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Abstract

We establish limit theorems for component–wise maxima of independent and identically dis-
tributed heavy–tailed processes. The focus here is on weak convergence in Hölder spaces. Given
that the finite–dimensional distributions converge, the classical tightness conditions of Lamperti
apply, provided that one can control the tail–behavior of Hölder norms. Here, by using a powerful
isomorphism theorem due to Ciesielski, we provide estimates for the tails of Hölder norms for light,
moderate and heavy–tailed processes. As a consequence, we establish sufficient conditions for the
Hölder regularity of several classes of doubly stochastic max–stable processes such as Schlather
and Brown–Resnick processes. Some of our results extend to the case of weak convergence in
Besov spaces.

1 Introduction

The problem of weak convergence for stochastic processes in Hölder spaces has already been studied
in many contexts. The seminal work Lamperti (1962) provides very useful tightness criteria and several
Donsker–type functional limit theorems. In a series of works Suquet, Račkauskas, and collaborators
– Hamadouche & Suquet (1999), Račkauskas & Suquet (2004, 2007a,b), Račkauskas et al. (2007), to
name a few of their works, have obtained a number of theoretical results and many applications of limit
theorems in Hölder spaces. Suquet (1999) offers an illuminating perspective and a general approach to
characterizing tightness in Banach spaces with Schauder bases. Thanks to an isomorphism theorem of
Ciesielski (1960), Suquet’s results apply, in particular, to Hölder spaces.

In this note, our focus is on establishing functional limit theorems for maxima in Hölder spaces,
which to the best of our knowledge, have not been thoroughly explored. More precisely, consider in-
dependent copies ξi = {ξi(t)}t∈[0,1], i = 1, 2, · · · of a stochastic process ξ with γ−Hölder continuous
paths γ ∈ (0, 1). Our goal is to establish conditions on ξ, which imply the weak convergence

Mn(·) :=
1
an

∨
1≤i≤n

ξi(·)− bn =⇒ η(·), as n →∞, (1)

with suitable normalization an > 0 and centering bn ∈ R constants. Here ’⇒’ denotes weak conver-
gence in the Hölder pace (H, ‖ · ‖Hγ ) (see Section 2, below).

The limit process in (1) is necessarily max–stable. In particular, its marginals are extreme value dis-
tributions (Fréchet, Gumbel or reversed Weibul). For simplicity, we focus here on the Fréchet domain
of attraction case when the ξi’s have heavy–tailed marginals, that is,

P{ξ(t) > x} ∼ L(x)x−α, as x →∞, (2)
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for some α > 0 and a slowly varying function L. The resulting limit η in (1) is then an α−Fréchet
max–stable process and the constants an and bn can be taken to be:

an := `(n)n1/α, and bn := 0, (3)

with `α(u) ∼ L(`(u)u1/α), as u →∞.
One motivation to study the weak convergence in Hölder spaces is to establish path–regularity re-

sults for the limit. The continuous mapping theorem yields further applications to limit theorems for
Hölder–continuous functionals. The idea to proving (1) is as follows. Given that the finite–dimensional
distributions converge, it remains to show tightness. It turns out that the maximum operator is Lips-
chitz with respect to the Hölder norm (Lemma 2.1, below). This fact and a classical tightness criterion
due to Lampetri, leads to a simple weak convergence result in Theorem 2.1, below. The key to ap-
plying this result in practice, however, is the knowledge of the tail–behavior for the Hölder norms of
interesting classes of stochastic processes, which is a non–trivial problem. A powerful result due to
Ciesielski (see Theorem 3.1 below) shows that there is an isomorphism between the Hölder spaces
and the space of bounded sequences equipped with the uniform norm. This lets us relate the tail be-
havior of the Hölder norm of a stochastic process to that of the supremum of a sequence of random
variables. The latter supremum can be handled easily through Borel–Cantelli. The fact that one deals
with sequences allows also for a general treatment that does not involve a detailed knowledge of the
dependence structure of the underlying processes. This observation leads to simple and yet general
estimates for the tail–behavior of Hölder norms for light–tailed processes, which may be of indepen-
dent interest (see Theorem 3.2 below). Interestingly, bounds on the tails of suprema can be obtained,
which apply to general (not necessarily Gaussian) light–tailed processes, under mild regularity con-
ditions (see Corollary 3.1, below). Theorem 3.3 provides further tail bounds for the Hölder norms of
processes with moderate and heavy tails. These results are applied to establish concrete functional limit
theorems, which in turn yield the Hölder regularity for many classes of max–stable processes including
the Schlather and Brown–Resnick processes.

The paper is structured as follows. In Section 2, we review sufficient conditions for tightness and
establish a general weak convergence result for maxima in Hölder spaces. In Section 3, we provide
upper bounds on the tail–probabilities for the Hölder norms of various stochastic processes. Concrete
functional limit theorems in Hölder and Besov spaces are presented in Section 4. We conclude with
some applications in Section 5.

2 Preliminaries and tightness in Hölder spaces

Let Hγ , γ ∈ (0, 1) be the space of all γ–Hölder continuous functions, defined on the interval [0, 1].
Namely, all f : [0, 1] → R, with finite norm

‖f‖Hγ := ‖f‖∞ ∨ |f |γ ≡ sup
t∈[0,1]

|f(t)| ∨ sup
t,s∈[0,1]

|f(t)− f(s)|
|t− s|γ

.

Recall that our goal here is to establish functional convergence results as in (1). The Hölder spaces
are particularly natural in this context because the maximum operator is Lipschitz in the Hölder norm
‖ · ‖Hγ . More precisely, we have the following result.
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Lemma 2.1. For any f, g ∈ Hγ , 0 < γ ≤ 1, we have ‖f ∨ g‖Hγ ≤ ‖f‖Hγ ∨‖g‖Hγ . In particular, Hγ

is closed with respect to the point–wise maxima operator (f, g) 7→ f ∨ g.

Proof. Observe first that for all a1, a2, b1, b2 ∈ R, we have

|a1 ∨ a2 − b1 ∨ b2| ≤ |a1 − b1| ∨ |a2 − b2|. (4)

Indeed, without loss of generality, it is enough to show the inequality in the case a1 ≥ a2 and a1 ≥
b1∨b2. Then, (4) follows by considering the cases a1 ≥ b1 > b2 and a1 ≥ b2 ≥ b1. In the first scenario
|a1 ∨ a2 − b1 ∨ b2| = a1 − b1 and in the second, |a1 ∨ a2 − b1 ∨ b2| = a1 − b2 ≤ a1 − b1. Both imply
(4).

Now, by applying (4) to a1 := f(t), a2 := g(t), b1 := f(s) and b2 := g(s), we obtain

|f(t) ∨ g(t)− f(s) ∨ g(s)| ≤ |f(t)− f(s)| ∨ |g(t)− g(s)|, for all t, s ∈ [0, 1].

This implies that |f∨g|γ ≤ |f |γ∨|g|γ . Since |f(t)∨g(t)| ≤ |f(t)|∨|g(t)|, we also obtain ‖f∨g‖∞ ≤
‖f‖∞ ∨ ‖g‖∞. Consequently,

‖f ∨ g‖Hγ ≤ ‖f‖∞ ∨ ‖g‖∞ ∨ |f |γ ∨ |g|γ = ‖f‖Hγ ∨ ‖g‖Hγ ,

which completes the proof.

By Prokhorov’s well known theorem (see e.g. Billingsley (1968)), the convergence in (1) follows
provided that: (i) the finite–dimensional distributions converge and (ii) the laws of Mn, n ∈ N are
tight. The following tightness criterion due to Lamperti is particularly useful.

Lemma 2.2 (Lemma 2, Lamperti (1962)). If for all ε > 0, there exist δ > 0 and B > 0, such that

inf
n∈N

P{‖Mn‖Hγ+δ
≤ B} ≥ 1− ε,

then the laws of Mn, n ∈ N are tight in (Hγ , ‖ · ‖Hγ ).

Let ξ = {ξ(t)}t∈[0,1] be a process with paths in (Hγ , ‖ · ‖Hγ ) and heavy–tailed marginal distribu-
tions as in (2). The following theorem provides a simple general functional limit theorem for this class
of heavy–tailed processes.

Theorem 2.1. Let 0 < γ < 1 and ξ be as in (2) and suppose that (1) holds in the sense of the
finite–dimensional distributions, with an and bn = 0 as in (3).

If for some δ > 0 such that γ + δ ≤ 1, we have

P{‖ξ‖Hγ+δ
> x} ∝ L(x)x−α, as x →∞, (5)

then (1) holds also in the sense of weak convergence of distributions in (Hγ , ‖ · ‖Hγ ).

Proof. With this choice of an and bn, by Lemma 2.1, we obtain

‖Mn‖Hγ+δ
≤ 1

an

∨
1≤i≤n

‖ξi‖Hγ+δ
. (6)
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Focus on the right–hand side of the last expression. It consists of maxima of independent and identically
distributed random variables Xi := ‖ξi‖Hγ+δ

. By (5) P{Xi > x} ∝ L(x)x−α, x →∞, which implies
that the right–hand side of (6) converges in distribution to either 0 or to a finite, α−Fréchet random
variable Z. Therefore,

P{‖Mn‖Hγ+δ
> B} ≤ P

{ 1
an

∨
1≤i≤n

Xi > B
}
−→ P{Z > B},

as n → ∞, which by Lemma 2.2 readily yields the tightness of {Mn, n ∈ N} in Hγ and completes
the proof of the theorem.

Remark 2.1. Lemma 2.2 follows essentially from the Arcella–Ascoli theorem, which yields the curious
fact that the closed unit ball in (Hγ+δ, ‖ · ‖Hγ+δ

), δ > 0 is a compact set in (Hγ , ‖ · ‖Hγ ). This is
rather helpful in applications since establishing tightness in Hγ amounts to proving boundedness in
Hγ+δ.

In more abstract terms, this result can be read as the fact that the Banach space (Hγ+δ, ‖ ·
‖Hγ+δ

), δ > 0 is embedded compactly in (Hγ , ‖·‖Hγ ). Namely, the identity operator id : Hγ+δ → Hγ

is compact, i.e. maps bounded and closed sets to compacts. Many other function spaces have this inter-
esting feature. Most notably the Besov spaces Bγ+δ

p,q (D), δ > 0 on a bounded domain D ⊂ Rd embed
compactly into Bγ

p,q(D) (see e.g. Proposition 4.6, p. 197 in Triebel (2006)).

Remark 2.2. The two key elements in the proof of Theorem 2.1 are that: (i) ‖f ∨g‖Hγ+δ
≤ ‖f‖Hγ+δ

∨
‖g‖Hγ+δ

(Lemma 2.1) and (ii) the space Hγ+δ embeds compactly into Hγ . Therefore, the result of
Theorem 2.1 holds for any other pair of function spaces for which (i) the maximum operation satisfies
an analog of Lemma 2.1 and (ii) we have compact embedding of one space into the other. Proposition
4.2 below, for example, establishes a weak convergence result in Besov spaces.

Condition (5) in Theorem 2.1 may be difficult to check in practice. In the following section, we
obtain inequalities that can be used to establish the tail–behavior of the Hölder norm in many cases.
Theorem 2.1 will then be applied in Section 4 to derive concrete limit theorems and thus to establish
the path properties of several max–stable processes in Section 5.

3 Tail–behavior of Hölder norms

The classical result of Ciesielski (1960) provides a powerful way to deal with the Hölder norms. It turns
out that there is a Banach space isomorphism between the Hölder spaces and the space `∞ of bounded
infinite sequences equipped with the sup–norm. This isomorphism allows one to compute (equivalent)
Hölder norms by taking suprema of sequences. More precisely, following Ciesielski (1960) let H0

γ be
the set of all continuous functions defined on [0, 1], vanishing at 0, and such that

|x|γ ≡ sup
t,s∈[0,1]

|x(t)− x(s)|
|t− s|γ

< ∞.

Then (H0
γ , | · |γ), 0 < γ < 1 becomes a Banach space. Also, let ‖ξ‖∞ := supn≥1 |ξn| < ∞, for

ξ = {ξn}n≥1 ∈ `∞.
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Now, we introduce certain basis functions, used to express the Ciesielski’s isomporphisms. Con-
sider the Haar mother wavelet function χ1(t) = 1[0,1/2)(t)− 1(1/2,1](t). For all 0 < γ < 1, let

χ1(t) ≡ χ
(γ)
1 (t) = 1, and ϕ1(t) ≡ ϕ

(γ)
1 (t) = t, t ∈ [0, 1].

Also, for all 2 ≤ n ≡ 2j + k, (1 ≤ k ≤ 2j , j ≥ 0, j, k ∈ N ∪ {0}), let

ϕn(t) :=
∫ t

0
χn(τ)dτ, where χn(t) ≡ χ2j+k(t) = 2j/2χ1(2jt− k + 1).

Finally, introduce the functions:

χ(γ)
n (t) ≡ 2(j+1)γ

2j/2+1
χ2j+k(t) and ϕ(γ)

n (t) ≡ ϕ
(γ)

2j+k
(t) =

2j/2+1

2(j+1)γ
ϕ2j+k(t), t ∈ [0, 1].

For all x ∈ C[0, 1], and n = 2j + k ≥ 2, we write

ξn =
∫ 1

0
χ

(γ)

2j+k
(τ)dx(τ) :=

2(j+1)γ

2

(
2x

(2k − 1
2j+1

)
− x

( k

2j

)
− x

(k − 1
2j

))
, (7)

for all 1 ≤ k ≤ 2j , j ≥ 0 and ξ1 =
∫ 1
0 χ

(γ)
1 (τ)dx(τ) := x(1) − x(0). For convenience of the reader,

we state next the Cisielski’s isomorphism theorem.

Theorem 3.1 (Theorem 1 in Ciesielski (1960)). Let 0 < γ < 1. The spaces (H0
γ , | · |γ) and (`∞, ‖·‖∞)

are isomorphic Banach spaces. The isomorphism Tγ from `∞ onto H0
γ is given by

x(·) =
∞∑

n=1

ξnϕ(γ)
n (·), (8)

where the series converges with respect to the sup–norm ‖ · ‖∞ in C[0, 1], and T−1
γ (the isomorphism

from H0
γ onto `∞) is given by (recall (7)),

ξn =
∫ 1

0
χ(γ)

n (τ)dx(τ), n = 1, 2, · · · . (9)

Moreover, for the operator norms of these linear mappings, we have

2
3(2γ − 1)(21−γ − 1)

≤ ‖Tγ‖ ≤
2

(2γ − 1)(21−γ − 1)
, and ‖T−1

γ ‖ = 1.

Remark 3.1. The Banach space (H0
γ , | · |γ) is not separable since, in fact, it is isomorphic to the

sequence space (`∞, ‖ · ‖∞). Therefore, the function ϕ
(γ)
n (·), n ≥ 1 do not provide a Schauder

basis fro H0
γ (since there is none). Ciesielski (1960) (Theorem 2) has shown that the ϕ

(γ)
n ’s provide

a Schauder basis of the separable spaces H0
γ,0 := ∪δ>0H0

γ+δ, which consist of all functions f ∈ H0
γ

with

lim
δ→0

sup
|t−s|≤δ, t,s∈[0,1]

|f(t)− f(s)|
|t− s|γ

= 0.

Suquet (1999) provides an excellent treatment of tightness in Schauder–decomposable spaces. Since
in this section we are concerned with the behavior of the Hölder norms, we did not need to focus on
the separable Schauder–decomposable spaces H0

γ,0 and did not use directly the characterizations of
Suquet.
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Remark 3.2. Relation (8) resembles a wavelet decomposition of the function x. The rate of decay of
the coefficients ξj essentially determines the Hölder regularity of the function x. The modern theory
of multi–resolution analysis (wavelet decompositions) provides far–reaching extensions of this type of
characterizations to the case of Hölder, Besov, and other function spaces see e.g. Meyer (1992).

Theorem 3.2. Consider a stochastic process X = {X(t)}t∈[0,1], X(0) = 0, such that for some
H ∈ (0, 1], C > 0, d > 0 and δ > 0, we have

sup
t,s∈[0,1]

P
{ |X(t)−X(s)|

|t− s|H
> u

}
≤ Ce−duδ

, (u > 0). (10)

Then, X has a modification X̃ with continuous paths. Also, for all γ ∈ (0,H), we have X̃ ∈ H0
γ and

P{|X̃|γ > u} ≤ 6C
e−cduδ

cduδ − 1
, (u > 1/(cd)1/δ), (11)

for some c = cδ(H−γ) > 0.

Remark 3.3. The fact that X has a version X̃ with γ−Hölder paths for all γ ∈ (0,H) is an easy
consequence of the Kolmogorov–Chentzov criterion. The proof of the more delicate result in (11) on
the tail behavior of the norm |X̃|γ , relies on Ciesielski’s isomorphism (see Theorem 3.1 above).

Remark 3.4. If X is a Gaussian process with γ−Hölder–continuous paths, then the Gaussian process
G(t, s) = (X(t)−X(s))/|t− s|γ , (t, s) ∈ [0, 1]2 is bounded with probability one. Therefore, the tail
behavior of the supremum of G (over [0, 1]2) follows immediately from well–known results such as the
Borel–TIS inequality (see, e.g. Theorem 2.1.2 in Adler & Taylor (2007)).

Theorem 3.2, however, applies also to non–Gaussian processes and relies only on information
about the bivariate marginal distributions of the process X . Therefore, Corollary 3.1 below can be
used to establish the tail behavior of suprema, where the Borel–TIS inequality does not apply.

Corollary 3.1. Let Y = {Y (t)}t∈[0,1] be such that the process X(t) := Y (t) − Y (0) satisfies the
assumptions of Theorem 3.2. Then, Y can be modified to have continuous paths and

P
{

sup
t∈[0,1]

|Y (t)| > u
}
≤ P{|Y (0)| > u/2}+ 6C

e−cuδ

cuδ − 1
, (u > 1/c1/δ),

for some c = cδ,H > 0.

Proof of Theorem 3.2. By (10), we have that for all k > 0, and t 6= s ∈ [0, 1],

E|X(t)−X(s)|k =
∫ ∞

0
P
{ |X(t)−X(s)|k

∆kH
>

u

∆kH

}
du ≤ C

∫ ∞

0
e−duδ/k∆−δH

du,

where ∆ := |t − s|. By making the change of variables v := duδ/k∆−δH , we obtain that the last
integral equals

d−k/δ(k/δ)
∫ ∞

0
vk/δ−1e−vdv∆kH = d−k/δΓ(k/δ + 1)|t− s|kH ,
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where Γ stands for the Gamma function. This implies that for all k > 0,

E|X(t)−X(s)|k ≤ d−k/δΓ(k/δ + 1)|t− s|kH , t, s ∈ [0, 1].

Thus, the Kolmogorov–Chentzov continuity criterion (see eg p. 53 in Karatzas & Shreve (1991)) im-
plies that X has a modification X̃ with γ−Hölder paths, for all γ ∈ (0,H−1/k). By taking arbitrarily
large k’s, we obtain X̃ ∈ H0

γ , for all γ ∈ (0,H), with probability one.
Ciesielski’s isomorphism (Theorem 3.1, above) implies that with probability one,

|X̃|γ = |T−1
γ (ξ)|γ ≤ ‖T−1

γ ‖‖ξ‖∞ = ‖ξ‖∞, (12)

for all γ ∈ (0,H), where ‖ξ‖∞ = supn≥1 |ξn|, with

ξn =
2(j+1)γ

2

(
X̃((k − 1/2)/2j)− X̃(k/2j) + X̃((k − 1/2)/2j)− X̃((k − 1)/2j)

)
. (13)

Let now Zn := ξn2(j+1)(H−γ), and observe that by (13), with ∆ := 2−(j+1), we have

P{|Zn| > u} ≤ P
{ |X̃((k − 1/2)/2j)− X̃(k/2j)|

∆H
> u

}
+P

{ |X̃((k − 1/2)/2j)− X̃((k − 1)/2j)|
∆H

> u
}
≤ 2Ce−duδ

, (14)

where the first inequality follows from the fact that P{|η + ζ|/2 > u) ≤ P{|η| > u} + P{|ζ| > u},
and the second one from the assumption (10).

Note that Zn = ξnan, where an = 2(j+1)(H−γ), with j = [log2 n] − 1. Therefore, for all γ ∈
(0,H), we have

aδ
n ≥ nδ(H−γ) ≥ c(log(n + 1) + 1),

for some c = cδ(H−γ) > 0 and for all n ≥ 1. Relation (14) also implies that (15) holds with C replaced
by 2C. Hence, by applying Lemma 3.1 to the Zn’s and an’s, we obtain

P{sup
n≥1

|ξn| > u} = P{sup
n≥1

|Zn|/an} ≤ 2C
e−cduδ

cduδ − 1
,

for all uδ > 1/cd. The last inequality and Relation (12) imply (11).

The next lemma was used in the proof of Theorem 3.2.

Lemma 3.1. Let {Zn}n≥1 be a sequence of random variables with arbitrary dependence structure and
such that for some d > 0, δ > 0, and C > 0,

sup
n≥1

P{|Zn| > u} ≤ Ce−duδ
, (u > 0). (15)

Then, for all aδ
n ≥ c(log(n + 1) + 1), n ≥ 1, and cduδ > 1,

P
{

sup
n≥1

|Zn|/an > u
}
≤ C

e−cduδ

cduδ − 1
. (16)
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Proof. By using the union bound and (15), we obtain

P
{

sup
n≥0

|Zn|/an > u
}
≤

∑
n≥1

P{|Zn| > uan} = C
∑
n≥1

e−aδ
nduδ

,

The last sum is bounded above by∑
n≥1

e−c(log(n+1)+1)duδ
= e−cduδ

∑
n≥1

(n + 1)−cduδ ≤ e−cduδ

∫ ∞

1
x−cduδ

dx =
e−cduδ

(cduδ − 1)
, (17)

which implies (16).

Theorem 3.2 imposes stringent tail decay on the marginal distributions and it does not apply to many
interesting classes of processes such as the Geometric Brownian motion, for example. The following
result provides less precise but useful tail–bounds on the Hölder norm that applies even to processes
with heavy–tailed marginal distributions. Observe that in the heavy–tailed case, however, we pay a
price in a restricted range of Hölder exponents.

Theorem 3.3. Let the stochastic process X = {X(t)}t∈[0,1], X(0) = 0 be such that

sup
t,s∈[0,1]

P
{ |X(t)−X(s)|

|t− s|H
> u

}
≤ Λ(u), (u > 0) (18)

for some Λ(u) ∈ (0, 1]. Let also

lim sup
u→∞

log Λ(u)
log u

= −c, (19)

for some c ∈ (1/H,∞].
Then X has a version X̃ with continuous paths and for all γ ∈ (0,H − 1/c), we have X̃ ∈ H0

γ .
We have moreover that

lim sup
u→∞

log P{|X̃|γ > u}
log u

= −c. (20)

Proof. As in the proof of Theorem 3.2, we get

E|X(t)−X(s)|k ≤
( ∫ ∞

0
Λ(v)kvk−1dv

)
|t− s|kH ,

for all t, s ∈ [0, 1] and k > 0. Relation (19) implies that
∫∞
0 Λ(v)kvk−1dv < ∞, for all k ∈ (0, c).

Hence, the Kolmogorov–Chentzov criterion yields the existence of a γ−Hölder continuous version X̃
of X , for all γ ∈ (0,H − 1/c).

Proceeding as in the proof of Theorem 3.2, with Zn := 2(j+1)(H−γ)ξn ≡ anξn, where j =
[log2 n]− 1 and ξn as in (13), we obtain

P{|Zn| > u} ≤ 2Λ(u), (u > 0)

by (20).
Thus, Ciesielski’s isomorphism theorem, implies that for all γ ∈ (0,H − 1/c),

P{|X̃|γ > u} ≤ P{‖ξ‖∞ > u} ≤
∞∑

n=1

P{|Zn| > anu} ≤ 2
∞∑

n=1

Λ(anu).

Since an = 2[log2 n](H−γ) ≥ nH−γ , where H − γ > 1/c, Lemma 3.2 yields (20).
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The following result was used in the proof of Theorem 3.3.

Lemma 3.2. Let Λ(u) ∈ (0, 1] be such that

lim sup
u→∞

log Λ(u)
log u

= −c, (21)

for some c ∈ (0,∞]. If an ≥ Cnδ, for some δ > 1/c and C > 0, then

lim sup
u→∞

log(
∑∞

n=1 Λ(anu))
log u

= −c. (22)

Proof. Since Λ(anu) > 0, the left–hand side in (22) is no smaller than the right–hand side of (21).
Therefore, it suffices to show that the left–hand side of (22) is no greater than −c.

Let D ∈ (0, c), be such that δ > 1/D > 1/c. By (21), there exists a constant C̃, such that
Λ(u) ≤ C̃u−D, u > 0 and hence

∞∑
n=1

Λ(anu) ≤ C̃

∞∑
n=1

a−D
n u−D ≤ C̃1u

−D, (23)

where C̃1 = C̃
∑∞

n=1 a−D
n < ∞ because a−D

n = O(n−δD), n →∞ and δD > 1. Since D ∈ (1/δ, c)
was arbitrary, Relation (23) implies (22).

Remark 3.5. Theorem 3.3 (in the case c < ∞) is related in spirit to the classical moment tightness
condition in Lamperti (1962) and to a result in Kerkyacharian & Roynette (1991). See also Theorem
15 in Suquet (1999). Here, we provide explicit bounds on the tails of the Hölder norms, not directly
available in these results.

Remark 3.6. The isomorphism theorem of Ciesielski (1960) is the key tool used to establish Theorems
3.2 and 3.3. Other function spaces enjoy similar appealing isomorphisms properties. Most notably,
the class of Besov spaces Bγ

p,q(R), which consists of all Lp(R) functions of certain “regularity” γ are
isomorphic to weighted sequence spaces. In fact, Hölder spaces are a special case of Besov spaces
with p = q = ∞. In principle, similar results to Theorems 3.2 and 3.3 on the tail behavior of Besov
norms can be established mutatis mutandis by using wavelet characterizations (see e.g. Suquet (1999)).
This is beyond the scope of the present work, which focuses on Hölder spaces. Partial results on weak
convergence in Besov spaces are given in Section 4, below.

4 Functional limit theorems in Hölder and Besov spaces

We start by introducing some notation and sketching the ideas behind the results in this section.
Let ξ(t) = Xζ(t), t ∈ [0, 1], where X is a positive heavy–tailed random variable, independent of

the process ζ = {ζ(t)}t∈T . Suppose that ζ takes values in Hγ . If

P{X > x} ∼ L(x)x−α, as x →∞, and E|ζ(t)|α+δ < ∞, (24)

for some δ > 0, then a well–known result dating back to Breiman (1965) implies that

P{ξ(t) > x} ∼ (Eζ(t)α
+)L(x)x−α, as x →∞,
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where ζ(t)+ := max{ζ(t), 0} (see e.g. Lemma 1.1 in Pipiras et al. (2004)).
In Proposition 4.1 below, we use this fact and a Wold–type argument to show that

1
an

∨
1≤i≤n

Xiζi(·)
f.d.d.
=⇒ η(·), as n →∞, (25)

where η = {η(t)}t∈[0,1] is an α−Fréchet max–stable process. The limit has a doubly stochastic ex-
tremal integral representation:

η = {η(t)}t∈[0,1]
d=

{∫e
Ω′

ζ(t, ω′)+Mα(dω′)
}

t∈[0,1]
, (26)

where Mα is an α−Fréchet random sup–measure with control measure the probability measure P ′.
More precisely, Mα lives on a probability space (Ω,F , P), and it assigns independent α–Fréchet ran-
dom variables to disjoint measurable subsets of Ω′ so that P{Mα(A) ≤ x} = exp{−P ′(A)x−α}, x >
0, for all A ∈ F ′. For more details, see Section 5, below.

The finite–dimensional distributions of η in (26) are as follows:

P{η(tj) ≤ xj , 1 ≤ j ≤ m} = exp
{
− EP ′

(
max

1≤j≤m
ζ(tj)+/xj

)α}
, (27)

for all xj > 0, tj ∈ [0, 1], 1 ≤ j ≤ m, where EP ′ denotes expectation in the probability space
(Ω′,F ′, P ′). The next result provides simple sufficient conditions for the convergence in (25) to hold
in a Hölder space.

Proposition 4.1. Suppose that ζ is an Hγ , 0 < γ ≤ 1 valued random element. Let Mn(t) :=
a−1

n max1≤i≤n Xiζi(t), with an as in (3), where the Xi’s and ζi’s are independent copies of X and ζ.
If

E‖ζ+‖α+δ
Hγ

≡ E
(

sup
t∈T

ζ(t)+ ∨ sup
t,s∈T

|ζ(t)+ − ζ(s)+|
|t− s|γ

)α+δ
< ∞, (28)

with some δ > 0, then

Mn
Hβ=⇒ η, as n →∞, (29)

for all β ∈ (0, γ), where ’
Hβ⇒’ stands for weak convergence of distributions in (Hβ, ‖ · ‖Hβ

), and η
satisfies (26). In particular, a max–stable process η with the representation (26) has a version with
paths in Hβ, 0 < β < γ.

Proof. Let xj > 0, tj ∈ T, 1 ≤ j ≤ m be arbitrary and observe that

P{Mn(tj) ≤ xj , 1 ≤ j ≤ m} = P
{ ∨

1≤i≤n

XiYi ≤ an

}
= P{X1Y1 ≤ an}n, (30)

where
Yi :=

∨
1≤j≤m

ζ(tj)/xj , 1 ≤ i ≤ n.

On the other hand, since an > 0, xj > 0, 1 ≤ j ≤ m, and X1 > 0, we have that P{X1Y1 ≤ an} =
P{X1Y

+
1 ≤ an}, where

Y +
1 :=

∨
1≤j≤m

ζ(tj)+/xj , 1 ≤ i ≤ n.

10



By (28) we have E|ζ(t)|α+δ < ∞, for all t ∈ T , and hence E(Y +
1 )α+δ < ∞. Thus, in view of the

independence of X1 and Y +
1 , Breiman’s Lemma (see e.g. Lemma 1.1 in Pipiras et al. (2004)) implies

that
P{X1Y

+
1 > an} ∼ E(Y +

1 )αL(an)a−α
n , as n →∞.

Therefore, by using the fact that log(cn
n) ∼ −n(1− cn), as cn → 0, cn > 0, we obtain

log(P{X1Y
+
1 ≤ an}n) ∼ −nE(Y +

1 )αL(an)a−α
n −→ E(Y +

1 )α, (31)

as n →∞, since the choice of the normalizing sequence an in (3) ensures that nL(an)/aα
n → 1, n →

∞.
Relations (30) and (31) imply that

P{Mn(tj) ≤ xj , 1 ≤ j ≤ m} −→ exp{−E(Y +
1 )α} = exp

{
− E

(
max

1≤j≤m
ζ(tj)+/xj

)α}
,

as n → ∞. In view of (27), the right–hand side of the last expression equals P{η(tj) ≤ xj , 1 ≤
j ≤ m}, where the η = {η(t)}t∈T is the α−Fréhet process defined in (26). We have thus shown the
convergence of the finite–dimensional distributions. Condition (28) and Theorem 2.1 imply (29).

Remarks 2.1 and 3.6 suggest that the functional limit results for maxima in Hölder spaces can be
extended to the case of Besov spaces. At this point, we can provide only a partial result in Proposition
4.2 below for the case when the tail exponent α is confined to the interval (0, 1).

The Besov space Bγ
p,q([0, 1]), 1 ≤ p, q ≤ ∞ consists of Lp([0, 1]) functions f with finite

|f |Bγ
p,q

:=
( ∫ 1

0
(t−γωp(f ; t))q dt

t

)1/q
, (32)

where

ωp(f ; t) := sup
0<h≤t

( ∫ 1−h

0
|f(x + h)− f(x)|pdx

)1/p
, t ∈ (0, 1). (33)

The function space Bγ
p,q ≡ Bγ

p,q([0, 1]), 1 ≤ p, q ≤ ∞, 0 < γ ≤ 1, equipped with the norm

‖f‖Bγ
p,q

:= ‖f‖Lp + |f |Bγ
p,q

, f ∈ Bγ
p,q, (34)

becomes a Banach space. It follows that Bγ
∞,∞ = Hγ and therefore, the Besov spaces may be viewed

as natural extensions of Hölder spaces, where the notion of regularity is viewed on an average (Lp, Lq)–
sense.

In our context, if 1 ≤ p, q < ∞, then the inequality ‖f ∨ g‖Bγ
p,q
≤ ‖f‖Bγ

p,q
∨ ‖g‖Bγ

p,q
is not valid

for all f, g ∈ Bγ
p,q. Thus, the method of proof in Theorem 2.1 does not extend in full generality to the

case of Besov spaces. Nevertheless, some partial results are possible. The next lemma shows that Bγ
p,q

is closed with respect to point–wise maxima.

Lemma 4.1. For all f, g ∈ Bγ
p,q, 1 ≤ p, q ≤ ∞, 0 < γ ≤ 1, we have

‖f ∨ g‖Bγ
p,q
≤ ‖f‖Bγ

p,q
+ ‖g‖Bγ

p,q
. (35)
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Proof. Relation (4) implies that |(f ∨g)(x+h)− (f ∨g)(x)| ≤ |f(x+h)−f(x)|+ |g(x+h)−g(x)|.
Thus, the Minkowski inequality applied to (33) yields

ωp(f ∨ g; t) ≤ ωp(f ; t) + ωp(g; t),

for all t ∈ [0, 1−h], and hence |f∨g|Bγ
p,q
≤ |f |Bγ

p,q
+|g|Bγ

p,q
. On the other hand, since |f∨g| ≤ |f |+|g|,

we obtain ‖f ∨ g‖Lp ≤ ‖f‖Lp + ‖g‖Lp , which in view of (34) implies the desired inequality (35).

Now, for 0 < α < 1, we obtain the following extension of Proposition 4.1.

Proposition 4.2. Let X , ζ, and Mn be as in Proposition 4.1 where now ζ takes values in the Besov
space Bγ

p,q[0, 1], for some 1 ≤ p, q ≤ ∞ and 0 < γ ≤ 1. Suppose that 0 < α < 1 and E‖ζ‖α+δ
Bγ

p,q
< ∞,

for some δ > 0. Then, for all 0 < β < γ, we have

Mn
Bβ

p,q=⇒ η, as n →∞, (36)

where ’
Bβ

p,q⇒ ’ denotes weak convergence in Bβ
p,q[0, 1] and the limit η has the representation (26). In par-

ticular, a max–stable process η with the representation (26) has a version with paths in Bβ
p,q[0, 1], 0 <

β < γ.

Proof. Relation (35) implies that

‖Mn‖Bγ
p,q
≤ 1

an

n∑
i=1

‖Xiζi‖Bγ
p,q

=
1

n1/α`(n)

n∑
i=1

Xi‖ζi‖Bγ
p,q

.

Now, Relation (24), the fact that E‖ζi‖α+δ
Bγ

p,q
< ∞ and Breiman’s Lemma imply that

P{Xi‖ζi‖Bγ
p,q

> x} ∼ cL(x)x−α, as x →∞, (37)

with c = E‖ζi‖α
Bγ

p,q
(see e.g. Lemma 1.1 in Pipiras et al. (2004)).

Since 0 < α < 1, the positive random variables Zi := Xi‖ζi‖Bγ
p,q

, i = 1, · · · , n belong the domain
of attraction of a totally skewed, positive α–stable random variable. Moreover, Relation (37) and the
fact that nL(an)/aα

n → 1, as n → ∞ (recall (3)) imply that the right–hand side of (37) converges in
distribution to a proper α–stable random variable (see e.g. Theorem XIII.6.2 in Feller (1971)).

This shows that the laws of ‖Mn‖Bγ
p,q

, n ≥ 1 are tight in R. Now, the fact that the unit ball in

Bγ
p,q[0, 1] is compact in Bβ

p,q[0, 1], for all 0 < β < γ implies that the laws of Mn(·), n ≥ 1 are tight
in Bβ

p,q, 0 < β < γ. See also the proof of Theorem 2.1, and Remarks 2.1 and 2.2, above. This
completes the proof of (36) since the convergence of the finite–dimensional distributions of Mn was
already established in Proposition 4.1.
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5 Examples and applications

Condition (28) in Proposition 4.1 may be hard to check in practice. In this section, we examine several
interesting classes of stochastic processes for which (28) can be verified with the help of the results of
Section 3. We provide also an application of Proposition 4.2, where the paths of the resulting max–
stable process are discontinuous. We start with some preliminaries on the spectral representations of
max–stable processes.

By the seminal work of de Haan (1984), every continuous in probability max–stable process has
a spectral representation in terms of certain functionals of a Poisson point process. These functionals
may be also viewed as extremal stochastic integrals with respect to a random sup–measure. In fact,
as shown in Stoev & Taqqu (2005), for every separable in probability max–stable process {η(t)}t∈[0,1]

with α−Fréchet marginals, α > 0, we have:

{η(t)}t∈[0,1]
d=

{∫e
E
f(t, u)Mα(du)

}
t∈[0,1]

. (38)

Here (E, E , µ) is a measure space that can be chosen to be standard Lebesgue, the f(t, ·)’s are non–
negative measurable functions with

∫
E f(t, u)αµ(du) < ∞ and Mα(du) is a random sup–measure

with control measure µ(du). That is, (i) Mα is independently scattered, i.e. it assigns independent α–
Fréchet variables Mα(Ai), 1 ≤ i ≤ n to disjoint sets Ai ∈ E , 1 ≤ i ≤ n; (ii) the measure µ controls
the scale of the random variables Mα(A): P{Mα(A) ≤ x} = exp{−µ(A)x−α}, x > 0; (iii) Mα is
σ–sup–additive, i.e. Mα(∪n≥1An) = supn≥1 Mα(An), almost surely, for all An ∈ E , n ∈ N.

For a simple function, the above extremal integrals are defined as follows:∫e
E

( n∑
i=1

ai1Ai(u)
)
Mα(du) :=

n∨
i=1

aiMα(Ai),

where ai ≥ 0 and the Ai’s are disjoint measurable sets. It then follows that∫e
E
af(u) ∨ bg(u)Mα(du) = a

∫e
E
f(u)Mα(du) ∨ b

∫e
E
g(u)Mα(du), (max–linearity)

for all a, b ≥ 0 and simple non–negative functions f and g. We have moreover that

P
{∫e

E
f(u)Mα(du) ≤ x

}
= exp{−‖f‖α

Lα(µ)x
−α}, x > 0, (isometry)

and therefore, the definition of the extremal integral extends by continuity in probability to all deter-
ministic integrands in Lα

+(E, E , µ). By using the max–linearity and isometry properties above, one can
readily obtain the finite–dimensional distributions of the process:

P{η(tj) ≤ xj , 1 ≤ j ≤ n} = exp
{
−

∫
E

(
max

1≤j≤n

f(tj , u)
xj

)α
µ(du)

}
,

for all tj ∈ [0, 1], xj > 0, 1 ≤ j ≤ n (recall also (27)). For more details, see Proposition 5.11’ in
Resnick (1987), de Haan (1984), Stoev & Taqqu (2005), and Kabluchko (2009).

If the control measure µ is a probability measure, then the integrands f(t, ·) may be interpreted
as random variables defined on the probability space (E, E , µ). Conversely, given a non–negative
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stochastic process ζ(t, ω′), t ∈ [0, 1], defined on a probability space (Ω′,F ′, P ′), with EP ′ζ(t)α < ∞,
one can define the max–stable process η as in (26). We refer to the latter representations as doubly
stochastic. The stochasticity in η is due to the randomness of the sup–measure Mα, which is defined
on the probability space (Ω,F , P) 6= (Ω′,F ′, P ′). On the other hand, the stochasticity in ζ governs the
dependence structure of η.

Every separable in probability max–stable process has a doubly stochastic representation, which
is typically not unique. The stochastic properties of the integrands in (26), however, are often helpful
in establishing the properties of the resulting max–stable process (see, e.g. Stoev (2008), Kabluchko
(2009), Kabluchko et al. (2009), and Wang & Stoev (2010)). The examples in the rest of this section
are based on doubly stochastic representations.

• (Schlather processes) Suppose that {ζ(t), t ∈ [0, 1]} is a zero–mean Gaussian process with
continuous paths defined on the probability space (Ω′,F ′, P ′). Let

d2 := sup
t,s∈[0,1]

E(ζ(t)− ζ(s))2

|t− s|2H
< ∞, (39)

for some 0 < H ≤ 1. Then, Relation (10) readily follows with δ := 2, the Hölder norm ‖ζ‖γ

is finite and has finite moments of all order, for all 0 < γ < H . Indeed, (39) implies that
σ2(t, s) := Var(ζ(t)− ζ(s)) ≤ d|t− s|2H , t, s ∈ [0, 1], and hence

sup
t,s∈[0,1]

P{|ζ(t)− ζ(s)|/|t− s|H > u} ≤ P{|Z| > u/d} ≤
√

2d√
πu

e−u2/2d2
, (40)

for u > 0, where Z denotes a standard Normal random variable.

Thus, Proposition 4.1 applies and the max–stable process

η(t) :=
∫e

Ω′
ζ(t, ω′)α

+Mα(dω′), t ∈ [0, 1]

has a version with paths in Hβ , for all 0 < β < H .

Doubly stochastic max–stable processes, and more generally, random fields driven by stationary
Gaussian processes ζ were proposed and studied in Schlather (2002).

• (Brown–Resnick processes) Let again ζ(t) ≡ ζ(t, ω′), t ∈ R be a zero–mean Gaussian process
with continuous paths defined on the probability space (Ω′,F ′, P ′). Kabluchko et al. (2009),
extending results of Brown & Resnick (1977), showed that surprisingly the max–stable process

η(t) :=
∫e

Ω′
eζ(t,ω′)−ασ2(t)/2Mα(dω′), t ∈ R, (41)

is stationary provided that the increments of ζ are stationary. The process η in (41) is referred to
as a Brown–Resnick stationary max–stable process. For more details on Brown–Resnick station-
ary random fields, see Kabluchko et al. (2009).

The following result establishes the Hölder regularity of the process η.
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Proposition 5.1. If (39) holds, then the Brown–Resnick process η = {η(t)}t∈[0,1] in (41) has a
version with with paths in Hβ , for all 0 < β < H .

Proof. Observe that η(t) = eασ2(t)/2η̃(t), where η̃(t) :=
∫e
Ω′e

ζ(t,ω′)Mα(dω′). By the Cauchy–
Schwartz inequality and (39), we have that

|σ2(t)− σ2(s)| ≤ (EP ′(ζ(t)− ζ(s)2))1/2(EP ′(ζ(t) + ζ(s))2)1/2 ≤ const |t− s|H ,

t, s ∈ [0, 1]. Thus, the deterministic function t 7→ eασ2(t)/2 belongs to HH , and to complete the
proof, it is enough to show that the process η̃(t), t ∈ [0, 1] has a version with paths in Hβ , for
all 0 < β < H . This is because fg ∈ Hβ for all f, g ∈ Hβ .

We shall verify that X(t) := eζ(t), t ∈ [0, 1] satisfies Condition (18) of Theorem 3.3 with c = ∞.
Indeed, by the mean value theorem, applied to the function x 7→ ex, we have that

|eζ(t) − eζ(s)| ≤ |ζ(t)− ζ(s)|e‖ζ‖, (42)

where ‖ζ‖ := supt∈[0,1] ζ(t). Since ζ(t), t ∈ [0, 1] has continuous paths, ‖ζ‖ < ∞, P ′–almost
surely. Therefore, by the Borel–TIS inequality (see e.g. Theorem 2.1.1 in Adler & Taylor (2007)),
we obtain that

P ′{‖ζ‖ > v} ≤ C2e
−vκ

, v > 0, (43)

for some (any) κ ∈ (0, 2) and some C2 > 0.

Now, in view of (42), we obtain

P ′
{ |eζ(t) − eζ(s)|

|t− s|H
> u

}
≤ P ′

{ |ζ(t)− ζ(s)|
|t− s|H

> u1/2
}

+ P ′{e‖ζ‖ > u1/2}

≤ C1e
−du + C2e

− log(u1/2)κ
=: Λ(u), (44)

for some positive constants C1, C2, d and κ that do not depend on t, s ∈ [0, 1]. The last inequality
follows from Relations (39) and (43). Indeed, the first term in the right–hand side of (44) follows
from (39) by using bounds for standard Gaussian tails as in (40). On the other hand, the second
term therein follows from (43) by replacing v with log(u1/2).

Since the exponent κ in the right–hand side of (44) can be taken to be greater than 1, we obtain
that (18) and (19) hold with c = ∞. Theorem 3.3 then implies that the paths of X = eζ

belong to Hβ , for all β ∈ (0,H). Since c = ∞, by (20), we have moreover that EP ′‖eζ‖k
Hβ

≡
EP ′‖X‖k

β < ∞, for all k ∈ N and β ∈ (0,H). Proposition 4.1, thus implies that the max–stable
process η̃(t) =

∫e
Ω′e

ζ(t,ω′)Mα(dω′) has a version with paths in Hβ, 0 < β < H .

• (Lévy–Fréchet) Let now 0 < β < 1 and consider the β–stable subordinator ζ = {ζ(t)}t≥0 be
defined on the probability spaces (Ω′,F ′, P ′). Namely, ζ is a positive Lévy β–stable process.
Without loss of generality, we shall assume that ζ has right–continuous paths with left limits
(càdlág).

Now, consider an α–Fréchet random sup-measure Mα over the measurable space (Ω′,F ′) with
control measure P ′. The sup–measure is supported on the probability space (Ω,F , P) 6= (Ω′,F ′, P ′).
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If 0 < α < β < 1, then EP ′ζ(t)α < ∞, and then the following doubly stochastic max–stable
process is well–defined:

η(t) :=
∫e

Ω′
ζ(t, ω′)Mα(dω′), t ≥ 0.

We shall refer to η = {η(t)}t≥0 as to a Lévy–Fréchet process.

The process η does not have a version with continuous paths. Indeed, since ζ has càdlág paths,
it is separable and measurable, where as a separant one can choose an arbitrary countable dense
set D in [0,∞). The paths t 7→ η(t, ω′), however, are discontinuous with P ′–probability one.
Therefore, by the characterization of continuity in Theorem 3.2 of Resnick & Roy (1991) it
follows that η cannot have continuous paths. The following simple result establishes the Besov–
space regularity of η.

Proposition 5.2. For all 0 < α < β ≤ 1, the process η = {η(t)}t∈[0,1] has a version with paths
in Bγ

p,∞([0, 1]), for all 1 ≤ p < ∞ and 0 < γ < 1/p.

Proof. By he monotonicity of η(·, ω′) and the inequality ap +bp ≤ (a+b)p, valid for all a, b ≥ 0
and p ≥ 1 imply that

vp([0, 1]; η(·, ω′) = |η(1, ω′)− η(0, ω′)|p = η(1, ω′)p.

We also have that ‖η(·, ω′)‖Lp ≤ η(1, ω′) and therefore, by Lemma 5.1, we obtain

‖η(·, ω′)‖Bγ
p,∞ ≤ η(1, ω′) + cv1/p

p ([0, 1]; η(·, ω′) = (1 + c)η(1, ω′),

for P ′–almost all ω′, and some constant c > 0 independent of η and ω′.

Thus, EP ′‖η‖α+δ
Bγ

p,∞
≤ const EP ′η

α+δ < ∞, for some (any) 0 < δ < β − α and for all 0 < γ <

1/p. Proposition 4.2 yields the desired result.

Remark 5.1. The logic in the proof of Proposition 5.2 applies to any other setting where one can
control the norm of the p–variation. For the lack of a better example, we considered the case of Lévy–
Fréchet processes here. A simple direct proof of Proposition 5.2 can be obtained without the use of
Proposition 4.2 as follows.

Note that η is continuous in probability since ζ is continuous in the Lα(Ω′, P ′)–sense (see e.g.
de Haan (1984)). Also, η(t) < η(s), for all 0 ≤ t ≤ s, P–almost surely, since the increments of ζ are
positive P ′–almost surely. Therefore, for any countable set D that is dense in [0, 1), defining

η̃(t) := inf
s>t,s∈D∪{1}

η(s),

one obtains a process η̃ = {η̃(t)}t∈[0,1] with càdlág paths that is a version of η. Indeed, the continuity
of probability of η implies that η̃(t) = η̃(t), P–almost surely, for all t ∈ [0, 1].

Now, Lemma 5.1 applied to the paths η̃(·, ω) of the process η̃ = {η(t)}t∈[0,1] yields η̃ ∈ Bγ
p,∞, with

probability one, for all 0 < γ < 1/p, p ≥ 1.

The next result was used in the proof of Proposition 5.2. It is akin to Theorem 2 in Rosenbaum (2009),
but here we provide a norm estimate in a more concrete setting with an elementary proof.
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Lemma 5.1. Let 1 ≤ p ≤ ∞ and f : [0, 1] → R be a càdlág function with finite p−variation
vp([0, 1], f) < ∞, where

vp([a, b], f) := sup
{ m−1∑

k=0

|f(tk+1)− f(tk)|p, a = t0 < t1 < · · · < tm = b, m = 1, 2, · · · .
}

Then, for all 0 < γ < 1/p and 1 ≤ q ≤ ∞, we have

|f |Bγ
p,q
≤ cq,γv1/p

p ([0, 1], f), with cq,γ := ((1/p− γ)q)−1/q,

where c∞,γ = 1. In particular, f ∈ Bγ
p,∞.

Proof. Consider the following function:

F (x) := inf
y>x

vp([0, y], f), (0 ≤ x < 1) with F (1) := vp([0, 1], f).

Thus, F is right–continuous, and monotone non–decreasing. Note that for all x ∈ (0, 1 − h), and
sufficiently small δ > 0, we have

vp([0, x + δ], f) + |f(x + h)− f(x + δ)|p ≤ vp([0, x + h], f) ≤ F (x + h).

Therefore, by letting δ → 0+, the right–continuity of f and the fact that vp([0, x+δ], f) → F (x), x →
δ+, imply:

|f(x + h)− f(x)|p ≤ F (x + h)− F (x) =
∫

(0,1)
1(x,x+h](u)dF (u).

In view of (33) and the Tonelli–Fubini theorem, we obtain

ωp(f ; t) ≤
(

sup
0<h≤t

∫
(0,1−h)

( ∫
(0,1)

1(x,x+h](u)dF (u)
)
dx

)1/p

=
(

sup
0<h≤t

∫
(0,1)

hdF (u)
)1/p

≤ t1/pF 1/p(1) = t1/pv1/p
p ([0, 1], f).

Integrating the last relation as in (32) yields |f |Bγ
p,q
≤ v

1/p
p ([0, 1], f)((1/p−γ)q)−1/q, which completes

the proof of the lemma.
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Račkauskas, A. & Suquet, C. (2007b), Hölderian invariance principles and some applications for testing
epidemic changes, in ‘Long memory in economics’, Springer, Berlin, pp. 109–128.

18
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