =
1
2

[
u− û +K−1 5 ξ(û)

]T K [u− û +K−1 5 ξ(û)
]

where K is some positive definite matrix.
Note that Hess(ξ̃) = K which is positive definite; thus ξ̃ is a strictly convex function. It is also
finite and continuously differentiable over Rn. Also, 5 ξ̃(u) = K

(
u− û +K−1 5 ξ(û)

)
. Now,

consider the problem of minimizing ξ̃ over C. If u? is the (unique) global minimizer, then necessary
and sufficient conditions are given by conditions (4.22) (for i = 1, 2, . . . , n − 1) and (4.23), with ξ
replaced by ξ̃ and û replaced by u?. Now, 5 ξ̃(û) = 5 ξ(û), so that the vector û ∈ C does indeed
satisfy the conditions (4.22) (for i = 1, 2, . . . , n − 1) and (4.23), with ξ replaced by ξ̃. It follows
that û is the unique minimizer of ξ̃ over C, i.e. u? = û.

It now suffices to try to minimize ξ̃; of course the problem here is that û is unknown and
ξ̃ is defined in terms of û. However, an iterative scheme can be developed along the following
lines. Choosing K to be a diagonal matrix with the i, i’th entry being di ≡ 5ii ξ(û) (K
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thus defined is a p.d. matrix, since the diagonal entries of the Hessian of ξ at the minimizer
û, which is a positive definite matrix, are positive), we see that the above quadratic form
reduces to η(u)/2 where η(u) =

∑n
i=1

[
ui −

(
ûi −5i ξ(û)d−1

i

)]2
di. Thus, û minimizes η(u)

subject to the constraints that u1 ≤ u2 ≤ . . . ≤ un and therefore furnishes the isotonic
regression of the function h(i) = ûi − 5i ξ(û) d−1

i on the ordered set {1, 2, . . . , n} with
weight function di. From the theory of isotonic regression, it is well known that the solution
û ≡ (û1, û2, . . . , ûn) = slogcm

{∑i
j=1 di ,

∑i
j=1 h(i) di

}n
i=0

. This representation leads to the
MICM as outlined in Section 2.

Implications of the self–consistent/self–induced characterization of û(β)
n : Recall

that û(β)
n = (û(β)

1,n, û
(β)
2,n, . . . , û

(β)
n,n). Let B1, B2, . . . , Bk be the unique partitioning of 1, 2, . . . , n

into ordered blocks of indices (say B1 = {1, 2, . . . , l1}, B2 = {l1 + 1, l1 + 2, . . . , l2} and so on)
such that, for each i, for all j ∈ Bi, û

(β)
j,n equals wi, with the common block values, the wi’s,

satisfying w1 < w2 < . . . < wk. Since the û(β)
j,n ’s are increasing in j, this is possible. An important

consequence of the self–consistent characterization is the fact that each wi can be written as a
weighted average of the h(j)’s for the j’s in Bi, with the weights given by the dj ’s. The Bi’s are
called the level blocks of û(β)

n and the wi’s are called the level values.
We now introduce some notation that will be useful in the proof of Theorem 3.3. Denote
φ(∆(i), Ri(β), t) by φi,β(t) and its first and second derivatives with respect to t by φ′i,β(t) and

φ′′i,β(t). Identifying the function ψ̂
(β)
n with the vector û(β)

n in the usual fashion, we can write

ψ̂(β)
n ≡ slogcm


k∑
i=1

φ′′i,β(ψ̂(β)
n (Z(i))) ,

k∑
i=1

ψ̂(β)
n (Z(i))−

φ′i,β(ψ̂(β)
n (Z(i)))

φ′′i,β(ψ̂(β)
n (Z(i)))

 φ′′i,β(ψ̂(β)
n (Z(i)))


n

k=0

.

Hence, we can write wi as

wi = ψ̂(β)
n (Z(j)) =

∑
k∈Bi {ψ̂

(β)
n (Z(k))φ′′k,β(ψ̂(β)

n (Z(k)))− φ′k,β(ψ̂(β)
n (Z(k)))}∑

k∈Bi φ
′′
k,β(ψ̂(β)

n (Z(k)))
for j ∈ Bi . (4.24)

Further details about û(β)
n,0: The vector û(β)

n,0, which we identify with ψ̂
(β)
n,0 (as explained in

Section 2) also has a self–consistent/self–induced characterization in terms of the slope of the
greatest convex minorant of a random function. This follows in the same way as in the case
of û(β)

n by formulating a quadratic optimization problem based on the Kuhn–Tucker conditions
for the corresponding minimization problem. We skip the details but give the self-consistent
characterization. As before, we abbreviate g(β,u) to ξ(u), suppressing the dependence on β.
We also abbreviate û(β)

n,0 to û(0). For each i, set di = 5ii ξ(û(0)). Then, û(0) minimizes,

A(u1, u2, . . . , un) =
∑n

i=1

[
ui −

(
û

(0)
i −5i ξ(û(0))d−1

i

)]2
di subject to the constraints that u1 ≤

u2 ≤ . . . ≤ um ≤ θ0 ≤ um+1 ≤ . . . ≤ un. Let B̃1, B̃2, . . . , B̃l denote the level blocks of û(β)
n,0 and let
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{w̃i}li=1 denote the corresponding level values. Then, as long as w̃i 6= θ0, it can be written as

w̃i = ψ̂
(β)
n,0(Z(j)) =

∑
k∈B̃i {ψ̂

(β)
n,0(Z(k))φ′′k,β(ψ̂(β)

n,0(Z(k)))− φ′k,β(ψ̂(β)
n,0(Z(k)))}∑

k∈B̃i φ
′′
k,β(ψ̂(β)

n,0(Z(k)))
for j ∈ B̃i . (4.25)

This representation is once again, a direct outcome of the self–induced characterization, and will
prove useful in what follows.

4.2 Proof of Theorem 3.3

The likelihood ratio statistic of interest can be written as

lrtpsin = 2 (ln(β̂n, ψ̂n)− ln(β̂n,0, ψ̂n,0))

= 2 (ln(β0, ψ̂
(β0)
n )− ln(β0, ψ̂

(β0)
n,0 )) + 2 (ln(β̂n, ψ̂n)− ln(β0, ψ̂

(β0)
n ))− 2(ln(β̂n,0, ψ̂n,0)− ln(β0, ψ̂

(β0)
n,0 )) .

It will follow from Theorem 3.1 that

R̃n ≡ 2 (ln(β̂n, ψ̂n)− ln(β0, ψ̂
(β0)
n ))− 2(ln(β̂n,0, ψ̂n,0)− ln(β0, ψ̂

(β0)
n,0 ))

is op(1) whence it suffices to find the asymptotic distribution of

Cn = 2 (ln(β0, ψ̂
(β0)
n )− ln(β0, ψ̂

(β0)
n,0 )) .

This is precisely the likelihood ratio statistic for testing ψ(z0) = θ0 holding β fixed at its true value
β0. We can write Cn as,

Cn = 2

[
n∑
i=1

φ(∆(i), Ri(β0), ψ̂(β0)
n,0 (Z(i)))−

n∑
i=1

φ(∆(i), Ri(β0), ψ̂(β0)
n (Z(i)))

]

where φ is as defined in (??). For the sake of notational compactness, in the remainder of the
proof, we will write ψ̂(β0)

n (Z(i)) as ψ̃(Z(i)), ψ̂
(β0)
n,0 (Z(i)) as ψ̃0(Z(i)), and φ(∆(i), Ri(β0), t) as φi(t).

Furthermore ∂/∂ t φ(∆(i), Ri(β0), t) will be written as φ′i(t) and so on. The set of indices i on which
ψ̃(Z(i)) and ψ̃0(Z(i)) differ is denoted by Jn. Now, Cn = −2Tn where

Tn =
n∑
i=1

φi(ψ̃(Z(i)))−
n∑
i=1

φi(ψ̃0(Z(i)))

=
∑
i∈Jn

φi(ψ̃(Z(i)))−
∑
i∈Jn

φi(ψ̃0(Z(i)))

=
∑
i∈Jn

φ
′
i(ψ0(z0)) [(ψ̃(Z(i))− ψ0(z0))− (ψ̃0(Z(i))− ψ0(z0))]

+
∑
i∈Jn

1
2
φ
′′
i (ψ0(z0))

[
(ψ̃(Z(i))− ψ0(z0))2 − (ψ̃0(Z(i))− ψ0(z0))2

]
+Rn

≡ Tn,1 + Tn,2 +Rn ,
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by Taylor–expanding φi(t) around ψ0(z0). Here,

Rn =
∑
i∈Jn

1
6
φ
′′′
i (ψ̃(Z(i))

?)
(
ψ̃(Z(i))− ψ0(z0)

)3
−
∑
i∈Jn

1
6
φ
′′′
i (ψ̃0(Z(i))

?)
(
ψ̃0(Z(i))− ψ0(z0)

)3

(where ψ̃(Z(i))? is some point between ψ̃(Z(i)) and ψ0(z0) and ψ̃0(Z(i))? is some point between
ψ̃0(Z(i)) and ψ0(z0)) and can be shown to converge to 0 in probability by using the facts that (a)
supi∈Jn | φ

′′′
i (ψ̃(Z(i))?) | and supi∈Jn | φ

′′′
i (ψ̃0(Z(i))?) | are Op(1), (b) supz∈Dn | ψ̃(z)−ψ0(z0) | and

supz∈Dn | ψ̃0(z)−ψ0(z0) | are Op(n−1/3) where Dn is the set on which ψ̃ and ψ̃0 differ, and (c) the
length of Dn is Op(n−1/3). Now consider Tn,2. Once again, by Taylor expansion, we have

Tn,2 ≡
∑
i∈Jn

1
2
φ
′′
i (ψ0(z0))

[
(ψ̃(Z(i))− ψ0(z0))2 − (ψ̃0(Z(i))− ψ0(z0))2

]
=

∑
i∈Jn

1
2
φ
′′
i (ψ̃(Z(i)))[ψ̃(Z(i))− ψ0(z0)]2 −

∑
i∈Jn

1
2
φ
′′
i (ψ̃0(Z(i)))[ψ̃0(Z(i))− ψ0(z0)]2

+op(1) . (4.26)

Now consider,

Tn,1 ≡
∑
i∈Jn

φ
′
i(ψ0(z0))(ψ̃(Z(i))− ψ0(z0))−

∑
i∈Jn

φ
′
i(ψ0(z0)) (ψ̃0(Z(i))− ψ0(z0)) ≡ S1 − S2 .

Consider the term S2. Note that for each i ∈ Jn, we can write:

φ
′
i(ψ0(z0)) = φ

′
i(ψ̃0(Z(i))) + (ψ0(z0)− ψ̃0(Z(i)))φ

′′
i (ψ̃0(Z(i))) +

1
2
φ
′′′
i (ψ̃0(Z(i))

? ?)(ψ0(z0)− ψ̃0(Z(i)))
2

where ψ̃0(Z(i))? ? is a point between ψ̃0(Z(i)) and ψ0(z0). We then have,

S2 =
∑
i∈Jn

[
φ
′
i(ψ̃0(Z(i))) + (ψ0(z0)− ψ̃0(Z(i)))φ

′′
i (ψ̃0(Z(i))) +

1
2
φ
′′′
i (ψ̃0(Z(i))

? ?)(ψ0(z0)− ψ̃0(Z(i)))
2

]
= ×(ψ̃0(Z(i))− ψ0(z0))

=
∑
i∈Jn

[
φ
′
i(ψ̃0(Z(i))) + (ψ0(z0)− ψ̃0(Z(i)))φ

′′
i (ψ̃0(Z(i)))

]
(ψ̃0(Z(i))− ψ0(z0)) + op(1)

= −
∑
i∈Jn

φ
′′
i (ψ̃0(Z(i)))

[
ψ̃0(Z(i))−

φ
′
i(ψ̃0(Z(i)))

φ
′′
i (ψ̃0(Z(i)))

− ψ0(z0)

]
(ψ̃0(Z(i))− ψ0(z0)) + op(1) ,

where the fact that the term involving φ
′′′
i is op(1) is deduced by arguments similar to those needed

to show that Rn is op(1). Now, let B0
1 , B

0
2 , . . . , B

0
r denote the level blocks for ψ̃0(Z(i)) that constitute
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Jn, with level values w0
1, w

0
2, . . . , w

0
r and suppose that w0

l = ψ0(z0) ≡ θ0. Then,

S2 + op(1) = −
r∑
j=1

∑
i∈Bj

[
φ
′′
i (ψ̃0(Z(i)))

(
ψ̃0(Z(i)))−

φ
′
i(ψ̃0(Z(i)))

φ
′′
i (ψ̃0(Z(i)))

)
− ψ0(z0)φ

′′
i (ψ̃0(Z(i)))

]
×(ψ̃0(Z(i))− ψ0(z0))

= −
r∑
j=1

∑
i∈Bj

[
φ
′′
i (w0

j )

(
w0
j −

φ
′
i(w

0
j )

φ
′′
i (w0

j )

)
− ψ0(z0)φ

′′
(w0

j )

]
(w0

j − ψ0(z0))

= −
∑
j 6=l

(w0
j − ψ0(z0))

∑
i∈Bj

(φ
′′
i (w0

j )w
0
j − φ

′
i(w

0
j ))− ψ0(z0)

∑
i∈Bj

φ
′′
i (w0

j )


= −

∑
j 6=l

(w0
j − ψ0(z0))

∑
i∈Bj

φ
′′
i (w0

j )

 [∑
i∈Bj (φ

′′
i (w0

j )w
0
j − φ

′
i(w

0
j ))∑

i∈Bj φ
′′
i (w0

j )
− ψ0(z0)

]
= −

∑
j 6=l

∑
i∈Bj

φ
′′
i (w0

j ) (w0
j − ψ0(z0))2 ,

where this last step follows from the following observation: If B′ is a level block for ψ̃0 contained
in Jn with level value w(0), then

w(0) =
∑

k∈B′ (w
(0) φ

′′
k(w(0))− φ′k(w(0)))∑

k∈B′ φ
′′
k(w(0))

.

provided w(0) 6= θ0. This is a direct consequence of the representation (4.25). It follows that

S2 + op(1) = −
∑
j 6=l

∑
i∈Bj

φ
′′
i (w0

j ) (w0
j − ψ0(z0))2

= −
r∑
j=1

∑
i∈Bj

φ
′′
i (w0

j ) (w0
j − ψ0(z0))2

= −
r∑
j=1

∑
i∈Bj

φ
′′
i (ψ̃0(Z(i))) (ψ̃0(Z(i))− ψ0(z0))2

= −
∑
i∈Jn

φ
′′
i (ψ̃0(Z(i))) (ψ̃0(Z(i))− ψ0(z0))2 .

It is similarly established (using (4.24)) that

S1 + op(1) = −
∑
i∈Jn

φ
′′
i (ψ̃(Z(i))) (ψ̃(Z(i))− ψ0(z0))2 .

It follows that

Tn,1 = −
∑
i∈Jn

φ
′′
i (ψ̃(Z(i))) (ψ̃(Z(i))− ψ0(z0))2 +

∑
i∈Jn

φ
′′
i (ψ̃0(Z(i))) (ψ̃0(Z(i))− ψ0(z0))2 + op(1) .
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Now, on using (4.26) and the fact that Rn is op(1) we get

Tn = Tn,1 + Tn,2 + op(1)

= −1
2

∑
i∈Jn

φ
′′
i (ψ̃(Z(i))) (ψ̃(Z(i))− ψ0(z0))2 +

1
2

∑
i∈Jn

φ
′′
i (ψ̃0(Z(i))) (ψ̃0(Z(i))− ψ0(z0))2 + op(1) ,

whence

Cn = −2Tn =
∑
i∈Jn

φ
′′
i (ψ̃(Z(i))) (ψ̃(Z(i))− ψ0(z0))2 −

∑
i∈Jn

φ
′′
i (ψ̃0(Z(i))) (ψ̃0(Z(i))− ψ0(z0))2 + op(1)

=
∑
i∈Jn

φ
′′
i (ψ0(Z(i))) (ψ̃(Z(i))− ψ0(z0))2 −

∑
i∈Jn

φ
′′
i (ψ0(Z(i))) (ψ̃0(Z(i))− ψ0(z0))2 + op(1) .

Now,

φ
′′
i (ψ0(Z(i))) =

exp(ψ0(Z(i)) + βT0 X(i))
(1 + exp(ψ0(Z(i)) + βT0 X(i)))2

,

whence

Cn =
∑
i∈Jn

exp(ψ0(Z(i)) + βT0 X(i))
(1 + exp(ψ0(Z(i)) + βT0 X(i)))2

[
(ψ̃(Z(i))− ψ0(z0))2 − (ψ̃0(Z(i))− ψ0(z0))2

]
+ op(1)

= n1/3 (Pn − P ) ξn(δ, z, x) + n1/3 P ξn(δ, z, x) + op(1)

where Pn is the empirical measure of the observations {∆i, Zi, Xi}ni=1, P denotes the true underlying
distribution of (∆, Z,X), ξn is the random function given by

ξn(δ, z, x) =
exp(ψ0(z) + βT0 x)

(1 + exp(ψ0(z) + βT0 x))2

[
(n1/3(ψ̃(z)− ψ0(z0)))2 − (n1/3 (ψ̃0(z)− ψ0(z0)))2

]
1(z ∈ Dn) .

We are using operator notation here for expectations; thus Pn g denotes the expectation of g under
the measure Pn and P g denotes the expectation of g under the measure P . The function g is
allowed to be a random function. Now,

n1/3 (Pn − P ) ξn(δ, z, x) = n−1/6√n (Pn − P ) ξn(δ, z, x) .

Using the facts that (i) Dn is eventually contained in a set of the form [z0−M n−1/3, z0 +M n−1/3]
with arbirtrarily high preassigned probability (ii) the processes Un and Vn are Op(1) on compacts
and monotone increasing, along with standard preservation properties of Donsker classes of
functions, it can be argued that with arbitrarily high preassigned probability, the function
ξn(δ, z, x) lies in a Donsker class, whence it follows that

√
n (Pn − P ) ξn(δ, z, x) is Op(1);

consequently n1/3 (Pn − P ) ξn(δ, z, x) is Op(n−1/6) and hence op(1).

To find the asymptotic distribution of Cn we can therefore concentrate on the asymptotic
distribution of

n1/3 P ξn(δ, z, x) = n1/3 P [h(z, x)Kn(z)]

31



where
Kn(z) =

[
(n1/3(ψ̃(z)− ψ0(z0)))2 − (n1/3(ψ̃0(z)− ψ0(z0)))2

]
1(Z ∈ Dn)

and

h(z, x) =
exp(ψ0(z) + βT0 x)

(1 + exp(ψ0(z) + βT0 x))2
.

Thus,

n1/3 P ξn(δ, z, x) = n1/3 P [Kn(z)h(z, x)]

= n1/3

∫
Dn

Kn(z)E(h(Z,X) | Z = z) fZ(z) dz

= n1/3

∫
D̃n

Kn(z0 + hn−1/3)w(z0 + hn−1/3) fZ(z0 + hn−1/3) dh

where h = n1/3 (z − z0), D̃n = n1/3 (Dn − z0) and w(z) = E(h(Z,X) | Z = z). Now note that,

Kn(z0 + hn−1/3) = (U2
n(h)− V 2

n (h)) 1 (h ∈ D̃n)

where D̃n is the set on which Un and Vn differ. Now, note that w is continuous in z and is given
by:

w(z) =
∫

exp(ψ0(z) + βT0 x)
(1 + exp(ψ0(z) + βT0 x))2

f(z, x)
fZ(z)

dµ(x) .

On using the facts that D̃n is eventually contained with arbitrarily high probability in a compact
set and the boundedness in probability of the processes Un and Vn on compacts along with the
continuity of the functions w and fZ , we get,

n1/3 P ξn(δ, z, x) =
∫

w(z0) fZ(z0) (U2
n(h)− V 2

n (h)) dh+ op(1) .

But C(z0) = w(z0) fZ(z0) = 1/a2 where a is as defined in Theorem 3.2. An application of Theorem
3.2 and Slutsky’s theorem yields

n1/3 P ξn(δ, z, x)→d
1
a2

∫ (
(ga,b(h))2 − (g0

a,b(h))2
)
dh ,

and the fact that
1
a2

∫ (
(ga,b(h))2 − (g0

a,b(z))
2
)
dh ≡d

∫ (
(g1,1(h))2 − (g0

1,1(z))2
)
dh ≡ D

follows as a direct application of Lemma 3.1 followed by the change of variable theorem from
calculus.

It remains to show that

R̃n = 2 (ln(β̂n, ψ̂n)− ln(β0, ψ̂
β0
n ))− 2(ln(β̂n,0, Λ̂n,0)− ln(β0, ψ̂

β0
n,0))

≡ 2 (ln(β̂n, Λ̂n)− ln(β0, Λ̂β0
n ))− 2(ln(β̂n,0, Λ̂n,0)− ln(β0, Λ̂

β0
n,0))
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is op(1). This is precisely lrtbetan − lrtbeta0
n. From Theorem 3.1 we get:

lrtbetan − lrtbeta0
n = n (β̂n − β0)T Ĩ0 (β̂n − β0)− n (β̃n − β0)T Ĩ0 (β̃n − β0) + op(1)

= n (β̂n − β̃n)T Ĩ0 (β̂n − β̃n) + 2n (β̃n − β0)T Ĩ0 (β̂n − β̃n) + op(1)

=
√
n (β̂n − β̃n)T Ĩ0

√
n (β̂n − β̃n) + 2

√
n (β̃n − β0)T Ĩ0

√
n(β̂n − β̃n) + op(1)

≡ In + IIn + op(1) .

The fact that In is op(1) follows from the observation that
√
n (β̂n − β̃n) = rn − sn, which is op(1)

(by Theorem 3.1). The fact that IIn is op(1) follows on using the facts that
√
n (β̂n − β̃n) is op(1)

and that
√
n (β̃n − β0) is Op(1). 2
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