Identify Qualitative Interaction Through Value of Information

Peng Zhang

Institute for Social Research
University of Michigan

Joint work with James Robins and Susan Murphy
Goal

- Identifying variables that are important for adapting or personalizing treatment
- Interested in variables that have qualitative interaction with the treatment
- Variables that qualitatively interact with treatment
 - Inform us about the magnitude of treatment effect
 - Differentiate between patients who should be offered different treatments

- Traditional variable selection techniques focus on variable selection for the prediction of the response in a supervised learning setting.
- We propose to identify such variables through value of information
Goal

- Identifying variables that are important for adapting or personalizing treatment
- Interested in variables that have qualitative interaction with the treatment
- Variables that qualitatively interact with treatment
 - Inform us about the magnitude of treatment effect
 - Differentiate between patients who should be offered different treatments
- Traditional variable selection techniques focus on variable selection for the prediction of the response in a supervised learning setting.
- We propose to identify such variables through value of information
Notations

- Observe i.i.d. $O = (Y, A, X)$
- Y is the clinical outcome (the larger the better).
- $X = (X_1, X_2, \ldots, X_p)$ is the p-dimensional covariates.
- A is the treatment indicator with known randomization probabilities.
- We simply assume that $P(A = 1 \mid X) = P(A = -1 \mid X) = \frac{1}{2}$.
Value of Information

Marginal Optimal Decision

\[A^{opt} = \arg \max_a E(Y | A = a) \]

Optimal Reward

\[E(Y | A = A^{opt}) = \max \{ E(Y | A = 1), E(Y | A = -1) \} \]
Value of Information

Marginal Optimal Decision

$$A^{opt} = \arg \max_a E(Y \mid A = a)$$

Optimal Reward

$$E(Y \mid A = A^{opt}) = \max \{ E(Y \mid A = 1), E(Y \mid A = -1) \}$$
Value of Information (Cont’d)

- Very few of variables are likely to be useful for deciding which treatment to provide to which patient.
- We consider the linear decision rule based on a single covariate.

Optimal Reward

$$\sup_{\beta_0, \beta_1} E (E (Y \mid A = \text{sgn}(\beta_0 + \beta_1 X_1), X_1))$$
Value of Information (Cont’d)

- Very few of variables are likely to be useful for deciding which treatment to provide to which patient.
- We consider the linear decision rule based on a single covariate.

Optimal Reward

$$\sup_{\beta_0, \beta_1} E (E (Y \mid A = \text{sgn} (\beta_0 + \beta_1 X_1), X_1))$$
Value of Information (Cont’d)

The value of this additional information X_1 for making the decision of treatment is

\[
\theta_1 \triangleq \sup_{\beta_0, \beta_1} E\left(E(Y \mid A = \text{sgn}(\beta_0 + \beta_1 X_1), X_1) \right) - \max\left\{ E(Y \mid A = 1), E(Y \mid A = -1) \right\}
\]

- The bigger VoI is, the more useful the additional information is.
- One might agree that is important for making decision when is greater than the clinical significance of the clinical outcome.
- We will identify X_1 whenever $\theta_1 > 0$, and define it as a QI.
- We want to test $H_0 : \theta_1 = 0$ vs $H_1 : \theta_1 > 0$.
\[\theta_1 = \min \left\{ \sup_\beta EU_{11}(\beta), \sup_\beta EU_{12}(\beta) \right\} \]

where

\[U_{11}(\beta) = -2YAI(\beta_0 + \beta_1 X_1 < 0) \]
\[U_{12}(\beta) = 2YAI(\beta_0 + \beta_1 X_1 \geq 0) \]

Notice that \(U_{11}(\beta) = -U_{12}(\beta) \).
Inference on Non-regular Parameter

• $\mu_{11}(\beta) = E(U_{11}(\beta))$ and $\mu_{12}(\beta) = E(U_{12}(\beta))$ are regular parameters.

• The operator $(f(\beta), g(\beta)) \rightarrow \min \{\sup_\beta f, \sup_\beta g\}$ is not differentiable. Hence, functional delta method does not apply in this setting.

• θ_1 is a non-regular parameter.

• We will construct confidence interval, possibly conservative, for θ_1 at the design level.
Inference on Non-regular Parameter

- \(\mu_{11}(\beta) = E(U_{11}(\beta)) \) and \(\mu_{12}(\beta) = E(U_{12}(\beta)) \) are regular parameters.
- The operator \((f(\beta), g(\beta)) \rightarrow \min \{ \sup_{\beta} f, \sup_{\beta} g \} \) is not differentiable. Hence, functional delta method does not apply in this setting.

- \(\theta_1 \) is a non-regular parameter.
- We will construct confidence interval, possibly conservative, for \(\theta_1 \) at the design level.
Projection Interval

If we can construct $1 - \alpha$ level confidence interval Cl_ω for parameter ω, for any function h and $\varphi = h(\omega)$, we can obtain the projection interval Cl_φ which is the image of h on Cl_ω. Cl_φ will be an at-least $1 - \alpha$ level confidence interval for φ.

- ω: $\mu_{11}(\beta)$ and $\mu_{12}(\beta)$
- $h(f(\beta), g(\beta)) \rightarrow \min \{ \sup_\beta f, \sup_\beta g \}$
- φ: θ_1
Projection Interval

If we can construct $1 - \alpha$ level confidence interval CI_ω for parameter ω, for any function h and $\varphi = h(\omega)$, we can obtain the projection interval CI_φ which is the image of h on CI_ω. CI_φ will be an at-least $1 - \alpha$ level confidence interval for φ.

- ω: $\mu_{11}(\beta)$ and $\mu_{12}(\beta)$
- $h(f(\beta), g(\beta)) \rightarrow \min \{\sup_\beta f, \sup_\beta g\}$
- φ: θ_1
Adaption

Consider confidence interval for $\mu_{11}(\beta)$ and $\mu_{12}(\beta)$ of the following form:

$$P(B_{11}(\beta) < \mu_{11}(\beta), B_{12}(\beta) < \mu_{12}(\beta) \text{ for all } \beta) = 1 - \alpha$$

Uniform confidence interval

$$P(\sup \sqrt{n}(P_n - P) U_{11}(\beta) < \lambda, \sup \sqrt{n}(P_n - P) U_{12}(\beta) = 1 - \alpha$$
Adaption (Cont’d)

Adaptive confidence interval

\[P(\sup \sqrt{n}(P_n - P) U_{11}(\beta) < \lambda \, w_1(\beta), \sup \sqrt{n}(P_n - P) U_{12}(\beta) < \lambda \, w_2(\beta)) = 1 - \alpha \]

where \(w_1(\beta) = \exp \left\{ -c \max (|U_{11}(\beta)|, |U_{12}(-\beta)|) \right\} \) and
\(w_2(\beta) = \exp \left\{ -c \max (|U_{12}(\beta)|, |U_{11}(-\beta)|) \right\} \)
Summary

- We provide a general framework to identify qualitative interactions through value of information.
- This extends original definition from the seminal paper by Gail and Simon to continuous covariates.
- We use adaptive projection interval to deal with inference on non-regular parameters.
Future Work

- Use Bayesian to improve the power of the test
- Extend it to the multi-stage problem