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Abstract

Analysis of variance is a standard statistical modeling approach for corgpgaopulations.
The functional analysis setting envisions that mean functions are assowiifttethe popula-
tions, customarily modeled using basis representations, and seeks to edhgrar Here, we
adopt the modeling approach of functions as realizations of stochastiegz®s. We extend
the Gaussian process version to allow nonparametric specifications usiohldd process
mixing. Several metrics are introduced for comparison of populationsn Weeintroduce a
hierarchical Dirichlet process model which enables comparison of fhagkondistributions,
either directly or through functionals of interest using the foregoing metfibe modeling is
extended to allow us to switch the sampling scheme. There are still populatidrdistie
butions but now we sample at levels of the functions, obtaining observdtmmspotentially
different individuals at different levels. We illustrate with both simulated datha dataset of
temperature vs depth measurements at different locations in the Atlantic.Ocean
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1 Introduction

In this paper we consider response models where the resparséunctions indexed by groups,
with the goal to learn if the functions differ across groupd af so, how they differ. It is natural
to refer to this setting as a functional analysis of varia(BHOVA) problem, recognizing the
challenges in comparing surfaces (uncountable dimenisiesponse) across populations rather
than scalars (usual ANOVA) or vectors (MANOVA).
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Applications onR! typically have time as the argument, for example progestetevels for
groups of women (MacLehose and Dunson, 2009; Nguyen and@EI2011), mass spectroscopy
data for different groups over time (Morris and Carroll, 2))0fose response (white blood cell
counts) indexed by cancer treatments (Delorio et al., 2084) temperature profiles indexed by
climate model (Kaufman and Sain, 2010). As a different edamBappold et al. (2007) and
Rodriguez et al. (2009) examine temperature vs. depth offerelit regions in the Atlantic Ocean.
On R?, we find investigation of brain images (Petrone et al., 2G09), more generally, image
analysis (Nguyen and Gelfand, 2011).

The contribution of this paper is to formulate the functiohidOVA problem in a fully Bayesian
nonparametric framework using suitable hierarchical ninde In particular, we begin with the
Gaussian process (GP), then extend to the spatial Diriphtetess (SDP) (Gelfand et al., 2005).
Then, we introduce a novel hierarchical and nested Dirigiiecess (HDP) specification, which
models the (random) distributions which generate the fanst by adopting and extending the
hierarchical modeling of Teh et al. (2006) and Nguyen (2010 novelty in our modeling frame-
work is in the ability to switch the sampling scheme. Thisastigularly applicable to the setting
for functional ANOVA which may require sampling at both fuional level and the levels of func-
tions. In our modeling for functional ANOVA, we still havendom population-level distributions
but now we sample at levels of the function, obtaining obsons from potentially different in-
dividuals at different levels. We discuss metrics for conmaapopulations which are applicable
under any of these modeling specifications.

Notably, we work in the setting where we do not have a largebemof observations of the
functions over the domain of the argument. Hence, we do rek gelearn about the functions
at fine detail, at high resolution of the argument. For theefadetting, it might be advantageous
to use special basis representations such as waveletsigMad Carroll, 2006). Rather, we seek
to interpolate the functions over their domain, not an a@gtief the high resolution work. Hence
we are drawn to GP’s and processes that extend GP’s. Thoughayeot have many observa-
tions of the function, we do not find a MANOVA model to be appiafe. For MANOVA, the
components of the vector need not be the same measuremiaieaso, general covariance ma-
trices are introduced and these matrices are partitionedteonvariance components. For us, the

components are measurements all on the same variable amtragiuice “structured” dependence



between them.

The ANOVA setting presumes that the individual-level fuoos are “pre-clustered”, i.e., they
are already indexed by a population label. So, unlike usirattidet process settings, we are not
primarily seeking to determine clusters that create gradsnctions. (Such adaptive clustering
or mixture modeling is often the reason for adopting DP dptions.) In fact, we are proposing
to use the DP structure primarily to compare the groups. WdlGP framework, we can not talk
about groups being th&ame since this happens with probability instead, we employ metrics to
measure closeness; we develop such ideas below. If we m@&@/[@R¢s, we can have ties. That is,
for a pair of groups, now the curves are either identicalyavbere or nowhere. Finally, when we
work with the HDP and the nested HDP we move to a comparisdmedistributions that generate
population-level features. Now, ties are possible (onbbgl with the HDP, local with the nested
HDP) for realized curves across populations. In the spictgtomary ANOVA hypothesis testing,
priors that allow suchies are natural for this setting; they capture the same veinragifa “spike
and slab” priors for variable selection (see, e.g., Ishwanad Sunil-Rao (2005) and references
therein) which allow parameters (or differences in paramstto have positive prior probability
(hence positive posterior probability) of beifig

As in usual ANOVA settings, replications are required; id@rto assess differences between
populations, we need to learn about the variability withipplations. Similarly, in the functional
ANOVA setting, we are not seeking to cluster individualshait populations. Rather, we are
seeking to learn about the variability of individual obssrons, for us, individual curves, within a
population, again, to facilitate comparison of curves asf@opulations.

Modern nonparametric ANOVA moves away from Gaussian erssumptions, adopting pop-
ulation models that allow skewness, heavier tails, andimatalities. It also considers comparing
other functionals, such as quantiles, across populatifesare in this contemporary camp but in
the setting of curves rather than scalars. In fact, in our ldB&nested HDP versions, we compare
distributions across populations where such comparisnrbealone based upon local functionals
(i.e., at the arguments of the curves) yielding global fiomd.

The field of functional data analysis has benefitted from #misal books of Ramsay and
Silverman (2006) (cf. Chapter 13) and Ferraty and Vieu (2008)is work proceeds through

the use of orthonormal basis representations for functigpgcally spline bases. As noted above,



usually the functions of interest are over space and/or &nakthe literature is substantial. Notable
alternative applications include (Brumback and Rice, 1998pitzner et al., 2003), Wang et al.

(2005). These basis representations provide explicitédomthe functions, i.e., finite dimensional

parametric representations of the function.

Our approach is to view the entire function as unknown andi¢w \t as a realization of a
stochastic process. In this regard, Gaussian processesagtomary place to begin (Cressie,
1993; Banerjee et al., 2004). Since we work within the Bayesanework we use such processes
and extensions of them as priors for the functions we modgluese the available data to update
to posterior estimates of the functions. By introducing ravametric specifications, we move be-
yond the work of Kaufman and Sain (2010). They confine thevesdio the use of GP’s in their
Bayesian functional ANOVA formulation and imitate clas$ié&OVA modeling by incorporat-
ing constraints on the functions in order to identify thenmhey introduce pointwise and global
credible intervals for comparison of curves, employingidiens relative to an appropriate “aver-
age” curve. Our DP-based framework yields a much differeotieh construction, resulting in a
different approach for comparison. The recent book chagtBunson (2010) (Sec. 7.3) provides
a review of various Bayesian nonparametric approaches tmtiteling of functional data.

As noted above, we build our modeling in a sequential fashiot, as a by-product, offer
comparison between the GP and DP extensions of the GP. Wesipiulated data as a proof of
concept, to demonstrate the benefits of our more flexible tmgdéNe also analyze a real dataset
which considers the temperature vs. depth relationshifolar different regions in the Atlantic
Ocean.

The plan for the paper is as follows. In Section 2 we brieflyeevthe Gaussian and Spatial
Dirichlet processes we will use to model realizations ofctions. In Section 3 we move these
models to our functional ANOVA setting, discussing summsuof individual functions and com-
parison of functions. Section 4 proposes a new functionaDX¥A model based upon hierarchical
Dirichlet processes. Section 5 takes up the simulated aadderamples while Section 6 closes

with a summary and future investigations.



2 Stochastic process models for random functions

As noted in the Introduction, we model our unknown functiassrealizations of stochastic pro-
cesses. Gaussian processes are convenient to work witlsiretfard since consistent specifica-
tion of finite dimensional distributions for GP’s only reges specification of a mean function and
a valid covariance function. Formally, we will write thétz) follows a GP over the set € D
and specifyE(0(x)) = po(x) andcov(f(x),0(x")) = C(z,2") whereC' is valid overD. Here
we confine ourselves to stationary forms and weite:, =') aso? p(x — 2’; ¢¢) wherep is a valid
stationary correlation function. For example, an expoaécbvariance function takes the form
C(r,2') = of expfl|lz — @'[[2/dc}.

Next, we turn to the spatial Dirichlet process, introducgd3zlfand et al. (2005). We first
recall the Dirichlet process (Ferguson, 1973 ) which presid random probability measure on
spaces of distribution functions. A constructive defimtiwas introduced by Sethuraman (1994).
In the univariate case, Idw;, &k = 1,2,...} and{¢,,k = 1,2,...} be independent sequences
of i.i.d. random variables. Let, ~ Betal,~), v a positive precision parameter agg ~
H, H a parametricbase distribution. Defines;, = wi, B = wi H?;%(l —w), k=23, ..
Notationally, we will write tha{3 ~ GEM(v). Then, a realization from DR, H) is almost surely
of the form i Brdg,. We note that we may also specify that= 1,2, ..., K where K < oo,
referred to g?the finite DP or @R and the weights are drawn from/&-dimensional Dirichlet
distribution (Ishwaran and Zarepour, 2002).

We can immediately extend this definition to accommodateabizagion of a spatial random
field. Replacep, with ¢, , = {¢x(x) : z € D}. Here,H can be a stationary Gaussian random field
and eachy, ,, is a realization frontx, i.e., a randonsurface over D. Hence, we create a random
process oveD of the formG = i B, ,» cENtered at the processand writeG ~ DP(v, H).

G describes a stochastic proce]fs:slof random distributionssarnze they were working in the spatial
setting withD C R?, Gelfand et al (2005) called this class of processes spatiSDP’s. We

will use this terminology as well though, for us,need not index geographic space. We can
directly verify that the set7 p, as a collection of random measures is a dependent Dirigideess
(DDP) (MacEachern, 1999). FurthermoreHfproduces a.s. continuous realizations then the a.s.
representation of/ , ensures that:(6(z)) — G(6(z')) — 0 a.s. ag|z — z/|| — 0. In other words,

smoothness of realizations fromP(~, H) is determined by the choice of the covariance function



of H. Conditions for almost sure or mean square continuity adsed in Kent (1989) and Stein
(1999), respectively.

For@p = {0(x) : z € D} arealization front7, it is straightforward to verify thaE(6(z) | G)
=2 By (x) andeov(0(x), 0(2') | G) = 3 Brpi(x) by (2') — {32 Beepr (@)} {32 Brpr(2)}. We
smooth out the point masses@hy mixing against a white noise procésgwith mean 0 and vari-
ancer?) resulting in a random process ovemwith continuous support. Operating formallygif, |
G~GandYp —0p | 7 ~ K, kadensity thery (Y | G,7%) = [k (Y p—0p | 7*) G (dOp).
Hence, ignoring the mean;(z) = 0(z) + ¢(z) whered(z) is from the SDP and(z) is white
noise.

For the finite set of levels,, ..., x,,, the induced mixture model becomes
F(Y|GM 2 = / fn, (Y| 0,721,) G™ (d6) (1)

whereY = (Y (z1),...,Y(z,)) and@ = 0 = (6(z1), ...,0(z,)) yields f (Y|G™, %) a.s. of
the form i‘ Befnn(ylow, 721,,), @ countable location mixture of normals. GivefiY) andr?, the
resultingkgcl)variance matrix becom@s = 721, + Cp With (Cp); ; = Cov(0(x;),0(x;) | G™).

As evident from the representation @f the SDP provides a nonstationary, nonGaussian pro-
cess. From above, give®, two random curveg, () andd,(x) agree a.e. with probability” 32 or
else they disagree a.e. In the context of functional ANOWMs allows ties between the population

functions.

3 Functional ANOVA using Gaussian processesand spatial Dirich-

let processes

We now return to the functional ANOVA problem. We focus ondme-way layout setting, initially
specified as
Yuz(x) = Qu(x> + Eui(x)a (2)

fori =1,...,n,. Here,u = 1,2, ...,U indexes theopulations/treatments and: the individuals
within the populations 8, denotes the function/surface for populationCurves for individuals
from populationu are assumed to be conditionally independent gé&gn.e., thee,,; are indepen-

dent. In fact, for convenience, in the sequel we assume:tisat white noise process. This implies
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that all individual curves are almost surely discontinuewsn if thef,, are continuous. Our choice
here is for simplicity of exposition; in some situatioag may be more suitably modeled as GP
realizations (e.g., Kaufman and Sain (2010)). Here, inldigl errore,; is assumed to be a white
noise process, i.ec,;(z) ~ N(0,72)i.id. fori =1,...,n,.

As in usual ANOVA modeling, we assume that the data from alugs have beere-centered
around a mean curye. So, thef,, are deviation curves and, in comparing them, it is the fumeti
variation aroundl that we are interested in. Accordingly, we endowéheavith a prior distribution
with a mean curveu, which may be again endowed with a prior distribution; iatris in the
differences between the,’s.

For each population, we are interested in the variatiand,, (=), and correlation, i.e., for levels
x1 andzxy, corr(0,(z1), 0. (x2)), respectively. Additionally, we are interested in sumresuof the

curves obtained by integration over a given sub-redgsoft D of interest:

ml(Ou,B):/BOu(m)de,
ma(6,,B) = [ U6,(x) 2 0)da,

(8. B) = / (6u()) 4.

B

In the sequel we suppregswhich will often beD. Based on these summaries, to comgghye

and@,, the following measures are considered. Let
dl(euy 91}) - ml(eu - 01})7 d?(eua 01}) = m2(0u - 01})7 anddS(OU7 01}) = m3(9u - 91})

These “metrics” form the basis for our ANOVA comparisons whdtional data. Using the non-
parametric curve specifications from the previous sectopreors, allows us to specify the prior
probability that populations and v are “the same’, as well as to elaborate the nature of their

differences using the above metrics. We then use the datake these comparisons a posteriori.

3.1 Functional ANOVA based on Gaussian processes

Suppose that a prioél,, ~ GP(u, C), i.i.d. whereC' is the covariance function. With observations
at levelszy, . .., x,,, 6, is now distributed as am-variate normal with meau(z1), .. ., u(zm))

and covariance matri€’. The common mean curyg can be taken to be random, and is endowed
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with a suitable prior distribution, e.g., a constant meanss&n processiu(zy), ..., u(xy,)) ~
GP(0, aiIm). (Here we take the constant mean to be O for simplicity). TNexal model specifi-

cation is summarized as follows:

1id

H=GPpu,C), 0,/H~Hu=1,2,...U 3)
Y .0, C N(0,,721,), foralli=1,...,n,
where, again{'(z, ') = o p(z — 2'; ¢¢).

Due to conjugacy, conditionally on the data and paramedrs.= (u,C, T, 0), the 8,’s
are independently distributed Gaussian processes with peand covariance,, respectively.
Appendix 1 provides details. Also, conditionally on the alaind parameterd?, (6, — 6,)
is distributed according to a Gaussian procesgGP- fi,,C..,), where covariance function
C“u,v = C, + C,. (To make prior/posterior comparison, the ‘no data’ varsiof the expressions
below employu, (z) andC'.)

From Appendix 2(6, — 6,)? can be expressed as a sum of normal and chi-square variables,
and so the expected value:

Bld,(6,.6,)Daa M] = [ (ffa) = ju()fde + [ Cusfa)ds @
Ve (6,,6,)Data M) = [51( Y222+ 4 [ (o) - puo)in(oic). 6

where{\;}72, are the eigenvalues of the integral operator induced byrizonee kernelé’u,v,
while 1y, are the corresponding eigenfunctions. (We 65@(:;5) to denote@uw(mx)). The de-
composition of the expectation into two terms is worth ngtimhe first term contributes an in-
tegrated squared difference while the second contributesitative spatial variation. To obtain
E[d,(6,,0,)|Datd, one has to integrate ol yielding:
Bl (6,,6,/0atd = 5| [ (1u(0) - iu(o) P+ [ € a)iiDatd],
B

B
var|d,(0,,0,)|Datd = wvarE[d,(0.,0,)|Data M| + E[var|d,(0,,0,)|Data M]|
Explicit expressions are no longer available, but the caatmn can be achieved by sampling over
M conditionally on the data.

Ford,, note that for each € B, conditionally on the data amti, we havePr (6, (x)—0,(z) >
0) = (1= @(~(fu() — fu(2))/Cuu(2))). SO,



Eldy(0.,0,)|Data M| = [91—¢<_(ﬂ“g) Zx’;”(”j»)dx

varld(,, 6,102t M) = [ 1= 0 () = o) fuen) = nle),Cunlion 2) ) | o

~ { /B L q)(—(ﬂugzvzgv@))) dff'

Here ®y(m(xy), m(xq)), p(x1,22)) := P(Z > 0), whereZ is a bivariate normal variable with

mean(m(x;), m(x2)) and covariance matrix obtained from the covariance fungtievaluated at

x1 andz, for xy # xo. FOrzy = g, ®o(m(xy), m(xs)), p(x1,x2)) = ®(—m(z)/p(x1, 21)).
Turning tods, it is also simple to obtain the mean expressiondpas follows:

E[ds(6.,,0,)|Data M] = / [l_q)(_(ﬂu%@?vw)]

O (1) o))/ (Con@)))
1- (I)(_(/:Lu(x) - ﬂv(x))/(cu,v(x»)

where¢ is the density for a standard normal variable. The variampesession is unwieldy and is

{m) ~ o)+

omitted.

If the region B has irregular shape, the foregoing integrals may need tmb®uated using
Monte Carlo integration. Suppose we uniformly sample galgvelszy, ..., 2o, € B, while
eigenvalues of the integral operator of the covariancetfangiven by the posterior distributions
are computed from the induced Gram matrix using lewgls In essence, these approximations

yield:
01(8,,8,) = = 5" (0u(r0) — 0, (00))°.

Hu,e ZH .Z'[]t .flf()t) > O)

p

43(02:0,) = — 3" (Buliror) — bu(or)s-

p t=1

Under mild conditionsd; (6., 0,) — d1(6.,6,) —— 0 asp — oo. In fact, Edy(6,,6,) —
Ed,(6,,0,), andvar(cil(eu, 0,)) — var(d,(0.,0,)). Note thaip does not depend on the available

amount of data. Thus we can estimate the expectation arghearexpression fal, as accurately

9



as we wish (given that we can obtain exact expressiond;fior The same holds fod, andd;.
Moreover, by sampling over the posterior distribution & thean curve8,, for all uw € V', we can

obtain summaries other than the means and variances.

3.2 Anexample

We illustrate the functional ANOVA from the previous subiseic. We consider a two-population
problem. Using Gaussian process modeling, we generatedrvups of curves with sample size
ny = ny = 20. The mean curve8, are random draws with megm = 0 and the covariance
function takes an exponential form witly = .5 andw, = .02. The white noise variancg =

1, = .2 for both groups. The samples are two groups of cuigér) wherex = 1,2,...,50,
u=1,2and: =1,...,n,. Fig. 1 shows the two sets observed curves.

The posterior inference procedure is described in det#ipipendix 1. For prior specification,
we seta,, = 2 andb,, = 3 foru = 1,2; a,, = 2 andb,, = 2 foru = 1,2, anda, = 10
andb, = .01. We utilized distance measures, d, and d; described earlier, using illustrative
domainsB of the form[z, = + 10], for x = [2,4, 6, . ..,40]. The posterior distributions of relevant
parameters were obtained by MCMC sampling, which were rua®000 iterations, the last 5000
iterations of which were used for the computation of the @ast distributions. See Fig. 1 (right
panel) for an estimate and credible intervals for the meawes#,. The posterior distributions
for distance measures can be obtained in two ways, eitheughr MCMC samples for mean
curves evaluated at 50 new levels uniformly generated fiyror through analytic expression of
conditional expectations given parameters, where thenpetexs were obtained through MCMC
samples. We employ the latter, “Rao-Blackwellized” compatat

To illustrate the spatially varying posterior behavior loé tdistance measures proposed in the
previous subsection see Fig. 2, where a poiah the X axis is associated with the interyalz +
10]. For small values of;, d; has small but strictly positive posterior mean. Aslides to the
middle region in the domain (e.ge, = 18), the posterior mean faf; increases to around 1 with
probability close to 1, and as approaches0, d, decreases to the range (15, .2) with high
probability. The posterior distribution fat, captures the probability that the mean curve of the
first population dominates that of the second population. Shaall values ofr, this probability

is close to .5, suggesting that the two populations shargasimean curves, and asapproaches
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the middle of the interval, the probability decreases tan@jcgating where the first population is
dominated by the second populatiod; also captures where a population is dominated by the
other, and by how much. The behavior of these metrics is inrdcwith the rightmost panel of
Fig. 1.

3.3 The SDP case

Here, we replace the GP specification with the SDP, desciib8dction 2. Applied to the model
in (3), the overall hierarchical specification is summatias:

H=GPu,C, GyH ~DP(vy,H),
iid

0,|Gy ~ Gy forallu e V (6)
Y .i|0. i N(8,,71,), foralli=1,... ,n,u€cV.

u

Priors will be supplied fopr andC, as well asy. Under these specifications, tlg's are iid draws
from Gy. The distributionGG, varies around prio#, with the amount of variability governed by
~. It is worth noting that this model specification is richeathand subsumes the one given by (3).
In fact, lettingy — oo, the induced prior given by (6) converges in distributiorthe one given
by (3). Integrating over the random measaGig 0, is distributed according to a GP distributiéh
so that the variance and correlation measures within eanipgire the same as what we obtained
using a GP prior in the previous section.

Next, consider the relationship between two grou@sdv. Under the properties of Dirichlet
processes, and the fact that the Gaussian process distnbaire non-atomic, we obtain, a priori,
thatP(0, = 0,|y) = ﬁ Furthermore,

corr(Bul). bulz)l. O) = 77 +[;(>g;<f>)p<x2> ‘ (7)

Turning to our metrics, for say;, we have:

1
P(dl(emev) = 0|7) = ma

E[d:(6,,0,)|7,C] = ﬁ/BC(:E,x)dx

11



We can obtain similar expressions oy andds;. With regard to population comparison, note the
difference between the SDP and the GP modeling. With the @G, pinder eithewl;, d, or ds,
with probability 1 there are no ties betwe@pandé,,.

4 A new functional ANOVA modéd

We now specify a Bayesian nonparametric ANOVA model whickedsffrom that of the previous
section and allows more detailed population comparisore fidvelty comes from now seeking
comparison of the&7,’s, the the random distributions that generate the curvesmtbviduals in
populationu. Now, we can compare th&,’s directly or compare features of these distributions,
for instance, the functional that is the “mean-at-a-pointictional. Furthermore, as we show
below, the comparison can be carried out globally, i.e.,\aral comparison of thé&,’s (Section
4.2) or locally, i.e., relative to the random distributicatsa givenz, G, (x) (Section 4.3).

4.1 Theglobal case

Our development proceeds from the hierarchical Dirichtetpss modeling approach of Teh et al.
(2006). The idea of this approach is that the randeyis are i.i.d. draws from a Dirichlet process,
G, ~ DP(«, Gy), for some base measu€g, which is also random and is distributed according
to another Dirichlet process, i.€5, ~ DP(v, H). Gy is a.s. a discrete probability measure, say
Go = > 4y Brde,. Hence, the specification far, implies that theG,’s share the same set of
atoms that definé&r,. This allows explicit comparison of the populations.

In particular, comparison can proceed through functionélsterest ofGG,,. DenotingG.,, by
{7uk, dr.p, k = 1,2,...}, we have the mean functionalG.,) = >, mux ¢, Which plays the role of
6, of the previous section. The mean functional enables us k@ mannection with comparisons
from the previous section, i.e., we immediately havg0,,, B), m»(6,, B), andm3(68,, B) and,
for populations: andv, we haved, (0., 6,), d2(0.,,6,), andds(0,, 8,). Equivalently, we also use
notationd, (G,, G,) for d,(0,, 8,,) and so on. Itis clear that there can be no ties between the mean
functionals;Pr(6, = 6,) = 0. In computing the expressions associated with these digsntive

only have to plug in the form of the mean functional. For ins& after some minor calculation,
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we obtain

1(8,,0) = 3 3y = mup)(ra = 7ut) [ ¢5(o)on(a)d

This is a special case of/d norm betweerts, andG, given as follows:

A (Gu, Gy) z(/B | ;(mk - m)m(fﬂ)\rd«%’) I/T-

Other functions, say based upon quantiles can be studiatigttthe function arises as say tih
qguantile of the marginal distribution @f, atz) for individual populations and compared across
populations. Also, we can directly compare thigs. There is an extensive literature on comparing
distributions, e.g. see Dudley (1976). For probabilityrilsitions on function spaces, comparisons
using divergence measures may be generally difficult dyeidisupports (see, however, Nguyen
(2013b)). This issue is circumvented by our hierarchicastauction. Indeed, becausg, and
G, share the same support with probability one, the variatidiséance and the Kullback-Leibler
distance betwee@’, andG, can be defined by taking the following forms, respectively:

1
dV(Guan) = §Z|7Tuk_7rvk|u
k
dKL(Guan) = Zﬁuklog(mk/%k)-
k

It is important to recognize a key difference between thisOMA specification and that of the
previous section. Now, we hav§;(z) = p+ 0. (z) + €4;(x). Draws,8,,; from G, are realized for
each individualj = 1,2, ..., n,,, within population:. Here,@, is never realized for any population;
it is the population mean of these curves. We have a modelrarttiom effects and a pure error
term but with marginal dependence acrossith@nd also across thés. That is, though thé/,’s
are conditionally independent givén,, we haved,;(z) = 0, (z) if say both drawp,(z) and this
happens with probability,,7,.. We can have ties for the individual-level curves.

The full hierarchical specification is formally as follows:

H= GP([,L,C), G0|H ~ DP(’%H)?
Gu|Go ~ DP(a, Gy), forallu e V (8)
0.|G,~G,foralli=1,... . n;ueV

Y 4i|0ui ~ N(0yi,721,), foralli=1,... nsucV
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Under this prior specification, the compone#fits are iid draws from distributiords,,. The
distributionG,, varies around-, with the amount of variability governed ly. The distribution
in turn varies around{, with the amount of variability governed by We note here that that the
induced prior given by (8) is richer than the one given by [@tting« — oo, the model (8) tends
to (6). The distributiond (a Gaussian process) provides the support for a global daolkean
curves, which in turn provide the support for the mean cufeesach population. Model fitting is
a simple adaptation of Teh et al (2006) to functional data.

Suppose we are interested in a two-way ANOVA, i.e., now weshzapulations indexed by
say factoru with levelsu = 1,2, ..., U and factorw with levelsw = 1,2, ...,W. The preceding
development is unchanged; we merely replagewith G.., = {Tuwk, @} aNdi = 1,2, ... nygp.
We drawd,,,, ; from G, for each individual at levelsu andw.

Interest would often be in “main” effects which are usualiyerpreted asnarginal effects for
the levelsu andw. In this setting, we can defir@,. = - >, Guw andG.,, = & 3, Gy, Thatis,
Gu. = Dk Tu-i0g,, Similarly for G.,,. Comparison betwee@d,. andG,.. would be carried out as
above. For the mean functional, we immediately h@ye—= % > Ouw, similarly for 6.,,. Lastly,
the functiond,,.; = % > uwi is not meaningful. We are interested in marginal featureS of

but not in marginal curves at the individual level.

4.2 Local comparison using a nested hierarchy of Dirichlet processes

From Section 4.1, we have seen that, using the hierarchigakB can view the functional ANOVA
problem through comparison @f,’s. Here, we maintain the objective of comparison(af's
but switch the sampling scheme. Now, we sample the functrevels, i.e., at choices aof,
obtaining observations from potentially different indiuals at different levels. That is, in some
settings, the data is such that, within each population,ive@se levels of and at these levels, we
sample individuals; we don’t sample curves for individudts particular, at levek € D, within
populationu we have observationsg,;(x) for a set of individuals indexed by Associated with
Y.i(x) is ab,(x) as in the previous section. But, in the absence of curve letal fdor individual

7, we do not envision drawing an entiég; (though it exists conceptually). Rather, we envision
0.:(x) drawn from a randontocal distribution(.,,. which is centered around, .., the distribution

atz underG,. In particular, we assum@,,, ~ DP(w,, G..), nesting the)’s within the G,’s.
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Extending the stickbreaking notation of the previous sective now add)., = > - ; Wuzkg, (2)-

The implication is local selection of th&,;(x). That is,f0,;,(x1) = ¢r(x1) with probability
Wua, k While 0,,;(z9) = ¢r(z2) With probabilityw,,,,. In the global model described in the previous
section, P(0,;(z1) = ¢r(r1)) = P(Oui(xe) = ¢r(x2)) = mu. In different words, were we
to realize a seff,;(x),x € D}, it would not be one of the,’s but rather, just a locally selected
collection off)’s resulting in an everywhere discontinuous surface. Hanegain, we do not think
in terms of modeling a curve for individual rather, just &,;(z) at a givenz € D. Again, we
can have ties across populations but now theyaua; 0,,;(x) = 0, (z) = ¢r(x) with probability
WuzkWozk -

We still view this construction as a functional ANOVA probie Individuals are still pre-
clustered to populations. Still there is a populationelistribution G,,. Still we can compare
G,’s acrossu. Still we can employ the same metrics as above to compareoihdations. All we
have done is introduce another level to the DP specificatismoted above, a leveésted within
the specification fot7,,. Such additional flexibility is arguably more appropriatéhaa sampling
scheme that samples at different levels:of

The overall hierarchical specification is summarized ds\s:

H =GP, C), GolH ~ DP(y,H),
Gu|Go ~ DP(av, Gy), forallu € V

Quie|Gu ~ DP(y, Guie),  00i(2)|Quiw ~ Quee foralli =1,... n;u eV (9)
Y yil0ui ~ N(0uwi, 721,), foralli=1,... n, ucV.

To fit this model, we use a demanding MCMC algorithm. Detaiésresented in Appendix 4.
We can more explicitly describe the model in ((9)) using ek&treaking parametrization. Due
to the discrete nature of Dirichlet process realizations,random measurés,, G, all share the

same support. The random meas@rg also share the same support asdheandG, when the
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latter two are restricted to level for anyz € D. Indeed, they can be expressed as follows:
Go=>_ Bidy,.
k=1

Gu == Z?Tuk5¢k,
k=1
k=1

As before, the),, are iid draws from the base measife 8 = (6;)i,, ®u = (Tuk )i, ANdw,,, =

(wuzk )52, are stick-breaking weight vectors satisfying the follogvitierarchical specifications:

Bly ~ GEM(v), m,|8 ~ DP(ay,3) forallu eV
Waz|my ~ DP(ay, ) forallu € V,z € D (11)
op~ Hforallk=1,2,...
zui(T)|wy ~wy forali=1,... niueV
Youi ()| 2uis (0)o2q ~ N(@zni(y(2)|72) foralli = 1,...,n,;u € Vyz € D. (12)
As is the case with parametric hierarchical models, theahodical framework in the nonparamet-

ric context also lends itself naturally to the decomponsitid variation measures for data within

each group and between groups. Appendix 3 provides defah& @ecomposition calculation.

5 Hierarchical Dirichlet process examples

Here we present two simulated examples and one real datgsenalhe first simulation example
presents an unusual functional ANOVA setting. The secongesaas a proof of concept for the lo-
cal nested HDP modeling. The real data analysis fully itatsts all of the foregoing development.

5.1 Multi-modal non-stationary and non-Gaussian and globally sharing groups

of functional data

We consider a two-population setting where the first poputaises one functional atom, but the

second is associated with two functional atoms with (Igtsatection probabilityl /2 for each.
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One of the two functional atoms in the second group is sharddthe first group. Both functional
atoms are generated according to a Gaussian process with Onaad covariance specified by
o9 = 0.5,wy = 0.01. Data associated with a functional atom are obtained bynaddidependent
an white noise process with variance variange- 0.2 for bothu = 1, 2. The sample sizes for the
two groups arer; = ny, = 40. The sample curves,;(x) are observed at 50 levels= 1, ..., 50
for: = 1,...,n,. For this data set we use the global model described in $edtio For prior
specification,r? ~ InGammda..,,b,,) wherea,, = 2,b,, = 1. The base measut# is also a
mean-0 Gaussian process with~ InGammaa,, b,,) with a, = 2, b, = 1. In additionwy = 0.01.
(We use a slightly modified parameterization for covarigncetionC(x, z') = o exp{—ws||z —
7'||?}). The concentration parameters are specified as 0.005 anda = 0.01. The posterior
distributions of parameters and distance measures o€sttare obtained via MCMC samples.
Fig. 4 (left) shows that while the number of functional clrstfor group 1 is close to 1 with
high probability, for group 2 there are two functional ckrstwith probability close to 1. More-
over, with high probability there are overall two functidicdusters for both groups. This implies
that the functional cluster that underlies group 1 is in &sb a functional cluster for group 2. The
right panel in Fig. 4 illustrate the posterior distributsofor population meang (G, ) and u(Gs).
The tight credible interval bands are due to the effect ofayi@ag implicitly over sample curves.
Additional comparisons can be performed on the basjg(6f;) and .(G5) using distance mea-
sures such ag;, d, andds, but these still do not always fully capture the heteroggnaetween
and within the two groups. Because of the sharing of functiataans at each MCMC iteration, a
visually appealing method for characterizing the variatbetween and within each group of func-
tional curves, is to perform pairwise comparisons for sangpirves on the basis of the functional
atoms that the curves are associated with, using the sata@cksmeasures mentioned above.
Fig. 5 (right) produces a heatmap in which each entry repteshe posterior probability that
two given functional curves share the same functional attinrshows that all sample curves in
group 1 share the same functional atom (cluster) with higihgbility, and that the first 20 sample
curves in group 2 also shares the same cluster as that of grompile the remaining 20 sample
curves in group 2 share another functional cluster. A motail@el analysis is carried out using
distance measuré, with varying domains in Fig. 6. Each panel provides a différgubregion

as indicated and the entries in the heatmaps provide théefjmm3 mean of the distance between
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the global atoms associated with two given sample curvese hEatmaps reveal the need for
differential numbers of curves within each population al a®the variability within each group
due to the variation between the functional atoms. The tranas most pronounced for, e.g., the

interval[1, 10]), and is negligible for, e.g[21, 30]).

5.2 Functional ANOVA with sampling at levels of the functions

This simulation example is motivated by the ocean tempezadata set. We employ the nested
HDP model developed in Section 4.2. Here, we create data tihose populations. The popula-
tions are regulated by three functional atoms, g&y.¢2 and¢;. These functional atoms were
generated according to a mean-0 Gaussian process with asmhaance function given by pa-
rametersr, = 1,w,; = .01. Population 1 uses only functional atapa, population 2 useg, and
¢, with equal probabilities, while population 3 us¢s and ¢, with equal probabilities. For each
populationu and levelx, observation¥’,;(x) are i.i.d. draws from a mixture of Gaussians with
the means given by the associating functional atém ¢, or ¢,) evaluated at, and the variance
given by72. We letr, = 0.1 for all u. The number of samples at levels n,, = 20 for all u's
andi’s. The setofr’'sis[1,. .., 10]. Fig. 7 shows the data set.

For prior specification, let? ~ InvGammda..,, b,,) wherea,, = 5,b,, = 1. The concentra-
tion parameter is given a vague priofy ~ Gammada.,, b,) wherea, = 1,b, = .1, while other
concentration parameters are setto= 1 and«, = 1 for all u. The base measuré is a mean-0
Gaussian process withy = 1,w, = .01.

Again, the data here are a collection of observatiBpéz); we are not sampling individual
curves. However, the underlying assumption of our modeha there exist functional atoms
which provide the basis for underlying functional clustdérat regulate these groups of data. We
are able to estimate not only these functional clustersalsatinfer about whether or not they are
shared among the populations. Fig. 8 (left panel) depietptsterior distributions of the number
of functional clusters for each of the three populationspWation 3 has 2 functional clusters
with high probability, Population 2 is likely to have two fctional clusters (as opposed to 1), and
Population 1 has either one or two clusters with approxiimagual probabilities. For population
1, there seems to be a disagreement with how the data wasatgmhelout a closer look reveals

that that the two functional atoms employed by populatiom@ the one which is shared with
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group(u) Tl w2 T3
1 0.9669 (0.0808) 0.0231 (0.0631) 0.0045 (0.0112)
2 0.4769 (0.1490) 0.5048 (0.1337) 0.0072 (0.0174)
3 0.0151 (0.0229) 0.5293 (0.1107) 0.4520 (0.1108)

Table 1: Posterior mean (and standard deviation) of thengiproportions for the (dominant)

three functional atoms for each group of data.

population 1 are virtually indistinguishable for a sigrdgiit proportion of levels. Thus in the a
posteriori analysis it makes sense to have either of the timotional atoms provide the support
for clusters in the data in population 1. Fig. 8 (right pamigpicts the mean estimate and credible
intervals for three functional atoms the provide overwhetfmsupport for the data in all three
populations. The estimation of the functional atoms is \&ryurate.

Following Sections 4.1 and 4.2, Table 1 provides the (pasdemean of the mixing pro-
portions for the three functional atoms with respect to eafcthe three populations. Accord-
ingly we obtain variational distances between groups(G:, G3) = 0.49(%.11); dy (G2, Gs) =
0.52(£0.09); dy (G4, G3) = 0.96(£.04). The KL distances tend to amplify the differendg: (G, Gs) ~
0.68; dx1(G1,G3) = 6.08; dk (G2, G1) = 3.21;dk (G2, G3) =~ 2.59;dk 1 (G3,G1) =~ 16.79; dk 1 (G3, Gs) =~
8.02. But it is clear that population§; andG3 are the most different pair. Turning to local com-
parisons, Fig. 9 depicts the median and credible interaalthie number of local clusters at each
x and population:. There is significantly more variability in population 2 apdpulation 3 than
in population 1. Note that for population 1, the median nundjdocal clusters is one for alf,
where at most of the > 4 there is a probability of having two local clusters. For piagion 2, the
median number of local clusters is two for allbut forx > 5 there is also a significant probability
that there are only one local cluster. This agrees with tbetfeat the two functional atoms can be
interchanged fox: > 4. For population 3, the median number of local clusters is bub there are

levels with non-negligible probability of having only onetbree.
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group(u) Tl w2 Tu3 s Tus TTu6

1 096(0.01) 0.00(0) 0.02(0.01) 0.00(0)  0.00(0)  0.00(Q)
0.02(0.09) 0.74(0.09) 0.06(0.03) 0.00(0) 0.12(0.02) 0.00 (0.02
0.04 (0.14) 0.01(0.02) 0.02(0.02)0.90(0.14) 0.01(0.02) 0.00 (0)
0.03(0.13) 0.02(0.03) 0.02(0.03)0.89(0.14) 0.01(0.02)  0.00 (0)

A WD

Table 2: Posterior mean (and standard deviation) of thenmgigprroportions for the (dominant)

three functional atoms for each group of data.

5.3 Analysisof an ocean temperature vs depth dataset

We consider a data set consisting of ocean temperature gutld otheasurements collected at lo-
cations in the Atlantic Ocean. The geographic separatiduraldy divides the locations into 4
distinct groups — see the right panel of Fig. 10 — which we &@keur populations. At each lo-
cation the ocean temperature is recorded, together witklepéh and the time where and when
the measurement was obtained. The left panel of Fig. 10rdites this data set. Because the
temperature are recorded at different times (during the,dayd across several days), we treat the
data not as a collection of functional curves, rather as lectdn of temperature¥,;(z), where
u € 1,2,3,4, r indexes the depth level, anndndexes the measurements obtained at that depth
level within groupu. (There is not enough temporal structure in the datasetéonat to model
time effects.) Again, we are interested in comparison antbag! groups based on the functional
patterns of ocean temperature in terms of ocean depth. Hnera total of 4917 such measure-
ments within the first 500 meters of depth. The data set isrgp@inbalanced: some locations
and/or depth levels have more data than others. Moreowedédpths are not equally spaced.
Although locations of measurements obtained within eackigare known, due to their close
proximity relative to the distances between the groups, ssime that the measurements ob-
tained within depth level are exchangeable. Furthermdre 4t groups are also viewed as ex-
changeable. The modeling, inference and analysis weregideddn Section 4. We grouped
the data into 25 equally spaced depth levels, each of whi@®imeters long. The tempera-
ture measurements were re-centered arolfdCelsius, and then re-scaled so that a majority

of the measurements fall withir-[1,1]. For prior specifications, for the white noise process
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G

G

Gs

Gy

G
Go
Gs
Gy

0
8.5 (6.0)
7.1 (4.1)
7.2 (4.6)

9.2 (5.5)
0
7.0 (3.8)
7.0 (4.4)

6.1(3.3)

6.7 (4.2)
0

0.3 (0.4)

7.1(3.9)

6.3 (5.0)

0.3(0.3)
0

Table 3: Estimates of s, (G, G,).

we letr, ~ InvGammda.,,b;, ), wherea,, = 5,b,, = 1. For the concentration parameters,
we lety ~ Gammda,,b,) wherea, = 5b, = 1. We letay ~ Gammda,,, b,,) Where
(Gogs bag) = (1,1), while o, = 1 for all u = 1,...,4. The base measur® is specified as

a mean-0 Gaussian Process, whose covariance function éasatidard exponential form with
(04, we) = (0.1,0.5).

We next discuss the sensitivity of the hyperparameters irhmrarchical model. Recall that
o, specifies the variance at a point angl the smoothness of the Gaussian process (which gen-
erates functional atoms). Small values.fresult in very smooth functional atoms, while large
values result in highly distinct (and less smooth) atoms.hBotiremes are avoided; our choice
of o4, w, reflects roughly the range of the variance and smoothnessl lmesan exploratory anal-
ysis of the data collected at locations 3 and 4 (where theaglclosters are mostly unimodal by
visual inspection). The posterior inference is found todiaust in this range. Once the levels of
smoothness and variance for the functional atoms are sgebdifie hyperparameters for the white
noise variance-, are chosen to be highly non-informative. Turning to the @iket processes’
concentration parameters, a robust choice is to restfistanda to relatively small ranges (say,
< 1). Once these are fixed, the hyperparameters {tine concentration parameter for the top level
Dirichlet process) are chosen to be highly non-informatiMee rationale behind this hinges on the
interactions of the Dirichlet processes in multiple levelsa Bayesian nonparametric hierarchy.
Such a theory has emerged only recently (Nguyen, 2013all¥;iwe note that for the purpose of
group comparisons using the proposed summaries, theamsiriference appears quite robust to
the choice of these hyperparameters, as we will see below.

The Gibbs sampling algorithm described in Appendix 4 is mm5000 iterations, which took
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several days to complete on a personal desktop computer.eWhd seems sufficient for our
purpose, for larger scale data sets that have more deptls I@ag, in the order of thousands)
approximate variational methods may be considered to heded up the Gibbs sampler. An
example of such a strategy developed for a somewhat relaianare complex model can be
found in Nguyen and Gelfand (2011).

The posterior distribution of the number of functional asoassociated with the functional
temperature-depth trends in the four groups have the stpptween 5 and 9, with a strong mode
at 6, suggesting there are 6 dominant functional patterigs. 1# shows the posterior mean and
credible intervals of these functional patterns. Tableférefthe contributions of each of these
individual functional patterns within each group of data.piovides strong evidence regarding
the functional variations between the groups, and in somses;awithin a group. In particular,
group 1 is overwhelmingly associated with functional cufa®m)¢,. This also impliesingle
functional behavior of depth vs temperature within groufioup 3 and group 4 also have largely
single functional behavior, with most of the contributid89%) coming functional curve (atom)
¢,, and small contributions coming frog,. In fact, the decompositions representedmbis are
almost indistinguishable between the two groups. Grouphibés very heterogeneous functional
behavior; there are contributions from more than 4 funeti@urves,¢,, ¢,, @5, ¢5. Using KL
distance measures to compare between groups in Table viidient that group 3 and 4 exhibit
very similar functional behaviors, while group 2 is mosfteliént from the other groups. Itis useful
to examine the posterior distributions of the variang¢or the noise processes associated with the
functional curves. In particular, the posterior meansfois very small 0.42(0.10)), suggesting the
highly predictable behavior of temperature in groupri is largest £.07(0.25)), perhaps due to
the relative sparsity of measurements obtained within g@&un spite of the fact that the overall
behavior of group 3 and 4 are very similar. For completenesss,fwe have).93(0.52) and forry
we havel.84(0.22).

Fig. 12 illustrates the posterior mean and credible intsri@r d» (1 (G.), 1(G.)), providing
detailed comparison in temperature vs depth behavior ifotlregroups. For instance, group 1 has
consistently higher temperature than group 2, while groap@group 4 are very similar. Using
ds, it is observed that the difference between group 3 and 2asas with lower depth. Despite

the sparse and unbalanced data in some of the groups, otiofuslanodeling approach provides
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relatively fine-scaled comparisons across depth levets.13 reveals in more detail the variations
in the number of local clusters in each of the 4 groups. Agamnumber of local clusters within
group 1is 1 (supported by, with overwhelming probability. The number of local clusten
group 3 and 4 are 1 with overwhelming probability at shalloeptths (less than 300 meters for
group 3), but at deeper depths they are also associatedowahdlusters supported lay,. Group

2 has up to 5 local clusters at shallow depth levels, but tmelb@u of local clusters decreases to
2 at deeper depth levels. In other words, more functionahtian in the temperature behavior is

observed near the ocean surface for group 1 than at the deepks:

6 Summary and futurework

We have presented a sequence of models for the functionaMANoblem which enable com-
parison between populations in ways not previously comsttién the literature. In particular,
our hierarchical DP versions permit comparison of the (camgfunctions that define the popula-
tions using various metrics and over chosen subdomaing, s can provide comparison of the
random distributions that generate the functions for imligls within the populations. Through
simulation examples and a set of temperature vs. depthttiatach inferential possibilities have
been revealed.

An opportunity for future work is to look at the comparisontb& populations dynamically.
With a suitable data (e.g., temperature vs. depth reldtipegor various geographically defined
groups collected across years), we can imagine a functi®N&VA model at each time point.
Explicit modeling might be developed utilizing a state spapecification. Novel inference would

include the assessment of how differences between popuogagire evolving in time.

7 Appendix

7.1 Appendix 1: Inference of mean curvesunder GP prior

This section provides standard expressions for conditierpectation and variance of popula-
tion mean curves given a collection of functional data. Ssepthat the datd™ = {Y,;(z)} are

observed at the same set of levels. .., z,,. In the following we useM to collect all model
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parametersM = (u,C, o, 7). GivenY andM, 0, = (0,(z1),...,0.(x,)) are independent
foru e V. Letxzq,...,xzo, bep levels that are either placed regularlysh or uniformly sample
from B. For a given populatiom, we need to derive the posterior distribution for béth and
00 = (Ou(x01), ., 0u(z0p)).

LetC,, Cy, be the a priori covariance matrices #y and@,,, respectively, whileR,, be the
covariance matrix of sizex x p for the two as given by the GP with covariance funct©n We

have
6. DataM ~ N, (j,,C.),where
é’; = qul + (nu/Tz)Im

u C.lu+ /1)) Y
=1

r
S
=

I

m = mg,+RICY0, — )
= Cy,— RIC,'R,, where
mo, = (u(zo1), .-, 1(Top))-
Due to conditional independence relatiéy, L Datdé,, M, so we have:
[0, |Data M o /[00u|0u,M] x [0,|Data M|d#,
Standard calculations yield
6o, Data M ~ N,(fiy,, Co.), Where
fiou = mou+ R.CH (1, — p)
Co.. = S+RIC;'C,C;'R,.
Finally, we need to sampldf = (u, C, T, o) conditionally on the data. This can be achieved
via Gibbs sampling.

1. Conditional foru: This is normal with covariance matrix and mean specified by:

C,'= Z<C“ +72L) 7+ (102,
C,'lm, =) (Cu+71,) ZYM
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2. Conditional forr,, for eachu: Endowr, with igammda..,, b., ), then the conditional for>
is also igamma with updated parametiers:= a,, +mn, /2 andb,, = b,, +> " || Y ui —
0.|%/2.

3. Conditional foro,,. Endowo,, with igammda,,, b,) then the conditional fos. is updated
by a, := a, +m/2 andb, = b+ 1/2||p|>.

4. Conditional forC,, for eachu: C, is parameterized by exponential form, so thatz,, z,) =
ot S, whereS, (z1,z5) = exp —¢y, (21 — x2)%. Endowoeg, with igammdac,, b, ), which
is updated viaic, = ac, + m/2 andbc, = be, + 1(8, — n)"S™ (6, — p). ¢, is updated
via a symmetric Metropolis update, with an acceptance m@@ldomin(1, exp —ﬁ(eu —
WIS, — 8.0 — ).

7.2 Appendix 2: Properties of summary metrics

Suppose thaf is distributed according to a Gaussian process on a closagidd3 C R with
meanu and covariance functio®@'. C' can be viewed as a positive semidefinite kernel. Moreover,
assume thaj C(z1, z2)dx1dzy < oo, and consider the integral operatb¢ : Ly(B) — Lo(B)
induced by the kernel":

Lof(x) = / Clx, ") f(x")dx'.

B

This is a self-adjoint, positive and compact operator witboantable systems of non-negative
eigenvalueq )\, }7° , and associated eigenfunctiofg, } >, which form an orthonormal basis of
Ly(B). By Mercer’s theorem”' admits the following decompositiold(z, ) = > 7 | A, (2), ().
Here the series converges absolutely for eachapairand uniformly inB. For eachk € N, de-
fine

0= [ (6) ~ ple)ula)dr
By Karhunen-L&ve’s theorem applied to Gaussian proces@esan be written asf = u +
> re1 My, Where the convergence is almost sure and is uniform Moreover, the collection of
coefficients{r, } are independent mean-0 Gaussian variables with variande;,) = \;, for any
keN,.
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It is simple to obtain thatn,(€) can be expressed in terms of a sum of chi-square and normal
variables:

mi(0) = [lul® + D g+ 2> mep" vy
k=1 k=1
Due to the mutual independencergfs, we obtain that:
Bl (). C) = [l + Y% =l + [ Cloa)ds
k=1 B
The variance takes the form:

e’} o] [e’e) 2
@)l €] = B[ (a2 mat - 3 )
k=1 k=1 k=1

= Y 20+ An(p" )

k=1

H, C]

where we have used the fact tifag, = En} = 0; En? = A, Enp = 3. Although the\, and,,
are determined directly fror®@, except for some special cases closed forms are not aaillbl

practice one might consider sampling for the variance atkste

7.3 Appendix 3: Decomposition of variance and correlation measures

First, we study the relations among random measures in tlieeinG, is a random measure that

varies aroundd = GP(u, C'), where the variation is governed by For each group, G, is a

random measure that varies arourg where the variation is governed by For each levet and

groupu, @, varies around=,,, where the variation is governed by,. Becausé&~, ~ DP(v, H),

due to elementary properties of Dirichlet processes foraegisurable set of functions
E[Go(A)?|H] = ——H(A) + — —H(A)”

v+1 v+1

varlGa(A)|H) = — (H(4) = H(AP).

Turning to the random measurés for eachu € V,

arlGu(A)]Go) = —=(Go(4) — Gol4)?).
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Marginalizing outG,, we have:

var|Gu(A)|H] = E[var|G,(A)|Go]|H] + var[E[G.(A)|Go]| H]

L (H(A) — E[Go(A|H]) + var[Go(A) H]

- a-+1
_ 1 v _ 2
- (wl pepn 1><a+1>) (H(A) = H(A)). 13)

Next, for the random measurék,, at each levek € D, for any measurable set,, as before:

1

ay + 1<Gu<Aa:) - Gu(Ax>2)a

var|Qus(Ay) |Gy =

so that

0ar[Qua(Az)|Go| = Elvar|Qua.(Ax)|Gu]|Gol + var[E[Qu.(AL)|Gu]|Gol

= %i CEI(Gu(As) = Gu(Ar)*)|Gol + var[Gu(Aq) Gl

1 «Q 2
- (a+ R 1)) (GolAe) = GolA)")

Marginalizing outGGy, we have:
var(Que(As)|H] = Elvar[Que (A2)|Go] [H] + var[E[Qus (A ) |Go] | H]

- (Mt e 1a ) () - HAP) a9)

v+1 (y+D(a+1) (v+1)(a+1)(a,+1)
Next, let A and B are measurable sets with respect to observations ahdx,, respectively.
For¢ ~ H,letH, (A) = P(¢(x1) € A|H) andH,, ,,(A, B) = P(¢(z1) € A;¢(x2) € B|H).
Then similar calculation yields, for measurg:

corlGo(A). GolB)|H) = — (Hop a4, B) = Hoy(A)H(B)

For measuré-,,, we have:

corlGu(A). Gu B = (7 + ey ) ones(AeB) — H(A)H.o(),

Similarly, for Q.,,:

COU(qu(A)a qu(B>|H) =

1 Y Yo
('7"‘1 * (’y—l— 1)(a+ 1) + (’Y+ 1)(OJ—|— 1)(04u + 1)) (HSC17I2(A’ B) - Hm(A)HzQ(B))
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In all expressions above, a priori, the concentration patars regulate the fraction of variance or
correlation that are passed from one level in the Bayesiaatcigy to the next, starting from the
base measur#, which regulates the dependence with respect to covaridtastly, we note that

similar calculations can be carried out between populati¥vie omit the details.

7.4 Appendix 4. Posterior computation for the model in (9)

We recall and introduce key notationg;, is a random draw fron#, vy, a random draw frond,,
., a random draw frondr,,. Finally, 6,;(z) is a random draw fron®,,,..

Let k, denote the index of the), associated with the functional atoi, i.e.,y, = ¢,,. Let
t. denote the index of the, associated with the functional atap,. in groupu, i.e.,,,. = v, .

Let r;; denote the index of the,, (x) associated with the ato,;(z), i.., 0.i(z) = @, (v).
The local and functional atoms are related 8y(z) = ¢« (z) =9, , (z) = b, . ().

Recall that a priorizZy ~ DP(v, H). Due to a standard propertyué)f a Dirichléf process, con-
ditioning on the global factorg,’s and the index vectok, the posterior distribution of7, is
distributed according to a DRG, |k, ¢y, . . ., ¢ ] ~ DP(v+q., szi—:;fm“”“), whereg, = #{t:

k; = k} denotes the number ab,’s associating withp,, andq. = Zszl qr- This implies an

explicit representation faf, as follows:

K
Go = Y Brlg, + BrenG™,
k=1

ﬂ = (éla"'vﬁl{aﬁnew)NDir(qla"'v(JKv’y) (15)
Gy ~ DP(v, H).

Similarly, conditionally onG,, the random distributions;,, are independent across the group
indicesu. In particular, givenG,, k, t, and theg¢,’'s, the posterior ofGz, is distributed as:

K
[GU‘G()? k7t7 (¢k)kK:1] ~ DP(O{O + m’u'7 aoGOJ’_@%j_ﬁjuké(’bk)’ WheremUk = #{T : ktur = k}’ the
number ofy,, associated witlp,, andm,. = Zszl mq. This implies the following representa-
tion forG,: G, = Zszl TukOg,, + TunenlGy ", WhereGi®Y ~ DP(ag Brew, G5™) and

Ty = (Tl - -+ s Tuk, Tunew) ~ Dir(oB1 + Mua, - . ., @0Bx + Muk, Qo Onew)- (16)

Once more, conditionally o&',, the random distribution®,,, are independent across levelsin
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particular, giver,, k, t,, v, and thep,’s, the posterior of),,, is distributed as:

K
OéuGua; + Zk:l nuxkéqSk(x))
Qg + Ny

(QualGu Ko, tu, 75, (S1)i=1] ~ DP(evy + e,

Y

wheren,,, = #{i : k, . = k}, the number of,;(x) associated withp,(z), andn,,. =

Zszl nuzk- This implies the following representation f@x, .

K
xnew
Quac = E wuwkéqbk (z) + Wuacneru
k=1
Wy = Wyzly -+ -y WuzK Wu:pnew) ~ Dlr(auﬂ-ul + Nuzls - - -y Oy + Ny ks Oéuﬂ'unew) (17)

Qinew ~ Dp(auﬂ'uneWa Ginew)-

The above characterization suggests a straightforwardsgbmpling algorithm by construct-
ing a Markov chain fo(¢, )%, k, t, ). To simplify the implementation by avoiding the book-
keeping steps of the index variables, we will consider a firdiblock Gibbs sampling algorithm
by constructing a Markov chain for the count variables (gggm, n) instead. We will still need
the index variables,,;, which denotes the index of the global ataep that local atonmd,;(z) is
associated with, i.€5,,; = kwi. Note that the likelihood of the data involves only thg,

variables, and that,, can be calculated directly in terms gf,;'s:

We proceed to describe a block Gibbs sampler by consideifteylaov chain for(¢, q, m, n, z, 8, 7, w).

Sampling 8, m,w. Conditional probabilities{3|q, v| <[ [, [mu|mu, B, o] X[ 1, I L [Wua| Muzs T, ]
are given by Egs. (15)(16)(17).

Sampling of z. Note that a priofiz,.;|wu: ~ w... Letn, “* denote the number of data items

uxk

in the groupu and levelz, excepty,;(x), associating with the mixture componéntThen,

(QuTur + 1, “YF (yui(2)|@,(x))  if kis previously used

uxk

(2w = k|27 w, ¢y, Data) =
QuTunew L3 Sen (i () if k= knew

where 3;;&3(%,-(3:)) = [ F(yui(x)|¢p(x))dH (¢p(x)) is the prior density ofy,;(z).
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Sampling of m,,. Recall thatm,,; is the number of functional atomg,, associated withp,
within each group:. This set of functional atomg,,.’'s can be subdivided into disjoint subsets
associated with levels € D when the functional atoms,,, are first generated. Let, ., be the

number of such functional atoms corresponding to the levéb be precise,

Myge = F{%; * Zuzi = k. = k for somei}
xeD

M.,k COrresponds to the number of partitions amongithg atomsd,;(z) such that,,; = k. To

obtain the distribution ofn,., consider the distribution of’, conditionally onG,, (i.e.,m,, ¢,'s).

Note that giver7,, the @, are independent across. For each atond,;(z), the probability of
being assigned to an existing atgm), (x) such that;, = kis

x —uxt

p(ruz = 7n|ktu7‘ = k7r
while the probability of being assigned to a new at@ne.(z) is
p(,ra:‘ = Tnew| ktwnew = k; ,r,—uaci’ Tru) X Oy Ty

wheren, " .= #{i' : r%, = r;uxi # uzi'}, the number of data items at groupand levelx
excepty,;(x) that are associated witp,,,. This implies thatn,, is the number of partitions that
arise in a population of,,,, data items, whose distribution is distributed according @irichlet
process with concentration parametgir,.. It was shown by Antoniak (1974) that the distribution
of m,., has the form:

NG Y
[Tk + Nugk

uxk

p<mumk = m’z> m- s ﬂ-u) = )S(nuxk> m) (auﬂ_ukyn?

wheres(n, m) are unsigned Stirling number of the first kind.

Sampling q. The conditional distribution off can be obtained in a similar manneras It
can be shown tha, = > .\ qux Whereq,, = #{t : k. = k forsomer}. Moreover,q,; is
the number of partitions that arise in a populatiomqj, atoms, whose distributed according to a
Dirichlet process with concentration parameigp;.

['(avo Bk

0Bk + Muk)

p(qus = qlz,q 7", B) = I s(Muk, q) (o Br)?.
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Sampling ¢. The conditional distribution forp can be obtained easily. Suppose that the prior
distribution H for ¢, is given by a mean functiop and covariance functio@’, which is reduced
to a covariance matrixC;, when restricted to a finite number of covariate valuesaforThen

the posterior distribution fog, is also Gaussian with mean and covariance expressions gs/en

follows:
C, = o+ > diag > nu, o )/7
ueV T
~ _1 e T T
ueV =1
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Figure 2: Distance measures for group 1 and group 2, using, ds.
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Figure 3: Data set 2.
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Figure 4: Data set 2. Posterior distribution of the numbeuattional atoms (left). Right panel:
Estimates of population meangG,,) in two dash lines. Estimates of two functional atoms in

dotted lines. (Note two of the four lines at the top are alnudistingushable in the plot).
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Figure 5: Data set 2. Left panel: Group assignment — the firstitves belong to group 1, the
second 40 curves group 2. Right panel: Posterior probabiiay two sample curves share the

same functional atom.
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Figure 6: Pairwise comparison usidgfor varying domains as indicated at the top of each panel.
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Figure 7: Data set 3. Data given are collection of “dots”,qwotves, indexed by group membership
u, and levelr.
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Figure 8: Data set 3. Left panel: Posterior distributionha& tunctional atoms. Right panel: Mean

estimate and credible intervals (in dash) for the functi@®ams. The “true” functional atoms are

solid plots with square markers.
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Figure 9: Data set 3. Comparing number of local atoms acr@s®l .
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Figure 10: Data set 4. Ocean temperature and depth datecteallin 4 groups in the Atlantic
Ocean. Left panel: Y axis represents temperature (Celsiuayis represents depth (in meters).
Measurements from group 1 are illustrated in circles, G@siare '+'s, Group 3’s are 'x’s, Group
4’s are squares. The geographical locations of the 4 grangpdegicted in the right panel.
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Figure 11: Data set 4. Posterior means and (.05,.95) ceetlitédrvals of the functional atoms.
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Figure 12: Data set 4. Posterior distributions of distaneasuaresl; andds, applied to windows

of depth intervalz, = + 4] x 20 meters.
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Figure 13: Data set 4. Comparing number of local clustersvéugt with depth levek. The plots

show posterior mean (solid) and (.05,.95) credible interva
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