Contiguity Theory – 1.

February 10, 2003

Consider a sequence of statistical problems with measure spaces $(\mathcal{X}_n, \mathcal{A}_n, \mu_n)$ (for the sake of concreteness and as is the case in many statistical applications, you can think of \mathcal{X}_n as \mathbb{R}^n, \mathcal{A}_n as the Borel sigma-field on \mathbb{R}^n and μ_n as Lebesgue measure). Consider two sequences of probability measures $\{P_n\}$ and $\{Q_n\}$ with P_n and Q_n being defined on \mathcal{A}_n and both being dominated by μ_n. Recall that this means that whenever $\mu_n(A_n) = 0$ for $A_n \in \mathcal{A}_n$ then $P_n(A_n) = Q_n(A_n) = 0$. Let p_n and q_n denote the densities of P_n and Q_n respectively with respect to μ_n (which exist by the Radon–Nikodym theorem). Define the sequence of likelihood ratios L_n where

$$L_n = \begin{cases} q_n/p_n, & p_n > 0 \\ 1, & q_n = p_n = 0 \\ n, & q_n > 0 = p_n \end{cases}.$$

Call the sequence $\{Q_n\}$ to be continuous with respect to $\{P_n\}$ if, for every sequence $A_n \in \mathcal{A}_n$ for which $P_n(A_n) \to 0$, we have $Q_n(A_n) \to 0$. Contiguity is also referred to as “asymptotic absolute continuity”. We write $\{Q_n\} \ll_{as} \{P_n\}$ (this is different from the symbol used in Wellner and in general. I can’t recall the latex command for that symbol right now). Of course contiguity of P_n with respect to Q_n is defined similarly. P_n and Q_n are mutually continuous with respect to each other if Q_n is continuous with respect to P_n and P_n is also continuous with respect to Q_n.

Example 1: Contiguity is ubiquitous in parametric models. For any sufficiently regular parametric model $\{P_\theta : \theta \in \Theta\}$, the measures $\{P_n^{\theta+n^{-1/2}h}\}$ ($P_n^{\theta+n^{-1/2}h}$ is the joint distribution of i.i.d. observations X_1, X_2, \ldots, X_n drawn from $P_\theta^{\theta+h+n^{-1/2}h}$) and $\{P_n^{\theta}\}$ (defined similarly as before but with $h = 0$) are mutually continuous. This will be established later in detail.

Example 2: Consider a regression model $Y_i = x_i \beta + \epsilon_i$ where the ϵ_i’s are i.i.d. $N(0, \sigma^2)$ and $\sum_{i=1}^{\infty} x_i^2 < \infty$. Let P_n denote the joint distribution of (Y_1, Y_2, \ldots, Y_n) under $\beta = \beta_0$ and Q_n denote the joint distribution of the data under $\beta = \beta_1$. Then, the sequences P_n and Q_n are mutually contiguous.

Example 3: For contiguous alternatives in non-regular non-parametric problems, see Problem 4 of Homework 2.
We will denote \(L_n \) often by \(dQ_n/dP_n \). The following proposition describes various conditions (sufficient, necessary and sufficient) for contiguity.

Proposition 0. Contiguity and the behavior of likelihood ratios.

(i) If \(L_n \to_d V \) under \(P_n \) where \(EV = 1 \), then \(Q_n \ll_{a.s} P_n \). (This proposition is known as Le Cam’s first lemma and is one of the most important tools for establishing contiguity. We discuss a key corollary of this lemma very soon that we will use quite a lot subsequently).

(ii) If \(L_n \to_d U \) under \(P_n \) where \(P(U > 0) = 1 \), then \(P_n \ll_{a.s} Q_n \).

(iii) \(Q_n \ll_{a.s} P_n \) if and only if \(L_n \) is uniformly integrable under \(P_n \) and \(Q_n(p_n = 0) \to 0 \).

We will not bother with the proofs of these lemmas, which are rather technical. Instead let’s try to get a feel for contiguity from the following partially heuristic discussion. Let’s split up the sample space \(\mathcal{X}_n \) into 4 pieces – these are, (i) \(A_n = \{ p_n > 0, q_n > 0 \} \) (ii) \(B_n = \{ p_n = 0, q_n > 0 \} \) (iii) \(C_n = \{ q_n = 0, p_n > 0 \} \) (iv) \(D_n = \{ q_n = 0 = p_n \} \). On \(A_n \), \(0 < L_n < \infty \), on \(B_n \), \(L_n = n \), on \(C_n \), \(L_n = 0 \) (by definition), on \(D_n \), \(L_n = 1 \). Now, note that the sets \(D_n \) do not really play a role in determining contiguity since they are ignorable under both \(P_n \) and \(Q_n \), so we can forget that they exist and take \(B_n \) to be the set where \(p_n \) vanishes and \(C_n \) to be the set where \(q_n \) vanishes.

For \(Q_n \ll_{a.s} P_n \) we must have \(Q_n(B_n) \to 0 \) (since \(P_n(B_n) \equiv 0 \)) and for \(P_n \ll_{a.s} Q_n \) we require that \(P_n(C_n) \to 0 \). (Thus, if \(P_n \) and \(Q_n \) are mutually contiguous, they must both asymptotically concentrate on \(A_n \), the subregion of \(\mathcal{X}_n \) where \(p_n \) and \(q_n \) are both positive.) If \(Q_n \) is contiguous with respect to \(P_n \), the likelihood ratio of \(Q_n \) w.r.t. \(P_n \) cannot escape to infinity in the limit, with positive probability under \(Q_n \). On the other hand, if \(P_n \) is contiguous w.r.t. \(Q_n \), \(P_n(L_n = 0) \) goes to 0; so, the likelihood ratio in the limit cannot concentrate at 0 with positive probability under \(P_n \). This is compatible with the assertion made in (ii) of Proposition 0 (it better be!!) which says that \(P_n \) is contiguous w.r.t. \(Q_n \), the limit (in law) of \(L_n \) under \(P_n \) is a strictly positive random variable. It is easy to deduce that \(P_n(L_n = 0) \) must go to 0 under the hypothesis of (ii).

To show this: since \(L_n \) converges to \(U \) in distribution, by the Portmanteau Theorem (look up the characterization of distributional convergence in Billingsley, for example),

\[
\lim \inf P_n(L_n \in (0, \infty)) \geq P(U \in (0, \infty)).
\]

But the right-side of the display is 1 showing that the \(\lim \inf \) on the left side is at least as large as 1. But the sequence on the left side is a sequence of probabilities and hence bounded above by 1. Therefore the \(\lim \sup \) cannot exceed 1. It follows that both the \(\lim \sup \) and the \(\lim \inf \) coincide and are equal to 1 and hence \(P_n(L_n \in (0, \infty)) \) goes to 1. It follows that \(P_n(L_n = 0) \) goes to 0.

On the other hand, it is easy to see that (i) implies that \(Q_n(p_n = 0) \) must converge to 0, provided that \(L_n \) is uniformly integrable under \(P_n \) (as it must be if you look at (i) and (iii) in juxtaposition). Note that,

\[
E_{P_n}(L_n) = \int_{p_n > 0} \frac{q_n}{P_n} p_n \, d\mu = Q_n(p_n > 0) \leq 1.
\]
If L_n is uniformly integrable under P_n, then $E_{P_n}(L_n)$ converges to $EV = 1$. Thus $Q_n(p_n > 0)$ converges to 1. It follows that $Q_n(p_n = 0) = 1 - Q_n(p_n > 0)$ converges to 0.

We now discuss a key corollary of Le Cam’s first lemma.

Corollary to Le Cam’s first lemma: Suppose that $\log L_n \to_d \tilde{L}$ under P_n where \tilde{L} follows $N(-\sigma^2/2, \sigma^2)$. Then the sequences of probability measures P_n and Q_n are mutually contiguous.

Proof: We have $L_n \to_d \exp(\tilde{L})$ under P_n. Since $\exp(\tilde{L}) \equiv U$ is positive with probability 1, by (ii) of Proposition 0, P_n is contiguous with respect to Q_n. To show the converse, note that $E(\exp(\tilde{L}) = \phi_L(1)$ where ϕ_L is the moment-generating function of L. Now,

$$\phi_L(t) = \exp \left(\mu t + \frac{1}{2} \sigma^2 t^2 \right),$$

where μ is the mean of L and σ^2 the variance. But $\mu = -\sigma^2/2$, so

$$\phi_L(1) = \exp \left(-\frac{1}{2} \sigma^2 + \frac{1}{2} \sigma^2 \right) = 1.$$

The desired conclusion now follows from (i) of Proposition 0.

Let us illustrate the above corollary on Example 2. We can write,

$$\log L_n = \log \frac{\prod_{i=1}^n \left(\frac{1}{\sqrt{2\pi} \sigma^2} \right) \exp \left[\frac{-1}{2 \sigma^2} \sum_{i=1}^n (Y_i - x_i \beta_1)^2 \right]}{\prod_{i=1}^n \left(\frac{1}{\sqrt{2\pi} \sigma^2} \right) \exp \left[\frac{-1}{2 \sigma^2} \sum_{i=1}^n (Y_i - x_i \beta_0)^2 \right]}$$

$$= -\frac{1}{2 \sigma^2} \sum_{i=1}^n [(Y_i - x_i \beta_1)^2 - (Y_i - x_i \beta_0)^2]$$

$$= \sum_{i=1}^n \frac{Y_i x_i (\beta_1 - \beta_0)}{\sigma^2} - \frac{1}{2} \sum_{i=1}^n \frac{x_i^2 (\beta_1^2 - \beta_0^2)}{2 \sigma^2}.$$

Now, under P_n, $Y_i x_i \sim N(x_i^2 \beta_0, x_i^2 \sigma^2)$ and are independent and simple algebra shows that

$$\sum_{i=1}^n \frac{Y_i x_i (\beta_1 - \beta_0)}{\sigma^2} \sim N \left(\frac{\beta_0 (\beta_1 - \beta_0)}{\sigma^2} \sum_{i=1}^n x_i^2, \frac{(\beta_1 - \beta_0)^2}{\sigma^2} \sum_{i=1}^n x_i^2 \right).$$

Thus,

$$\log L_n \sim N \left(\left[\frac{\beta_0 (\beta_1 - \beta_0)}{\sigma^2} - \frac{\beta_0^2 - \beta_0^2}{\sigma^2} \right] \sum_{i=1}^n x_i^2, \frac{(\beta_1 - \beta_0)^2}{\sigma^2} \sum_{i=1}^n x_i^2 \right)$$

$$\equiv N \left(-\frac{\sum_{i=1}^n x_i^2 (\beta_1 - \beta_0)^2}{2 \sigma^2}, \frac{\sum_{i=1}^n x_i^2 (\beta_1 - \beta_0)^2}{\sigma^2} \right)$$

$$\equiv N \left(-\frac{\tau_n^2}{2}, \tau_n^2 \right)$$
where
\[\tau_n^2 = \frac{\sum_{i=1}^{n} x_i^2}{\sigma^2} (\beta_1 - \beta_0)^2. \]

Thus,
\[\log L_n \to d N \left(\lim_{n} - \frac{\tau_n^2}{2}, \lim_{n} \tau_n^2 \right) \equiv N \left(-\frac{\tau^2}{2}, \tau^2 \right), \]

under \(P_n \), where
\[\tau^2 = \sum_{i=1}^{\infty} \frac{x_i^2}{\sigma^2} (\beta_1 - \beta_0)^2 < \infty. \]

It follows from a direct application of the corollary above that \(P_n \) and \(Q_n \) are mutually contiguous. One can similarly work out the limit distribution of \(\log L_n \) under \(Q_n \). Check for yourselves that under \(Q_n \), \(\log L_n \) converges to \(N(\tau^2/2, \tau^2) \).

We will now discuss Le Cam’s second lemma and its applications which will involve establishing a LAN (local asymptotic normality) expansion of the log–likelihood ratios in a regular parametric model. (Example 1).

The Set-Up of Le Cam’s second lemma: Consider a measure space \((\mathcal{X}, \mathcal{A}, \mu)\) and let \(\mathbf{X}_n = (X_1, X_2, \ldots, X_n) \in \mathcal{X}_n \equiv \mathcal{X}^n \) with the product sigma-field \(\mathcal{A}^n \) and probability measure \(\mu_n \equiv \mu^n \) defined on it. Consider two sequences of measures \(\{P_n\} \) and \(\{Q_n\} \) where \(P_n = \prod_{i=1}^{n} P_{ni} \), \(P_{ni} \) being some measure on \((\mathcal{X}, \mathcal{A})\) that is dominated by \(\mu \) and has density \(f_{ni} \) and where \(Q_n = \prod_{i=1}^{n} Q_{ni} \), \(Q_{ni} \) being some measure on \((\mathcal{X}, \mathcal{A})\) that is dominated by \(\mu \) and has density \(g_{ni} \). The density of \(P_n \) with respect to \(\mu^n \) is
\[p_n(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} f_{ni}(x_i) \]
and the density of \(Q_n \) with respect to \(\mu^n \) is
\[q_n(x_1, x_2, \ldots, x_n) = \prod_{i=1}^{n} g_{ni}(x_i). \]

Statistically, you can think of \(n \) independent observations from an underlying sample space with two possible candidates for the distribution of the \(i \)’th observation at stage \(n \) – either \(P_{ni} \) [think of this as the null distribution at stage \(n \)] or \(Q_{ni} \) [think of this as the alternative at stage \(n \)] and \(P_n \) and \(Q_n \) denote the joint distributions of the observed random vector \(\mathbf{X}_n \) under the null and the alternative respectively [at stage \(n \)]. Fundamental to a study of the contiguity of these two sequences of probability measures is an understanding of the likelihood ratio or equivalently its logarithm,
\[\log L_n = \sum_{i=1}^{n} \log \left(\frac{g_{ni}(X_i)}{f_{ni}(X_i)} \right). \]

A way to determine contiguity is to study the limiting behavior of \(L_n \) (or equivalently \(\log L_n \)). Le Cam’s second lemma gives a way of doing this by analysing quantities of the type,
\[W_n \equiv 2 \sum_{i=1}^{n} \left(\frac{g_{ni}^{1/2}(X_i)}{f_{ni}^{1/2}} - 1 \right) \equiv \sum_{i=1}^{n} T_{ni}. \]
This is the sum of independent random variables and provided variances do not blow up, there is hope of invoking Central Limit Theorems. Note that each T_{ni} has finite variance under P_n, since

$$E_{P_n} (T_{ni} + 1)^2 = E (g_{ni}(X_i)/f_{ni}(X_i)) = \int_{f_{ni} > 0} g_{ni} d\mu \leq 1.$$

Le Cam’s second lemma reduces the proof of asymptotic normality of $\log L_n$ to the problem of establishing asymptotic normality of the sequence W_n.

Le Cam’s second lemma: Suppose that the following condition (the UAN (uniform asymptotic negligibility) condition) holds:

$$\max_{1 \leq i \leq n} P_n \left(\left| \frac{g_{ni}(X_i)}{f_{ni}(X_i)} - 1 \right| > \varepsilon \right) \to 0.$$

Suppose also that W_n converges in distribution to $N(-\sigma^2/4, \sigma^2)$ for some $\sigma^2 > 0$. Then,

$$\log L_n - (W_n - \sigma^2/4) = o_{P_n}(1)$$

and hence

$$\log L_n \to_d N(-\sigma^2/2, \sigma^2)$$

under P_n showing thereby that Q_n and P_n are mutually contiguous.

We will not prove this lemma here. The proof is long and provided in Wellner’s notes. However, we will study an important consequence of this lemma. We specialise to the case of i.i.d. observations. Thus, at stage n, X_1, X_2, \ldots, X_n are i.i.d f under P_n (thus $f_{ni} = f$) and under Q_n, they are i.i.d. f_n (thus $g_{ni} = f_n$). Before we proceed any further, a few preliminaries.

By $L_2(\mu)$ we will denote the set of real-valued functions defined on X that are square-integrable. Thus,

$$L_2(\mu) = \left\{ f : \int_X f^2 d\mu < \infty \right\}.$$

We will view this as a linear inner-product space, where the inner product between f and g, which we denote by the slightly unconventional $IP(f, g)$, is given by

$$IP(f, g) = \int f g d\mu.$$

The size or norm of an element f is measured by,

$$\| f \|_\mu = \sqrt{IP(f, f)} = \sqrt{\int f^2 d\mu}.$$
Often we will just denote the norm of \(f \) by \(\| f \| \), dropping the subscript \(\mu \). Two elements \(f \) and \(g \) are said to be orthogonal if \(IP(f, g) = 0 \). We will be using the identity,

\[
\| f + g \|^2 = \| f \|^2 + \| g \|^2 + 2 IP(f, g).
\]

The distance between two functions \(f \) and \(g \) is measured by

\[
d(f, g) = \| f - g \|.
\]

This is indeed a valid metric, since for a normed linear space (as \(\mathcal{L}_2(\mu) \) is), we have the \textit{triangle inequality} which says that,

\[
\| x \| + \| y \| \leq \| x + y \|.
\]

Another crucial inequality, which in particular, implies that the function \(f \mapsto \| f \| \) is a continuous function is that

\[
\| h_1 \| - \| h_2 \| \leq \| h_1 - h_2 \|.
\]

To talk about continuity and differentiability of a function taking values in \(\mu \) we need a notion of convergence; this is defined in the usual way for metric spaces. A sequence \(\{ g_n \} \) in \(\mathcal{L}_2(\mu) \) converges to \(g \) in \(\mathcal{L}_2(\mu) \) if \(\| g_n - g \|_\mu \to 0 \). Let \(\psi \) be a real-valued or vector-valued function defined on \(\mathcal{L}_2(\mu) \). We say that \(\psi \) is continuous at the point \(g \) if for every sequence \(g_n \) converging to \(g \), \(\psi(g_n) \) converges to \(\psi(g) \) (in the usual Euclidean metric).

The notion of the derivative of a function taking values in \(\mathcal{L}_2(\mu) \) is defined in a way analogous to that in multivariate calculus. Formally, a map \(\psi : \Theta \to \mathcal{L}_2(\mu) \), where \(\Theta \) is an open subset of \(\mathbb{R}^p \), is said to be differentiable in quadratic mean (QMD) at \(\theta_0 \) with derivative vector \(V \) in \(\mathcal{L}_2(\mu)^p \) if

\[
\psi(\theta_0 + \epsilon) - \psi(\theta_0) - \epsilon^T V = o(\| \epsilon \|),
\]

i.e.

\[
\frac{\| \psi(\theta_0 + \epsilon) - \psi(\theta_0) - \epsilon^T V \|_\mu}{\| \epsilon \|} \to 0.
\]

The vector \(V \) is the \textit{total derivative} of the map \(\Psi \) at the point \(\theta_0 \) and can be viewed as a linear map \(D\psi(\theta_0) \) from \(\mathbb{R}^p \) to \(V \) which is defined as:

\[
D\psi(\theta_0)(\eta) = \eta^T V \in \mathcal{L}_2(\mu),
\]

for \(\eta \in \mathcal{L}_2(\mu) \). Since the vector \(V \) has the interpretation of a derivative (the derivative of \(\psi \) at the point \(\theta_0 \)) in an extended sense, a natural question arises as to whether \(V \) is actually the pointwise derivative of \(\psi(\cdot, \theta) \) with respect to \(\theta \) at the point \(\theta_0 \) (assuming adequate smoothness of \(\psi \) in \(\theta \)). In other words, is

\[
D\psi(\theta_0) = \frac{\partial}{\partial \theta} \psi(\cdot, \theta) ?
\]

The following lemma (this is lemma 17.2.9. of Keener) gives sufficient conditions for this to be the case.
Lemma 0.1 Let \(\theta \mapsto \psi(\cdot, \theta) \) be a map from \(\mathbb{R}^p \) to \(L_2(\mu) \). If \(\nabla_\theta \psi(\cdot, \theta) \) exists for almost all \(x \) (w.r.t \(\mu \)), for \(\theta \) in some neighborhood of \(\theta_0 \) and
\[
\int \| \nabla_\theta \psi(x, \theta) \|^2 \, d\mu(x) < \infty,
\]
then \(\psi \) is QMD at \(\theta_0 \) with derivative vector \(V \equiv V_{\theta_0} \equiv \nabla_\theta \psi(x, \theta_0) \).

Note that if \(h \) is a density function on \(X \), then \(h^{1/2} \) is in \(L_2(\mu) \). For our current purpose, we will be specially interested in studying the function \(s(\theta) = f(\cdot, \theta)^{1/2} \) where \(\{f(\cdot, \theta) : \theta \in \Theta\} \) is a regular parametric model. Now suppose that the function \(\theta \mapsto s(\theta) \) is QMD with derivative vector \(\hat{s}(\theta) \in \mathcal{R}^p \), \(p \) being the dimension of \(\theta \). Thus,
\[
\| f(\theta_0 + \epsilon)^{1/2} - f(\theta_0)^{1/2} - h^T \hat{s}(\cdot, \theta) \| = o(\| \epsilon \|).
\]
This is often referred to as Hellinger differentiability of the model at the point \(\theta \). (Formally, the Hellinger distance between two probability densities \(p \) and \(q \) on \(X \) is defined as \(H(p, q) = \| p^{1/2} - q^{1/2} \|_\mu \).) This will be seen to have an important bearing on the local log-likelihood ratios of the model. To that end, we require the following proposition.

Proposition 1: Suppose that we have a sequence of densities \(\{f_n\} \) and a fixed density \(f \) such that,
\[
\left\| \sqrt{n}(f_n^{1/2} - f^{1/2}) - \delta \right\|_2 \to 0
\]
as \(n \to \infty \) for some \(\delta \in L_2(\mu) \). Thus the sequence
\[
\frac{f_n^{1/2} - f^{1/2}}{1/\sqrt{n}} \to_{n \to \infty} \delta.
\]
Then,
\[
E_f \left(\frac{\delta}{f^{1/2}} \right) = 0
\]
and
\[
\log L_n - \left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{2\delta}{f_i^{1/2}} (X_i - \frac{1}{2} \| 2\delta \|^2) \right) = o_{P_n}(1).
\]
Consequently,
\[
\log L_n \to_d N \left(-\frac{1}{2} \| 2\delta \|^2, \| 2\delta \|^2 \right).
\]
It follows that the sequence of probability measures \(Q_n \) and \(P_n \) are mutually contiguous.
Proof: Here,

\[W_n = \sum_{i=1}^{n} T_{ni} \]

where \(T_{n1}, T_{n2}, \ldots, T_{nn} \) are independent and \(T_{ni} = 2(f_n^{1/2}(X_i)/f^{1/2}(X_i) - 1) \). We will first show that as claimed, \(E_f(d/f^{1/2}) = 0 \). Then, by the CLT it will follow that,

\[\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{2\delta}{f^{1/2}}(X_i) \to N \left(0, \text{Var} \left(\frac{2\delta}{f^{1/2}} \right) \right) \equiv N(0, \|2\delta\|^2), \]

since,

\[\text{Var} \left(\frac{2\delta}{f^{1/2}} \right) = E_f \left(\frac{4\delta^2}{f} \right) = \int 4 \delta^2 f f \ d\mu = \|2\delta\|^2. \]

Next, we will show that,

\[W_n - \frac{2}{\sqrt{n}} \sum_{i=1}^{n} \frac{\delta}{f^{1/2}}(X_i) + \|\delta\|^2 = o_{P_n}(1). \] (\#)

This will imply that

\[W_n \to_d N(-\|\delta\|^2, \|2\delta\|^2) \equiv N(-\sigma^2/4, \sigma^2) \text{ under } P_n, \]

where \(\sigma^2 = \|2\delta\|^2 \). By Le Cam’s second lemma,

\[\log L_n - (W_n - \frac{\sigma^2}{4}) = o_{P_n}(1). \]

Now (\#) readily implies that,

\[\log L_n - \left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \frac{2\delta}{f^{1/2}}(X_i) - \frac{1}{2}\|2\delta\|^2 \right) = o_{P_n}(1). \]

What we have omitted above is the verification of the UAN condition. This will be done last.

Step 1. Show that, \(E_f(\delta/f^{1/2})(X_1) = 0 \). Now, using

\[\|\sqrt{n}(f_n^{1/2} - f^{1/2}) - \delta\|^2 \to 0 \] (0)

we easily conclude that,

\[\|\sqrt{n}(f_n^{1/2} - f^{1/2})\|^2 \equiv n \|f_n^{1/2} - f^{1/2}\|^2 \to \|\delta\|^2. \] (1)

Thus,

\[\|f_n^{1/2} - f^{1/2}\|^2 \to 0 \] (2).

Now,

\[1 = \int f_n d\mu = \int \left(f^{1/2} + \frac{\delta}{\sqrt{n}} + r_n \right)^2 d\mu, \]

8
where
\[r_n \equiv f_n^{1/2} - f^{1/2} - \frac{\delta}{\sqrt{n}} = o(n^{-1/2}) \]

by (0). Thus,
\[
1 = \left\| f^{1/2} + \frac{\delta}{\sqrt{n}} + r_n \right\|^2 \\
= \left\| f^{1/2} + \frac{\delta}{\sqrt{n}} \right\|^2 + \| r_n \|^2 + 2 IP \left(f^{1/2} + \frac{\delta}{\sqrt{n}}, r_n \right) \\
= \| f^{1/2} \|^2 + 2 IP \left(f^{1/2}, \frac{\delta}{\sqrt{n}} \right) + \| \delta \|^2 \frac{1}{n} + \| r_n \|^2 + 2 IP \left(f^{1/2} + \frac{\delta}{\sqrt{n}}, r_n \right) \\
= 1 + 2 \frac{1}{\sqrt{n}} \int \delta f^{1/2} \, d\mu + o(n^{-1/2}) ,
\]

since \(\| \delta \|^2 \) and \(\| r_n \|^2 \) are \(O(n^{-1}) \) and \(IP \left(f^{1/2} + \frac{\delta}{\sqrt{n}}, r_n \right) \) is \(o(n^{-1/2}) \). It follows that
\[0 = 2 \frac{1}{\sqrt{n}} \int \delta f^{1/2} \, d\mu + o(n^{-1/2}) \]
or equivalently
\[0 = 2 \int \delta f^{1/2} \, d\mu + n^{1/2} o(n^{-1/2}) . \]

But \(n^{-1/2} o(n^{-1/2}) \) is \(o(1) \) showing that,
\[\int \delta f^{1/2} \, d\mu = E_f \left(\frac{\delta}{f^{1/2}} \right) = 0 . \]

Step 2. To show that
\[W_n - \frac{2}{\sqrt{n}} \sum_{i=1}^{n} \frac{\delta}{f^{1/2}}(X_i) + \| \delta \|^2 = o_P(n) \]

it suffices to prove, by Markov's inequality, that
\[V_n^2 \equiv E_P \left[W_n - \frac{2}{\sqrt{n}} \sum_{i=1}^{n} \frac{\delta}{f^{1/2}}(X_i) + \| \delta \|^2 \right]^2 = o_P(n) . \]

Now,
\[V_n^2 = E \left[\sum_{i=1}^{n} 2 \left(\frac{f_n^{1/2}}{f^{1/2}}(X_i) - 1 \right) - \frac{2}{\sqrt{n}} \sum_{i=1}^{n} \frac{\delta}{f^{1/2}}(X_i) + \| \delta \|^2 \right]^2 \\
= 4 E \left(K_1 + K_2 + \ldots + K_n \right)^2 , \]
where K_1, K_2, \ldots, K_n are i.i.d. random variables and
\[
K_i = \left(\frac{f_n^{1/2}(X_i)}{f^{1/2}(X_i)} - 1 \right) - \frac{1}{\sqrt{n}} \frac{\delta}{f^{1/2}(X_i)} + \frac{\|\delta\|^2}{2n}.
\]

Thus,
\[
V_n^2 = n E(K_1^2) + n(n-1) (E(K_1))^2.
\]

To show that V_n^2 goes to 0 it suffices to show that both $E(K_1)$ and $E(K_1^2)$ are $o(n^{-1})$. Now,
\[
E(K_1) = E \left(\frac{f_n^{1/2}(X_1)}{f^{1/2}(X_1)} - 1 - \frac{1}{\sqrt{n}} \frac{\delta}{f^{1/2}(X_1)} + \frac{\|\delta\|^2}{2n} \right)
\]
\[
= E \left(\frac{f_n^{1/2}(X_1)}{f^{1/2}(X_1)} \right) - 1 + \frac{\|\delta\|^2}{2n}
\]
\[
= \int \sqrt{f_n(x)} f(x) d\mu(x) - 1 + \frac{\|\delta\|^2}{2n}
\]
\[
= -\frac{1}{2} \left[2 - 2 \int f_n^{1/2} f^{1/2} d\mu \right] + \frac{\|\delta\|^2}{2n}
\]
\[
= -\frac{1}{2} \|f_n^{1/2} - f^{1/2}\|^2 + \frac{\|\delta\|^2}{2n}.
\]

Thus,
\[
n E(K_1) = \frac{1}{2} \left(-n \|f_n^{1/2} - f^{1/2}\|^2 + \|\delta\|^2 \right) \to 0,
\]
by (1). Next,
\[
E(K_1^2) = E_f \left[\left(\frac{f_n^{1/2}(X_1)}{f^{1/2}(X_1)} - 1 - \frac{1}{\sqrt{n}} \frac{\delta}{f^{1/2}(X_1)} + \frac{\|\delta\|^2}{2n} \right)^2 \right]
\]
\[
= \int \left(\frac{f_n^{1/2}}{f^{1/2}} - 1 - \frac{\delta}{\sqrt{n}} f^{1/2} \right)^2 d\mu
\]
\[
= \| r_n + \frac{\|\delta\|^2}{2n} f^{1/2} \|^2
\]
\[
\leq 2 \left[\| r_n \|^2 + \frac{\|\delta\|^4}{4n^2} \| f^{1/2} \|^2 \right]
\]
\[
= o(n^{-1}),
\]
since $\| r_n \|^2$ is $o(n^{-1})$. This completes the proof of Step 2.
Step 3. Verification of the UAN condition. We have

\[
\max_{1 \leq i \leq n} P_n \left(\left| \frac{g_{n_i}}{f_{n_i}} (X_i) - 1 \right| > \epsilon \right) = P_f \left(\left| \frac{f_n}{f} (X_1) - 1 \right| > \epsilon \right)
\]

\[
\leq \frac{1}{\epsilon} E_f \left(\left| \frac{f_n}{f} (X_1) - 1 \right| \right)
\]

\[
= \frac{1}{\epsilon} E_f \left(\left| \frac{f_n^{1/2}}{f^{1/2}} (X_1) - 1 \right| \left| \frac{f_n^{1/2}}{f^{1/2}} (X_1) + 1 \right| \right)
\]

\[
\leq \frac{1}{\epsilon} \left(E_f \left(\left| \frac{f_n^{1/2}}{f^{1/2}} (X_1) - 1 \right|^2 \right) E_f \left(\left| \frac{f_n^{1/2}}{f^{1/2}} (X_1) + 1 \right|^2 \right) \right)^{1/2}
\]

\[
= \frac{1}{\epsilon} \left(\int \left(f_n^{1/2} - f^{1/2} \right)^2 d\mu \int \left(f_n^{1/2} + f^{1/2} \right)^2 d\mu \right)^{1/2}
\]

\[
\to 0,
\]

since

\[
\int (f_n^{1/2} + f^{1/2})^2 d\mu \equiv \|f_n^{1/2} + f^{1/2}\|^2 \leq 2(\|f_n^{1/2}\|^2 + \|f^{1/2}\|^2) = 4
\]

and

\[
\int (f_n^{1/2} - f^{1/2})^2 = \|f_n^{1/2} - f^{1/2}\|^2 \to 0
\]

by (2). This proves the UAN condition.

LAN in a Hellinger–differentiable parametric model: Recall the definition of Hellinger differentiability of a regular parametric model. This is illustrated in display (0.1). This implies that for a fixed vector \(h\), we have,

\[
\left\| f(\theta_0 + h) - f(\theta_0) + n^{-1/2} h^T \hat{s}(\cdot, \theta) \right\|_{n^{-1/2} \|h\|} \to 0;
\]

equivalently

\[
\left\| \sqrt{n} \left(f(\cdot, \theta + \frac{h}{\sqrt{n}})^{1/2} - f(\cdot, \theta)^{1/2} \right) - h^T \hat{s}(\cdot, \theta) \right\|_{\mu} \to 0.
\]

Thus, we are in the set-up of Proposition 1 with \(f_n \equiv f(\cdot, \theta_0 + h/\sqrt{n})\), \(f \equiv f(\cdot, \theta_0)\) and \(\delta = h^T \hat{s}(\cdot, \theta)\). Hence, using Proposition 1 we obtain,

\[
\log L_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n \frac{2 h^T \hat{s}(X_i, \theta)}{f(X_i, \theta)^{1/2}} - \frac{1}{2} \|2 h^T \hat{s}(\cdot, \theta)\|^2 + o_{P_n}(1).
\]

Consequently,

\[
\log L_n \equiv \frac{d P_{\theta_0 + h/\sqrt{n}}}{d P_{\theta_0}} (X_1, X_2, \ldots, X_n) \to d N \left(-\frac{1}{2} \|2 h^T \hat{s}(\cdot, \theta)\|^2, \|2 h^T \hat{s}(\cdot, \theta)\|^2 \right).
\]

11
It remains to identify \(\dot{s}(\cdot, \theta) \). For nice regular parametric models, the sufficient conditions in Lemma 0.1 hold good and \(\dot{s}(x, \theta) \) is simply the partial derivative of \(f^{1/2}(x, \theta) \) with respect to \(\theta \). Thus,

\[
\dot{s}(x, \theta) = \frac{\partial}{\partial \theta} f(x, \theta)^{1/2} = f(x, \theta)^{1/2} \frac{1}{2} \frac{\partial}{\partial \theta} \log f(x, \theta)^{1/2} \equiv f(x, \theta)^{1/2} \frac{1}{2} \dot{i}(x, \theta).
\]

Going back to the conditions of Lemma 0.1, the existence of \(\nabla_\theta \dot{s}(x, \theta) \) for \(\mu \) almost all \(x \) for every \(\theta \) is generally guaranteed by the underlying regularity conditions and the finiteness of the integral is equivalent to the existence of the information matrix \(I(\theta) \) as a well-defined finite quantity. For simplicity, if \(\theta \) is 1-dimensional then,

\[
\int \|\nabla_\theta \dot{s}(x, \theta)\|^2 d\mu = \int \frac{1}{4} \dot{i}(x, \theta)^2 f(x, \theta) d\mu(x) = \frac{1}{4} E_\theta(\dot{i}(X_1, \theta)^2) = \frac{I(\theta)}{4} < \infty.
\]

Thus, on plugging in the expression for \(\dot{s} \) obtained above, \(\log L_n \) has the asymptotic linear representation (known as the LAN expansion) given by,

\[
\log L_n = \frac{1}{\sqrt{n}} \sum_{i=1}^n h^T \dot{i}(X_i, \theta) - \frac{1}{2} h^T I(\theta) h + o_P(1).
\]