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Abstract

Analysis of variance is a standard statistical modeling approach for comparing populations.

The functional analysis setting envisions that mean functions are associated with the popula-

tions, customarily modeled using basis representations, and seeks to compare them. Here, we

adopt the modeling approach of functions as realizations of stochastic processes. We extend

the Gaussian process version to allow nonparametric specifications using Dirichlet process

mixing. Several metrics are introduced for comparison of populations. Then we introduce a

hierarchical Dirichlet process model which enables comparison of the populationdistributions,

either directly or through functionals of interest using the foregoing metrics. The modeling is

extended to allow us to switch the sampling scheme. There are still population level distri-

butions but now we sample at levels of the functions, obtaining observationsfrom potentially

different individuals at different levels. We illustrate with both simulated dataand a dataset of

temperature vs depth measurements at different locations in the Atlantic Ocean.

Key words: Dirichlet processes, Gaussian processes, global and local clustering, hierarchi-

cal models, random distributions

1 Introduction

In this paper we consider response models where the responses are functions indexed by groups,

with the goal to learn if the functions differ across groups and, if so, how they differ. It is natural

to refer to this setting as a functional analysis of variance(ANOVA) problem, recognizing the

challenges in comparing surfaces (uncountable dimensional response) across populations rather

than scalars (usual ANOVA) or vectors (MANOVA).
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Applications onR1 typically have time as the argument, for example progesterone levels for

groups of women (MacLehose and Dunson, 2009; Nguyen and Gelfand, 2011), mass spectroscopy

data for different groups over time (Morris and Carroll, 2006), dose response (white blood cell

counts) indexed by cancer treatments (DeIorio et al., 2004), and temperature profiles indexed by

climate model (Kaufman and Sain, 2010). As a different example, Rappold et al. (2007) and

Rodriguez et al. (2009) examine temperature vs. depth over different regions in the Atlantic Ocean.

On R2, we find investigation of brain images (Petrone et al., 2009)and, more generally, image

analysis (Nguyen and Gelfand, 2011).

The contribution of this paper is to formulate the functional ANOVA problem in a fully Bayesian

nonparametric framework using suitable hierarchical modeling. In particular, we begin with the

Gaussian process (GP), then extend to the spatial Dirichletprocess (SDP) (Gelfand et al., 2005).

Then, we introduce a novel hierarchical and nested Dirichlet process (HDP) specification, which

models the (random) distributions which generate the functions, by adopting and extending the

hierarchical modeling of Teh et al. (2006) and Nguyen (2010). The novelty in our modeling frame-

work is in the ability to switch the sampling scheme. This is particularly applicable to the setting

for functional ANOVA which may require sampling at both functional level and the levels of func-

tions. In our modeling for functional ANOVA, we still have random population-level distributions

but now we sample at levels of the function, obtaining observations from potentially different in-

dividuals at different levels. We discuss metrics for comparing populations which are applicable

under any of these modeling specifications.

Notably, we work in the setting where we do not have a large number of observations of the

functions over the domain of the argument. Hence, we do not seek to learn about the functions

at fine detail, at high resolution of the argument. For the latter setting, it might be advantageous

to use special basis representations such as wavelets (Morris and Carroll, 2006). Rather, we seek

to interpolate the functions over their domain, not an activity of the high resolution work. Hence

we are drawn to GP’s and processes that extend GP’s. Though wemay not have many observa-

tions of the function, we do not find a MANOVA model to be appropriate. For MANOVA, the

components of the vector need not be the same measurement variable. So, general covariance ma-

trices are introduced and these matrices are partitioned toobtainvariance components. For us, the

components are measurements all on the same variable and we introduce “structured” dependence
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between them.

The ANOVA setting presumes that the individual-level functions are “pre-clustered”, i.e., they

are already indexed by a population label. So, unlike usual Dirichlet process settings, we are not

primarily seeking to determine clusters that create groupsof functions. (Such adaptive clustering

or mixture modeling is often the reason for adopting DP specifications.) In fact, we are proposing

to use the DP structure primarily to compare the groups. Within a GP framework, we can not talk

about groups being thesame since this happens with probability0; instead, we employ metrics to

measure closeness; we develop such ideas below. If we move toSDP’s, we can have ties. That is,

for a pair of groups, now the curves are either identical everywhere or nowhere. Finally, when we

work with the HDP and the nested HDP we move to a comparison of the distributions that generate

population-level features. Now, ties are possible (only global with the HDP, local with the nested

HDP) for realized curves across populations. In the spirit of customary ANOVA hypothesis testing,

priors that allow suchties are natural for this setting; they capture the same vein as familiar “spike

and slab” priors for variable selection (see, e.g., Ishwaran and Sunil-Rao (2005) and references

therein) which allow parameters (or differences in parameters) to have positive prior probability

(hence positive posterior probability) of being0.

As in usual ANOVA settings, replications are required; in order to assess differences between

populations, we need to learn about the variability within populations. Similarly, in the functional

ANOVA setting, we are not seeking to cluster individuals within populations. Rather, we are

seeking to learn about the variability of individual observations, for us, individual curves, within a

population, again, to facilitate comparison of curves across populations.

Modern nonparametric ANOVA moves away from Gaussian error assumptions, adopting pop-

ulation models that allow skewness, heavier tails, and multimodalities. It also considers comparing

other functionals, such as quantiles, across populations.We are in this contemporary camp but in

the setting of curves rather than scalars. In fact, in our HDPand nested HDP versions, we compare

distributions across populations where such comparison can be done based upon local functionals

(i.e., at the arguments of the curves) yielding global functions.

The field of functional data analysis has benefitted from the seminal books of Ramsay and

Silverman (2006) (cf. Chapter 13) and Ferraty and Vieu (2006). This work proceeds through

the use of orthonormal basis representations for functions, typically spline bases. As noted above,
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usually the functions of interest are over space and/or timeand the literature is substantial. Notable

alternative applications include (Brumback and Rice, 1998),(Spitzner et al., 2003), Wang et al.

(2005). These basis representations provide explicit forms for the functions, i.e., finite dimensional

parametric representations of the function.

Our approach is to view the entire function as unknown and to view it as a realization of a

stochastic process. In this regard, Gaussian processes area customary place to begin (Cressie,

1993; Banerjee et al., 2004). Since we work within the Bayesianframework we use such processes

and extensions of them as priors for the functions we model and use the available data to update

to posterior estimates of the functions. By introducing nonparametric specifications, we move be-

yond the work of Kaufman and Sain (2010). They confine themselves to the use of GP’s in their

Bayesian functional ANOVA formulation and imitate classical ANOVA modeling by incorporat-

ing constraints on the functions in order to identify them. They introduce pointwise and global

credible intervals for comparison of curves, employing deviations relative to an appropriate “aver-

age” curve. Our DP-based framework yields a much different model construction, resulting in a

different approach for comparison. The recent book chapterof Dunson (2010) (Sec. 7.3) provides

a review of various Bayesian nonparametric approaches to themodeling of functional data.

As noted above, we build our modeling in a sequential fashionand, as a by-product, offer

comparison between the GP and DP extensions of the GP. We employ simulated data as a proof of

concept, to demonstrate the benefits of our more flexible modeling. We also analyze a real dataset

which considers the temperature vs. depth relationship forfour different regions in the Atlantic

Ocean.

The plan for the paper is as follows. In Section 2 we briefly review the Gaussian and Spatial

Dirichlet processes we will use to model realizations of functions. In Section 3 we move these

models to our functional ANOVA setting, discussing summaries of individual functions and com-

parison of functions. Section 4 proposes a new functional ANOVA model based upon hierarchical

Dirichlet processes. Section 5 takes up the simulated and real examples while Section 6 closes

with a summary and future investigations.
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2 Stochastic process models for random functions

As noted in the Introduction, we model our unknown functionsas realizations of stochastic pro-

cesses. Gaussian processes are convenient to work with in this regard since consistent specifica-

tion of finite dimensional distributions for GP’s only requires specification of a mean function and

a valid covariance function. Formally, we will write thatθ(x) follows a GP over the setx ∈ D

and specifyE(θ(x)) = µθ(x) andcov(θ(x), θ(x′)) = C(x, x′) whereC is valid overD. Here

we confine ourselves to stationary forms and writeC(x, x′) asσ2
Cρ(x − x′; φC) whereρ is a valid

stationary correlation function. For example, an exponential covariance function takes the form

C(x, x′) = σ2
C exp{‖x − x′‖2/φC}.

Next, we turn to the spatial Dirichlet process, introduced by Gelfand et al. (2005). We first

recall the Dirichlet process (Ferguson, 1973 ) which provides a random probability measure on

spaces of distribution functions. A constructive definition was introduced by Sethuraman (1994).

In the univariate case, let{ωk, k = 1, 2, ...} and {φk, k = 1, 2, ...} be independent sequences

of i.i.d. random variables. Letωk ∼ Beta(1, γ), γ a positive precision parameter andφk ∼

H, H a parametricbase distribution. Defineβ1 = ω1, βk = ωk

∏k−1
j=1(1 − ωj), k = 2, 3, ....

Notationally, we will write thatβ ∼ GEM(γ). Then, a realization from DP(γ,H) is almost surely

of the form
∞
∑

k=1

βkδφk
. We note that we may also specify thatk = 1, 2, ..., K whereK < ∞,

referred to as the finite DP or DPK , and the weights are drawn from aK-dimensional Dirichlet

distribution (Ishwaran and Zarepour, 2002).

We can immediately extend this definition to accommodate a realization of a spatial random

field. Replaceφk with φk,D = {φk(x) : x ∈ D}. Here,H can be a stationary Gaussian random field

and eachφk,D is a realization fromG0, i.e., a randomsurface overD. Hence, we create a random

process overD of the formG =
∞
∑

k=1

βkδφk,D
, centered at the processH and writeG ∼ DP(γ,H).

G describes a stochastic process of random distributions and, since they were working in the spatial

setting withD ⊆ R2, Gelfand et al (2005) called this class of processes spatialor SDP’s. We

will use this terminology as well though, for us,x need not index geographic space. We can

directly verify that the set,GD, as a collection of random measures is a dependent Dirichletprocess

(DDP) (MacEachern, 1999). Furthermore, ifH produces a.s. continuous realizations then the a.s.

representation ofGD ensures thatG(θ(x)) − G(θ(x′)) → 0 a.s. as||x − x′|| → 0. In other words,

smoothness of realizations fromDP (γ,H) is determined by the choice of the covariance function
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of H. Conditions for almost sure or mean square continuity are discussed in Kent (1989) and Stein

(1999), respectively.

For θD = {θ(x) : x ∈ D} a realization fromG, it is straightforward to verify thatE(θ(x) | G)

=
∑

βkφk(x) andcov(θ(x), θ(x′) | G) =
∑

βkφk(x)φk(x
′) − {

∑

βkφk(x)} {
∑

βkφk(x
′)}. We

smooth out the point masses ofG by mixing against a white noise processK (with mean 0 and vari-

anceτ 2) resulting in a random process overD with continuous support. Operating formally, ifθD |

G ∼ G andY D − θD | τ 2 ∼ κ, κ a density thenf (Y D | G, τ 2) =
∫

κ (Y D − θD | τ 2) G (dθD).

Hence, ignoring the mean,Y (x) = θ(x) + ǫ(x) whereθ(x) is from the SDP andǫ(x) is white

noise.

For the finite set of levelsx1, ..., xn, the induced mixture model becomes

f
(

Y | G(n), τ 2
)

=

∫

fNn

(

Y | θ, τ 2In

)

G(n) (dθ) (1)

whereY = (Y (x1), ..., Y (xn))′ andθ = θ(n) = (θ(x1), ..., θ(xn))′ yieldsf
(

Y |G(n), τ 2
)

a.s. of

the form
∞
∑

k=1

βkfN n(y|φk, τ
2In), a countable location mixture of normals. GivenG(n) andτ 2, the

resulting covariance matrix becomesCY = τ 2In + Cθ with (Cθ)i,j = Cov(θ(xi), θ(xj) | G(n)).

As evident from the representation ofG, the SDP provides a nonstationary, nonGaussian pro-

cess. From above, givenG, two random curvesθ1(x) andθ2(x) agree a.e. with probability
∑

β2
k or

else they disagree a.e. In the context of functional ANOVA, this allows ties between the population

functions.

3 Functional ANOVA using Gaussian processes and spatial Dirich-

let processes

We now return to the functional ANOVA problem. We focus on theone-way layout setting, initially

specified as

Yui(x) = θu(x) + ǫui(x), (2)

for i = 1, . . . , nu. Here,u = 1, 2, ..., U indexes thepopulations/treatments andi the individuals

within the populations.θu denotes the function/surface for populationu. Curves for individuals

from populationu are assumed to be conditionally independent givenθu, i.e., theǫui are indepen-

dent. In fact, for convenience, in the sequel we assume thatǫ is a white noise process. This implies
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that all individual curves are almost surely discontinuouseven if theθu are continuous. Our choice

here is for simplicity of exposition; in some situationsǫui may be more suitably modeled as GP

realizations (e.g., Kaufman and Sain (2010)). Here, individual errorǫui is assumed to be a white

noise process, i.e.,ǫui(x) ∼ N(0, τ 2
u) i.i.d. for i = 1, . . . , nu.

As in usual ANOVA modeling, we assume that the data from all groups have beenre-centered

around a mean curveµ. So, theθu are deviation curves and, in comparing them, it is the functional

variation aroundµ that we are interested in. Accordingly, we endow theθu with a prior distribution

with a mean curveµ, which may be again endowed with a prior distribution; interest is in the

differences between theθu’s.

For each population, we are interested in the variation,varθu(x), and correlation, i.e., for levels

x1 andx2, corr(θu(x1), θu(x2)), respectively. Additionally, we are interested in summaries of the

curves obtained by integration over a given sub-regionB ⊆ D of interest:

m1(θu, B) =

∫

B

θu(x)2dx,

m2(θu, B) =

∫

B

I(θu(x) ≥ 0)dx,

m3(θu, B) =

∫

B

(θu(x))+dx,

In the sequel we suppressB which will often beD. Based on these summaries, to compareθu

andθv, the following measures are considered. Let

d1(θu,θv) = m1(θu − θv); d2(θu,θv) = m2(θu − θv); andd3(θu,θv) = m3(θu − θv).

These “metrics” form the basis for our ANOVA comparisons of functional data. Using the non-

parametric curve specifications from the previous section as priors, allows us to specify the prior

probability that populationsu and v are “the same’, as well as to elaborate the nature of their

differences using the above metrics. We then use the data to make these comparisons a posteriori.

3.1 Functional ANOVA based on Gaussian processes

Suppose that a prioriθu ∼ GP(µ, C), i.i.d. whereC is the covariance function. With observations

at levelsx1, . . . , xm, θu is now distributed as anm-variate normal with mean(µ(x1), . . . , µ(xm))

and covariance matrixC. The common mean curveµ can be taken to be random, and is endowed
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with a suitable prior distribution, e.g., a constant mean Gaussian process:(µ(x1), . . . , µ(xm)) ∼

GP(0, σ2
µIm). (Here we take the constant mean to be 0 for simplicity). The overall model specifi-

cation is summarized as follows:

H ≡ GP(µ, C), θu|H
iid
∼ H u = 1, 2, ..., U (3)

Y ui|θu
iid
∼ N(θu, τ

2
uIm), for all i = 1, . . . , nu

where, again,C(x, x′) = σ2
Cρ(x − x′; φC).

Due to conjugacy, conditionally on the data and parametersM := (µ, C, τ, σ), the θu’s

are independently distributed Gaussian processes with mean µ̃u and covariancẽCu, respectively.

Appendix 1 provides details. Also, conditionally on the data and parametersM , (θu − θv)

is distributed according to a Gaussian process GP(µ̃u − µ̃v, C̃u,v), where covariance function

C̃u,v = C̃u + C̃v. (To make prior/posterior comparison, the ‘no data’ versions of the expressions

below employµu(x) andC.)

From Appendix 2,(θu − θv)
2 can be expressed as a sum of normal and chi-square variables,

and so the expected value:

E[d1(θu,θv)|Data,M ] =

∫

B

(µ̃u(x) − µ̃v(x))2dx +

∫

B

C̃u,v(x)dx, (4)

Var[d1(θu,θv)|Data,M ] = |B|

( ∞
∑

k=1

2λ2
k + 4λk

∫

B

(µ̃u(x) − µ̃v(x))ψk(x)dx

)

, (5)

where{λk}
∞

k=1 are the eigenvalues of the integral operator induced by covariance kernelC̃u,v,

while ψk are the corresponding eigenfunctions. (We useC̃u,v(x) to denoteC̃u,v(x, x)). The de-

composition of the expectation into two terms is worth noting. The first term contributes an in-

tegrated squared difference while the second contributes cumulative spatial variation. To obtain

E[d1(θu,θv)|Data], one has to integrate outM yielding:

E[d1(θu,θv)|Data] = E

[
∫

B

(µ̃u(x) − µ̃v(x))2dx +

∫

B

C̃u,v(x)dx|Data

]

,

var[d1(θu,θv)|Data] = varE[d1(θu,θv)|Data,M ] + E[var[d1(θu,θv)|Data,M ]]

Explicit expressions are no longer available, but the computation can be achieved by sampling over

M conditionally on the data.

Ford2, note that for eachx ∈ B, conditionally on the data andM , we havePr(θu(x)−θv(x) >

0) = (1 − Φ(−(µ̃u(x) − µ̃v(x))/C̃u,v(x))). So,
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E[d2(θu,θv)|Data,M ] =

∫

B

1 − Φ

(

−(µ̃u(x) − µ̃v(x))

C̃u,v(x)

)

dx

var[d2(θu,θv)|Data,M ] =

∫

B

[

1 − Φ2

(

µ̃u(x1) − µ̃v(x1), µ̃u(x2) − µ̃v(x2), C̃u,v(x1, x2)

)]

dx1dx2

−

[
∫

B

1 − Φ

(

−(µ̃u(x) − µ̃v(x))

C̃u,v(x)

)

dx

]2

.

HereΦ2(m(x1),m(x2)), ρ(x1, x2)) := P (Z > 0), whereZ is a bivariate normal variable with

mean(m(x1),m(x2)) and covariance matrix obtained from the covariance function ρ evaluated at

x1 andx2 for x1 6= x2. Forx1 = x2, Φ2(m(x1),m(x2)), ρ(x1, x2)) := Φ(−m(x)/ρ(x1, x1)).

Turning tod3, it is also simple to obtain the mean expression ford3 as follows:

E[d3(θu,θv)|Data,M ] =

∫

B

[

1 − Φ

(

−(µ̃u(x) − µ̃v(x))

C̃u,v(x)

)]

[

µ̃u(x) − µ̃v(x) +
φ(−(µ̃u(x) − µ̃v(x))/(C̃u,v(x)))

1 − Φ(−(µ̃u(x) − µ̃v(x))/(C̃u,v(x)))

]

dx

whereφ is the density for a standard normal variable. The variance expression is unwieldy and is

omitted.

If the regionB has irregular shape, the foregoing integrals may need to be computed using

Monte Carlo integration. Suppose we uniformly sample say,p levelsx01, . . . , x0p ∈ B, while

eigenvalues of the integral operator of the covariance function given by the posterior distributions

are computed from the induced Gram matrix using levelsx0t. In essence, these approximations

yield:

d̂1(θu,θv) :=
1

p

p
∑

t=1

(θu(x0t) − θv(x0t))
2.

d̂2(θu,θv) :=
1

p

p
∑

t=1

I(θu(x0t) − θv(x0t) ≥ 0).

d̂3(θu,θv) :=
1

p

p
∑

t=1

(θu(x0t) − θv(x0t))+.

Under mild conditions,d1(θu,θv) − d̂1(θu,θv)
P

−→ 0 as p → ∞. In fact, Ed̂1(θu,θv) →

Ed1(θu,θv), andvar(d̂1(θu,θv)) → var(d1(θu,θv)). Note thatp does not depend on the available

amount of data. Thus we can estimate the expectation and variance expression ford1 as accurately
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as we wish (given that we can obtain exact expressions ford̂1). The same holds ford2 andd3.

Moreover, by sampling over the posterior distribution of the mean curvesθu for all u ∈ V , we can

obtain summaries other than the means and variances.

3.2 An example

We illustrate the functional ANOVA from the previous subsection. We consider a two-population

problem. Using Gaussian process modeling, we generated twogroups of curves with sample size

n1 = n2 = 20. The mean curvesθu are random draws with meanµ = 0 and the covariance

function takes an exponential form withσθ = .5 andωθ = .02. The white noise varianceτ1 =

τ2 = .2 for both groups. The samples are two groups of curvesYui(x) wherex = 1, 2, . . . , 50,

u = 1, 2 andi = 1, . . . , nu. Fig. 1 shows the two sets ofobserved curves.

The posterior inference procedure is described in detail inAppendix 1. For prior specification,

we setaτu
= 2 and bτu

= 3 for u = 1, 2; aσu
= 2 and bσu

= 2 for u = 1, 2, andaµ = 10

and bµ = .01. We utilized distance measuresd1, d2 andd3 described earlier, using illustrative

domainsB of the form[x, x + 10], for x = [2, 4, 6, . . . , 40]. The posterior distributions of relevant

parameters were obtained by MCMC sampling, which were run for10000 iterations, the last 5000

iterations of which were used for the computation of the posterior distributions. See Fig. 1 (right

panel) for an estimate and credible intervals for the mean curvesθu. The posterior distributions

for distance measures can be obtained in two ways, either through MCMC samples for mean

curves evaluated at 50 new levels uniformly generated fromB, or through analytic expression of

conditional expectations given parameters, where the parameters were obtained through MCMC

samples. We employ the latter, “Rao-Blackwellized” computation.

To illustrate the spatially varying posterior behavior of the distance measures proposed in the

previous subsection see Fig. 2, where a pointx on the X axis is associated with the interval[x, x +

10]. For small values ofx, d1 has small but strictly positive posterior mean. Asx slides to the

middle region in the domain (e.g.,x = 18), the posterior mean ford1 increases to around 1 with

probability close to 1, and asx approaches30, d1 decreases to the range of(.15, .2) with high

probability. The posterior distribution ford2 captures the probability that the mean curve of the

first population dominates that of the second population. For small values ofx, this probability

is close to .5, suggesting that the two populations share similar mean curves, and asx approaches
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the middle of the interval, the probability decreases to 0, indicating where the first population is

dominated by the second population.d3 also captures where a population is dominated by the

other, and by how much. The behavior of these metrics is in accord with the rightmost panel of

Fig. 1.

3.3 The SDP case

Here, we replace the GP specification with the SDP, describedin Section 2. Applied to the model

in (3), the overall hierarchical specification is summarized as:

H ≡ GP(µ, C, G0|H ∼ DP(γ,H),

θu|G0
iid
∼ G0 for all u ∈ V (6)

Y ui|θu
iid
∼ N(θu, τ

2
uIm), for all i = 1, . . . , nu; u ∈ V.

Priors will be supplied forµ andC, as well asγ. Under these specifications, theθu’s are iid draws

from G0. The distributionG0 varies around priorH, with the amount of variability governed by

γ. It is worth noting that this model specification is richer than and subsumes the one given by (3).

In fact, lettingγ → ∞, the induced prior given by (6) converges in distribution tothe one given

by (3). Integrating over the random measureG0, θu is distributed according to a GP distributionH,

so that the variance and correlation measures within each group are the same as what we obtained

using a GP prior in the previous section.

Next, consider the relationship between two groupsu andv. Under the properties of Dirichlet

processes, and the fact that the Gaussian process distributions are non-atomic, we obtain, a priori,

thatP (θu = θv|γ) = 1
1+γ

. Furthermore,

corr(θu(x1), θv(x2)|γ, C) =
ρ(x1, x2)

(1 + γ)ρ(x1)ρ(x2)
. (7)

Turning to our metrics, for sayd1, we have:

P (d1(θu,θv) = 0|γ) =
1

1 + γ
,

E[d1(θu,θv)|γ, C] =
γ

1 + γ

∫

B

C(x, x)dx.
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We can obtain similar expressions ford2 andd3. With regard to population comparison, note the

difference between the SDP and the GP modeling. With the GP prior, under eitherd1, d2 or d3,

with probability 1 there are no ties betweenθu andθv.

4 A new functional ANOVA model

We now specify a Bayesian nonparametric ANOVA model which differs from that of the previous

section and allows more detailed population comparison. The novelty comes from now seeking

comparison of theGu’s, the the random distributions that generate the curves for individuals in

populationu. Now, we can compare theGu’s directly or compare features of these distributions,

for instance, the functional that is the “mean-at-a-point”functional. Furthermore, as we show

below, the comparison can be carried out globally, i.e., an overall comparison of theGu’s (Section

4.2) or locally, i.e., relative to the random distributionsat a givenx, Gu(x) (Section 4.3).

4.1 The global case

Our development proceeds from the hierarchical Dirichlet process modeling approach of Teh et al.

(2006). The idea of this approach is that the randomGu’s are i.i.d. draws from a Dirichlet process,

Gu ∼ DP(α,G0), for some base measureG0, which is also random and is distributed according

to another Dirichlet process, i.e.,G0 ∼ DP(γ,H). G0 is a.s. a discrete probability measure, say

G0 =
∑

∞

k=1 βkδφk
. Hence, the specification forGu implies that theGu’s share the same set of

atoms that defineG0. This allows explicit comparison of the populations.

In particular, comparison can proceed through functionalsof interest ofGu. DenotingGu by

{πuk,φk,D, k = 1, 2, ...}, we have the mean functional,µ(Gu) =
∑

k πukφk which plays the role of

θu of the previous section. The mean functional enables us to make connection with comparisons

from the previous section, i.e., we immediately havem1(θu, B), m2(θu, B), andm3(θu, B) and,

for populationsu andv, we haved1(θu,θv), d2(θu,θv), andd3(θu,θv). Equivalently, we also use

notationd1(Gu, Gv) for d1(θu,θv) and so on. It is clear that there can be no ties between the mean

functionals;Pr(θu = θv) = 0. In computing the expressions associated with these quantities, we

only have to plug in the form of the mean functional. For instance, after some minor calculation,
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we obtain

d1(θu,θv) =
∑

j

∑

k

(πuj − πvj)(πuk − πvk)

∫

B

φj(x)φk(x)dx.

This is a special case of aLr norm betweenGu andGv given as follows:

dLr(Gu, Gv) =

(
∫

B

|
∑

k

(πuk − πvk)φk(x)|rdx

)1/r

.

Other functions, say based upon quantiles can be studied (that is, the function arises as say theqth

quantile of the marginal distribution ofGu at x) for individual populations and compared across

populations. Also, we can directly compare theGu’s. There is an extensive literature on comparing

distributions, e.g. see Dudley (1976). For probability distributions on function spaces, comparisons

using divergence measures may be generally difficult due disjoint supports (see, however, Nguyen

(2013b)). This issue is circumvented by our hierarchical construction. Indeed, becauseGu and

Gu share the same support with probability one, the variational distance and the Kullback-Leibler

distance betweenGu andGv can be defined by taking the following forms, respectively:

dV (Gu, Gv) =
1

2

∑

k

|πuk − πvk|,

dKL(Gu, Gv) =
∑

k

πuk log(πuk/πvk).

It is important to recognize a key difference between this ANOVA specification and that of the

previous section. Now, we haveYui(x) = µ+ θui(x)+ ǫui(x). Draws,θui from Gu are realized for

each individual,i = 1, 2, ..., nu, within populationu. Here,θu is never realized for any population;

it is the population mean of these curves. We have a model withrandom effects and a pure error

term but with marginal dependence across thei’s and also across theu’s. That is, though theGu’s

are conditionally independent givenG0, we haveθui(x) = θvi′(x) if say both drawφk(x) and this

happens with probabilityπukπvk. We can have ties for the individual-level curves.

The full hierarchical specification is formally as follows:

H ≡ GP(µ, C), G0|H ∼ DP(γ,H),

Gu|G0 ∼ DP(α,G0), for all u ∈ V (8)

θui|Gu ∼ Gu for all i = 1, . . . , nu; u ∈ V

Y ui|θui ∼ N(θui, τ
2
uIm), for all i = 1, . . . , nu; u ∈ V
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Under this prior specification, the componentsθui are iid draws from distributionGu. The

distributionGu varies aroundG, with the amount of variability governed byα. The distributionG

in turn varies aroundH, with the amount of variability governed byγ. We note here that that the

induced prior given by (8) is richer than the one given by (6).Lettingα → ∞, the model (8) tends

to (6). The distributionH (a Gaussian process) provides the support for a global pool of mean

curves, which in turn provide the support for the mean curvesfor each population. Model fitting is

a simple adaptation of Teh et al (2006) to functional data.

Suppose we are interested in a two-way ANOVA, i.e., now we have populations indexed by

say factoru with levelsu = 1, 2, ..., U and factorw with levelsw = 1, 2, ...,W . The preceding

development is unchanged; we merely replaceGu with Guw ≡ {πuwk,φk} andi = 1, 2, ..., nuw.

We drawθuw,i from Guw for each individuali at levelsu andw.

Interest would often be in “main” effects which are usually interpreted asmarginal effects for

the levelsu andw. In this setting, we can defineGu· = 1
W

∑

w Guw andG·w = 1
U

∑

u Guw. That is,

Gu· =
∑

k πu·,kδφk
, similarly for G·w. Comparison betweenGu· andGu′· would be carried out as

above. For the mean functional, we immediately haveθu· = 1
W

∑

w θuw, similarly for θ·w. Lastly,

the functionθu·i = 1
W

∑

w θuwi is not meaningful. We are interested in marginal features ofGuw

but not in marginal curves at the individual level.

4.2 Local comparison using a nested hierarchy of Dirichlet processes

From Section 4.1, we have seen that, using the hierarchical DP, we can view the functional ANOVA

problem through comparison ofGu’s. Here, we maintain the objective of comparison ofGu’s

but switch the sampling scheme. Now, we sample the functionsat levels, i.e., at choices ofx,

obtaining observations from potentially different individuals at different levels. That is, in some

settings, the data is such that, within each population, we choose levels ofx and at these levels, we

sample individuals; we don’t sample curves for individuals. In particular, at levelx ∈ D, within

populationu we have observationsYui(x) for a set of individuals indexed byi. Associated with

Yui(x) is aθui(x) as in the previous section. But, in the absence of curve level data for individual

i, we do not envision drawing an entireθui (though it exists conceptually). Rather, we envision

θui(x) drawn from a randomlocal distributionQux which is centered aroundGux, the distribution

at x underGu. In particular, we assumeQux ∼ DP (αu, Gux), nesting theQ’s within theGu’s.
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Extending the stickbreaking notation of the previous section, we now addQux =
∑

∞

k=1 ωuxkδφk(x).

The implication is local selection of theθui(x). That is,θui(x1) = φk(x1) with probability

ωux1k while θui(x2) = φk(x2) with probabilityωux2k. In the global model described in the previous

section,P (θui(x1) = φk(x1)) = P (θui(x2) = φk(x2)) = πuk. In different words, were we

to realize a set{θui(x), x ∈ D}, it would not be one of theφk’s but rather, just a locally selected

collection ofθ’s resulting in an everywhere discontinuous surface. However, again, we do not think

in terms of modeling a curve for individuali, rather, just aθui(x) at a givenx ∈ D. Again, we

can have ties across populations but now they arelocal; θui(x) = θvi′(x) = φk(x) with probability

ωuxkωvxk.

We still view this construction as a functional ANOVA problem. Individuals are still pre-

clustered to populations. Still there is a population-level distribution Gu. Still we can compare

Gu’s acrossu. Still we can employ the same metrics as above to compare the populations. All we

have done is introduce another level to the DP specification,as noted above, a levelnested within

the specification forGu. Such additional flexibility is arguably more appropriate with a sampling

scheme that samples at different levels ofx.

The overall hierarchical specification is summarized as follows:

H ≡ GP(µ, C), G0|H ∼ DP(γ,H),

Gu|G0 ∼ DP(α0, G0), for all u ∈ V

Qu;x|Gu ∼ DP(αu, Gu;x), θui(x)|Qu;x ∼ Qu;x for all i = 1, . . . , nu; u ∈ V (9)

Y ui|θui ∼ N(θui, τ
2
uIm), for all i = 1, . . . , nu; u ∈ V.

To fit this model, we use a demanding MCMC algorithm. Details are presented in Appendix 4.

We can more explicitly describe the model in ((9)) using a stickbreaking parametrization. Due

to the discrete nature of Dirichlet process realizations, the random measuresG0, Gu all share the

same support. The random measureQux also share the same support as theGu andG0 when the
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latter two are restricted to levelx, for anyx ∈ D. Indeed, they can be expressed as follows:

G0 =
∞

∑

k=1

βkδφk
,

Gu =
∞

∑

k=1

πukδφk
,

Qux =
∞

∑

k=1

ωuxkδφk(x). (10)

As before, theφk are iid draws from the base measureH. β = (βk)
∞

k=1, πu = (πuk)
∞

k=1 andωux =

(ωuxk)
∞

k=1 are stick-breaking weight vectors satisfying the following hierarchical specifications:

β|γ ∼ GEM(γ), πu|β ∼ DP(α0,β) for all u ∈ V

ωux|πu ∼ DP(αu,πu) for all u ∈ V, x ∈ D (11)

φk ∼ H for all k = 1, 2, . . .

zui(x)|πu ∼ ωux for all i = 1, . . . , nu; u ∈ V

Yui(x)|zui, (φk)
∞

k=1 ∼ N(φzui(x)(x)|τ 2
u) for all i = 1, . . . , nu; u ∈ V ; x ∈ D. (12)

As is the case with parametric hierarchical models, the hierarchical framework in the nonparamet-

ric context also lends itself naturally to the decomposition of variation measures for data within

each group and between groups. Appendix 3 provides details of the decomposition calculation.

5 Hierarchical Dirichlet process examples

Here we present two simulated examples and one real data analysis. The first simulation example

presents an unusual functional ANOVA setting. The second serves as a proof of concept for the lo-

cal nested HDP modeling. The real data analysis fully illustrates all of the foregoing development.

5.1 Multi-modal non-stationary and non-Gaussian and globally sharing groups

of functional data

We consider a two-population setting where the first population uses one functional atom, but the

second is associated with two functional atoms with (latent) selection probability1/2 for each.
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One of the two functional atoms in the second group is shared with the first group. Both functional

atoms are generated according to a Gaussian process with mean 0 and covariance specified by

σθ = 0.5, ωθ = 0.01. Data associated with a functional atom are obtained by adding independent

an white noise process with variance varianceτu = 0.2 for bothu = 1, 2. The sample sizes for the

two groups aren1 = n2 = 40. The sample curvesYui(x) are observed at 50 levelsx = 1, . . . , 50

for i = 1, . . . , nu. For this data set we use the global model described in Section 4.1. For prior

specification,τ 2
u ∼ InGamma(aτu

, bτu
) whereaτu

= 2, bτu
= 1. The base measureH is also a

mean-0 Gaussian process withσθ ∼ InGamma(aσ, bσ) with aσ = 2, bσ = 1. In additionωθ = 0.01.

(We use a slightly modified parameterization for covariancefunctionC(x, x′) = σ2
θ exp{−ωθ‖x−

x′‖2}). The concentration parameters are specified asγ = 0.005 andα = 0.01. The posterior

distributions of parameters and distance measures of interest are obtained via MCMC samples.

Fig. 4 (left) shows that while the number of functional clusters for group 1 is close to 1 with

high probability, for group 2 there are two functional clusters with probability close to 1. More-

over, with high probability there are overall two functional clusters for both groups. This implies

that the functional cluster that underlies group 1 is in factalso a functional cluster for group 2. The

right panel in Fig. 4 illustrate the posterior distributions for population meansµ(G1) andµ(G2).

The tight credible interval bands are due to the effect of averaging implicitly over sample curves.

Additional comparisons can be performed on the basis ofµ(G1) andµ(G2) using distance mea-

sures such asd1, d2 andd3, but these still do not always fully capture the heterogeneity between

and within the two groups. Because of the sharing of functional atoms at each MCMC iteration, a

visually appealing method for characterizing the variation between and within each group of func-

tional curves, is to perform pairwise comparisons for sample curves on the basis of the functional

atoms that the curves are associated with, using the same distance measures mentioned above.

Fig. 5 (right) produces a heatmap in which each entry represents the posterior probability that

two given functional curves share the same functional atom.It shows that all sample curves in

group 1 share the same functional atom (cluster) with high probability, and that the first 20 sample

curves in group 2 also shares the same cluster as that of group1, while the remaining 20 sample

curves in group 2 share another functional cluster. A more detailed analysis is carried out using

distance measured1 with varying domains in Fig. 6. Each panel provides a different subregion

as indicated and the entries in the heatmaps provide the (posterior) mean of the distance between
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the global atoms associated with two given sample curves. The heatmaps reveal the need for

differential numbers of curves within each population as well as the variability within each group

due to the variation between the functional atoms. The variation is most pronounced for, e.g., the

interval [1, 10]), and is negligible for, e.g.,[21, 30]).

5.2 Functional ANOVA with sampling at levels of the functions

This simulation example is motivated by the ocean temperature data set. We employ the nested

HDP model developed in Section 4.2. Here, we create data fromthree populations. The popula-

tions are regulated by three functional atoms, say,φ1,φ2 andφ3. These functional atoms were

generated according to a mean-0 Gaussian process with and a covariance function given by pa-

rametersσφ = 1, ωφ = .01. Population 1 uses only functional atomφ2, population 2 usesφ1 and

φ2 with equal probabilities, while population 3 usesφ2 andφ3 with equal probabilities. For each

populationu and levelx, observationsYui(x) are i.i.d. draws from a mixture of Gaussians with

the means given by the associating functional atom (φ1,φ2 or φ3) evaluated atx, and the variance

given byτ 2
u . We letτu = 0.1 for all u. The number of samples at levelx is nux = 20 for all u’s

andi’s. The set ofx’s is [1, . . . , 10]. Fig. 7 shows the data set.

For prior specification, letτ 2
u ∼ InvGamma(aτu

, bτu
) whereaτu

= 5, bτu
= 1. The concentra-

tion parameterγ is given a vague priorγ ∼ Gamma(aγ, bγ) whereaγ = 1, bγ = .1, while other

concentration parameters are set toα0 = 1 andαu = 1 for all u. The base measureH is a mean-0

Gaussian process withσφ = 1, ωφ = .01.

Again, the data here are a collection of observationsYui(x); we are not sampling individual

curves. However, the underlying assumption of our model is that there exist functional atoms

which provide the basis for underlying functional clustersthat regulate these groups of data. We

are able to estimate not only these functional clusters, butalso infer about whether or not they are

shared among the populations. Fig. 8 (left panel) depicts the posterior distributions of the number

of functional clusters for each of the three populations. Population 3 has 2 functional clusters

with high probability, Population 2 is likely to have two functional clusters (as opposed to 1), and

Population 1 has either one or two clusters with approximately equal probabilities. For population

1, there seems to be a disagreement with how the data was generated, but a closer look reveals

that that the two functional atoms employed by population 2 and the one which is shared with
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group(u) πu1 πu2 πu3

1 0.9669 (0.0808) 0.0231 (0.0631) 0.0045 (0.0112)

2 0.4769 (0.1490) 0.5048 (0.1337) 0.0072 (0.0174)

3 0.0151 (0.0229) 0.5293 (0.1107) 0.4520 (0.1108)

Table 1: Posterior mean (and standard deviation) of the mixing proportions for the (dominant)

three functional atoms for each group of data.

population 1 are virtually indistinguishable for a significant proportion of levels. Thus in the a

posteriori analysis it makes sense to have either of the two functional atoms provide the support

for clusters in the data in population 1. Fig. 8 (right panel)depicts the mean estimate and credible

intervals for three functional atoms the provide overwhelming support for the data in all three

populations. The estimation of the functional atoms is veryaccurate.

Following Sections 4.1 and 4.2, Table 1 provides the (posterior) mean of the mixing pro-

portions for the three functional atoms with respect to eachof the three populations. Accord-

ingly we obtain variational distances between groups:dV (G1, G2) = 0.49(±.11); dV (G2, G3) =

0.52(±0.09); dV (G1, G3) = 0.96(±.04). The KL distances tend to amplify the difference:dKL(G1, G2) ≈

0.68; dKL(G1, G3) ≈ 6.08; dKL(G2, G1) ≈ 3.21; dKL(G2, G3) ≈ 2.59; dKL(G3, G1) ≈ 16.79; dKL(G3, G2) ≈

8.02. But it is clear that populationsG1 andG3 are the most different pair. Turning to local com-

parisons, Fig. 9 depicts the median and credible intervals for the number of local clusters at each

x and populationu. There is significantly more variability in population 2 andpopulation 3 than

in population 1. Note that for population 1, the median number of local clusters is one for allx,

where at most of thex ≥ 4 there is a probability of having two local clusters. For population 2, the

median number of local clusters is two for allx, but forx ≥ 5 there is also a significant probability

that there are only one local cluster. This agrees with the fact that the two functional atoms can be

interchanged forx ≥ 4. For population 3, the median number of local clusters is two, but there are

levels with non-negligible probability of having only one or three.

19



group(u) πu1 πu2 πu3 πu4 πu5 πu6

1 0.96 (0.01) 0.00 (0) 0.02 (0.01) 0.00 (0) 0.00 (0) 0.00 (0)

2 0.02 (0.09) 0.74 (0.09) 0.06 (0.03) 0.00 (0) 0.12 (0.02) 0.00 (0.02)

3 0.04 (0.14) 0.01 (0.02) 0.02 (0.02)0.90 (0.14) 0.01 (0.02) 0.00 (0)

4 0.03 (0.13) 0.02 (0.03) 0.02 (0.03)0.89 (0.14) 0.01 (0.02) 0.00 (0)

Table 2: Posterior mean (and standard deviation) of the mixing proportions for the (dominant)

three functional atoms for each group of data.

5.3 Analysis of an ocean temperature vs depth dataset

We consider a data set consisting of ocean temperature and depth measurements collected at lo-

cations in the Atlantic Ocean. The geographic separation naturally divides the locations into 4

distinct groups – see the right panel of Fig. 10 – which we takeas our populations. At each lo-

cation the ocean temperature is recorded, together with thedepth and the time where and when

the measurement was obtained. The left panel of Fig. 10 illustrates this data set. Because the

temperature are recorded at different times (during the days, and across several days), we treat the

data not as a collection of functional curves, rather as a collection of temperaturesYui(x), where

u ∈ 1, 2, 3, 4, x indexes the depth level, andi indexes the measurements obtained at that depth

level within groupu. (There is not enough temporal structure in the dataset to attempt to model

time effects.) Again, we are interested in comparison amongthe 4 groups based on the functional

patterns of ocean temperature in terms of ocean depth. Thereare a total of 4917 such measure-

ments within the first 500 meters of depth. The data set is generally unbalanced: some locations

and/or depth levels have more data than others. Moreover, the depths are not equally spaced.

Although locations of measurements obtained within each group are known, due to their close

proximity relative to the distances between the groups, we assume that the measurements ob-

tained within depth level are exchangeable. Furthermore, the 4 groups are also viewed as ex-

changeable. The modeling, inference and analysis were described in Section 4. We grouped

the data into 25 equally spaced depth levels, each of which is20 meters long. The tempera-

ture measurements were re-centered around10o Celsius, and then re-scaled so that a majority

of the measurements fall within−[1, 1]. For prior specifications, for the white noise process
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G1 G2 G3 G4

G1 0 9.2 (5.5) 6.1 (3.3) 7.1 (3.9)

G2 8.5 (6.0) 0 6.7 (4.2) 6.3 (5.0)

G3 7.1 (4.1) 7.0 (3.8) 0 0.3 (0.3)

G4 7.2 (4.6) 7.0 (4.4) 0.3 (0.4) 0

Table 3: Estimates ofdKL(Gu, Gv).

we let τu ∼ InvGamma(aτu
, bτu

), whereaτu
= 5, bτu

= 1. For the concentration parameters,

we let γ ∼ Gamma(aγ, bγ) whereaγ = 5, bγ = 1. We let α0 ∼ Gamma(aα0
, bα0

) where

(aα0
, bα0

) = (1, 1), while αu = 1 for all u = 1, . . . , 4. The base measureH is specified as

a mean-0 Gaussian Process, whose covariance function has the standard exponential form with

(σφ, ωφ) = (0.1, 0.5).

We next discuss the sensitivity of the hyperparameters in our hierarchical model. Recall that

σφ specifies the variance at a point andωφ the smoothness of the Gaussian process (which gen-

erates functional atoms). Small values ofωφ result in very smooth functional atoms, while large

values result in highly distinct (and less smooth) atoms. Both extremes are avoided; our choice

of σφ, ωφ reflects roughly the range of the variance and smoothness based on an exploratory anal-

ysis of the data collected at locations 3 and 4 (where the global clusters are mostly unimodal by

visual inspection). The posterior inference is found to be robust in this range. Once the levels of

smoothness and variance for the functional atoms are specified, the hyperparameters for the white

noise varianceτu are chosen to be highly non-informative. Turning to the Dirichlet processes’

concentration parameters, a robust choice is to restrictαu’s andα0 to relatively small ranges (say,

≤ 1). Once these are fixed, the hyperparameters forγ (the concentration parameter for the top level

Dirichlet process) are chosen to be highly non-informative. The rationale behind this hinges on the

interactions of the Dirichlet processes in multiple levelsof a Bayesian nonparametric hierarchy.

Such a theory has emerged only recently (Nguyen, 2013a). Finally, we note that for the purpose of

group comparisons using the proposed summaries, the resultant inference appears quite robust to

the choice of these hyperparameters, as we will see below.

The Gibbs sampling algorithm described in Appendix 4 is run for 5000 iterations, which took
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several days to complete on a personal desktop computer. While this seems sufficient for our

purpose, for larger scale data sets that have more depth levels (say, in the order of thousands)

approximate variational methods may be considered to help speed up the Gibbs sampler. An

example of such a strategy developed for a somewhat related and more complex model can be

found in Nguyen and Gelfand (2011).

The posterior distribution of the number of functional atoms associated with the functional

temperature-depth trends in the four groups have the support between 5 and 9, with a strong mode

at 6, suggesting there are 6 dominant functional patterns. Fig. 11 shows the posterior mean and

credible intervals of these functional patterns. Table 2 offers the contributions of each of these

individual functional patterns within each group of data. It provides strong evidence regarding

the functional variations between the groups, and in some cases, within a group. In particular,

group 1 is overwhelmingly associated with functional curve(atom)φ1. This also impliessingle

functional behavior of depth vs temperature within group 1.Group 3 and group 4 also have largely

single functional behavior, with most of the contributions(89%) coming functional curve (atom)

φ4, and small contributions coming fromφ1. In fact, the decompositions represented byπ is are

almost indistinguishable between the two groups. Group 2 exhibits very heterogeneous functional

behavior; there are contributions from more than 4 functional curves,φ1,φ2,φ3,φ5. Using KL

distance measures to compare between groups in Table 3, it isevident that group 3 and 4 exhibit

very similar functional behaviors, while group 2 is most different from the other groups. It is useful

to examine the posterior distributions of the varianceτ 2
u for the noise processes associated with the

functional curves. In particular, the posterior mean forτ1 is very small (0.42(0.10)), suggesting the

highly predictable behavior of temperature in group 1.τ3 is largest (2.07(0.25)), perhaps due to

the relative sparsity of measurements obtained within group 3, in spite of the fact that the overall

behavior of group 3 and 4 are very similar. For completeness for τ2 we have0.93(0.52) and forτ4

we have1.84(0.22).

Fig. 12 illustrates the posterior mean and credible intervals for d2(µ(Gu), µ(Gv)), providing

detailed comparison in temperature vs depth behavior in thefour groups. For instance, group 1 has

consistently higher temperature than group 2, while group 3and group 4 are very similar. Using

d3, it is observed that the difference between group 3 and 2 increases with lower depth. Despite

the sparse and unbalanced data in some of the groups, our functional modeling approach provides
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relatively fine-scaled comparisons across depth levels. Fig. 13 reveals in more detail the variations

in the number of local clusters in each of the 4 groups. Again,the number of local clusters within

group 1 is 1 (supported byφ1 with overwhelming probability. The number of local clusters in

group 3 and 4 are 1 with overwhelming probability at shallow depths (less than 300 meters for

group 3), but at deeper depths they are also associated with local clusters supported byφ1. Group

2 has up to 5 local clusters at shallow depth levels, but the number of local clusters decreases to

2 at deeper depth levels. In other words, more functional variation in the temperature behavior is

observed near the ocean surface for group 1 than at the deeperlevels.

6 Summary and future work

We have presented a sequence of models for the functional ANOVA problem which enable com-

parison between populations in ways not previously considered in the literature. In particular,

our hierarchical DP versions permit comparison of the (random) functions that define the popula-

tions using various metrics and over chosen subdomains. Also, we can provide comparison of the

random distributions that generate the functions for individuals within the populations. Through

simulation examples and a set of temperature vs. depth data,the rich inferential possibilities have

been revealed.

An opportunity for future work is to look at the comparison ofthe populations dynamically.

With a suitable data (e.g., temperature vs. depth relationships for various geographically defined

groups collected across years), we can imagine a functionalANOVA model at each time point.

Explicit modeling might be developed utilizing a state space specification. Novel inference would

include the assessment of how differences between populations are evolving in time.

7 Appendix

7.1 Appendix 1: Inference of mean curves under GP prior

This section provides standard expressions for conditional expectation and variance of popula-

tion mean curves given a collection of functional data. Suppose that the dataY = {Yui(x)} are

observed at the same set of levelsx1, . . . , xm. In the following we useM to collect all model

23



parameters,M = (µ, C, σ, τ ). GivenY andM , θu = (θu(x1), . . . , θu(xm)) are independent

for u ∈ V . Let x01, . . . , x0p bep levels that are either placed regularly inB, or uniformly sample

from B. For a given populationu, we need to derive the posterior distribution for bothθu, and

θ0u := (θu(x01), . . . , θu(x0p)).

Let Cu,C0u be the a priori covariance matrices forθu andθ0u, respectively, whileRu be the

covariance matrix of sizem × p for the two as given by the GP with covariance functionC. We

have

θu|Data,M ∼ Nm(µ̃u, C̃u), where

C̃
−1

u = C−1
u + (nu/τ

2
u)Im

C̃
−1

u µ̃u = C−1
u µ + (1/τ 2

u)
nu
∑

i=1

Y ui.

We haveθ0u|θu,M ∼ Np(m̃, S̃) where

m̃ = m0u + RT
u C−1

u (θu − µ)

S̃ = C0u − RT
u C−1

u Ru, where

m0u = (µ(x01), . . . , µ(x0p)).

Due to conditional independence relation,θ0u ⊥ Data|θu,M , so we have:

[θ0u|Data,M ] ∝

∫

[θ0u|θu,M ] × [θu|Data,M ]dθu

Standard calculations yield

θ0u|Data,M ∼ Np(µ̃0u, C̃0u), where

µ̃0u = m0u + RT
u C−1

u (µ̃u − µ)

C̃0u = S̃ + RT
u C−1

u C̃uC
−1
u Ru.

Finally, we need to sampleM = (µ, C, τ, σ) conditionally on the data. This can be achieved

via Gibbs sampling.

1. Conditional forµ: This is normal with covariance matrix and mean specified by:

C−1
µ =

∑

u

(Cu + τ 2
uIm)−1 + (1/σ2

µ)Im

C−1
µ µµ =

∑

u

(Cu + τ 2
uIm)−1

nu
∑

i=1

Y ui.
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2. Conditional forτ u, for eachu: Endowτu with igamma(aτu
, bτu

), then the conditional forτ 2
u

is also igamma with updated parametersbτu
:= aτu

+ mnu/2 andbτu
:= bτu

+
∑nu

i=1 ‖Y ui −

θu‖
2/2.

3. Conditional forσµ. Endowσµ with igamma(aµ, bµ) then the conditional forσ2
µ is updated

by aµ := aµ + m/2 andbµ = b + 1/2‖µ‖2.

4. Conditional forCu, for eachu: Cu is parameterized by exponential form, so thatCu(x1, x2) =

σ2
Cu

Su whereSu(x1, x2) = exp−φu(x1 − x2)
2. Endowσ2

Cu
with igamma(aCu

, bCu
), which

is updated viaaCu
= aCu

+ m/2 andbCu
:= bCu

+ 1
2
(θu − µ)T S−1(θu − µ). φu is updated

via a symmetric Metropolis update, with an acceptance rate equal tomin(1, exp− 1
2σ2

u
(θu −

µ)T (S̃
−1

u − S−1
u )(θu − µ)).

7.2 Appendix 2: Properties of summary metrics

Suppose thatθ is distributed according to a Gaussian process on a closed domain B ⊂ R with

meanµ and covariance functionC. C can be viewed as a positive semidefinite kernel. Moreover,

assume that
∫

C(x1, x2)dx1dx2 < ∞, and consider the integral operatorLC : L2(B) → L2(B)

induced by the kernelC:

LCf(x) =

∫

B

C(x, x′)f(x′)dx′.

This is a self-adjoint, positive and compact operator with acountable systems of non-negative

eigenvalues{λk}
∞

k=1 and associated eigenfunctions{ψk}
∞

k=1 which form an orthonormal basis of

L2(B). By Mercer’s theorem,C admits the following decomposition:C(x, x′) =
∑

∞

k=1 λkψk(x)ψk(x
′).

Here the series converges absolutely for each pairx, x′ and uniformly inB. For eachk ∈ N+, de-

fine

ηk =

∫

B

(θ(x) − µ(x))ψk(x)dx.

By Karhunen-Lòeve’s theorem applied to Gaussian processes,θ can be written as:θ = µ +
∑

∞

k=1 ηkψk, where the convergence is almost sure and is uniform inx. Moreover, the collection of

coefficients{ηk} are independent mean-0 Gaussian variables with variancevar(ηk) = λk, for any

k ∈ N+.
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It is simple to obtain thatm1(θ) can be expressed in terms of a sum of chi-square and normal

variables:

m1(θ) = ‖µ‖2 +
∞

∑

k=1

η2
k + 2

∞
∑

k=1

ηkµ
T ψk.

Due to the mutual independence ofηk’s, we obtain that:

E[m1(θ)|µ,C] = ‖µ‖2 +
∞

∑

k=1

λk = ‖µ‖2 +

∫

B

C(x, x)ds.

The variance takes the form:

var[m1(θ)|µ,C] = E

[( ∞
∑

k=1

η2
k + 2

∞
∑

k=1

ηkµ
T ψk −

∞
∑

k=1

λk

)2∣
∣

∣

∣

µ,C

]

=
∞

∑

k=1

2λ2
k + 4λk(µ

T ψk)
2.

where we have used the fact thatEηk = Eη3
k = 0; Eη2

k = λk, Eη4
k = 3λ2

k. Although theλk andψk

are determined directly fromC, except for some special cases closed forms are not available. In

practice one might consider sampling for the variance instead.

7.3 Appendix 3: Decomposition of variance and correlation measures

First, we study the relations among random measures in the model. G0 is a random measure that

varies aroundH = GP(µ, C), where the variation is governed byγ. For each groupu, Gu is a

random measure that varies aroundG0, where the variation is governed byα. For each levelx and

groupu, Qux varies aroundGu, where the variation is governed byαu. BecauseG0 ∼ DP(γ,H),

due to elementary properties of Dirichlet processes for anymeasurable setA of functions

E[G0(A)2|H] =
1

γ + 1
H(A) +

γ

γ + 1
H(A)2,

var[G0(A)|H] =
1

γ + 1
(H(A) − H(A)2).

Turning to the random measuresGu for eachu ∈ V ,

var[Gu(A)|G0] =
1

α + 1
(G0(A) − G0(A)2).
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Marginalizing outG0, we have:

var[Gu(A)|H] = E[var[Gu(A)|G0]|H] + var[E[Gu(A)|G0]|H]

=
1

α + 1
(H(A) − E[G0(A)2|H]) + var[G0(A)|H]

=

(

1

γ + 1
+

γ

(γ + 1)(α + 1)

)

(H(A) − H(A)2). (13)

Next, for the random measuresQux at each levelx ∈ D, for any measurable setAx, as before:

var[Qux(Ax)|Gu] =
1

αu + 1
(Gu(Ax) − Gu(Ax)

2),

so that

var[Qux(Ax)|G0] = E[var[Qux(Ax)|Gu]|G0] + var[E[Qux(Ax)|Gu]|G0]

=
1

αu + 1
E[(Gu(Ax) − Gu(Ax)

2)|G0] + var[Gu(Ax)|G0]

=

(

1

α + 1
+

α

(α + 1)(αu + 1)

)

(G0(Ax) − G0(Ax)
2).

Marginalizing outG0, we have:

var[Qux(Ax)|H] = E[var[Qux(Ax)|G0]|H] + var[E[Qux(Ax)|G0]|H]

=

(

1

γ + 1
+

γ

(γ + 1)(α + 1)
+

γα

(γ + 1)(α + 1)(αu + 1)

)

(H(Ax) − H(Ax)
2) (14)

Next, letA andB are measurable sets with respect to observations atx1 andx2, respectively.

For φ ∼ H, let Hx1
(A) = P (φ(x1) ∈ A|H) andHx1,x2

(A,B) = P (φ(x1) ∈ A; φ(x2) ∈ B|H).

Then similar calculation yields, for measureG0:

cov[G0(A), G0(B)|H] =
1

γ + 1
(Hx1,x2

(A,B) − Hx1
(A)Hx2

(B))

For measureGu, we have:

cov(Gu(A), Gu(B)|H) =

(

1

γ + 1
+

γ

(γ + 1)(α + 1)

)

(Hx1,x2
(A,B) − Hx1

(A)Hx2
(B)).

Similarly, for Qux:

cov(Qux(A), Qux(B)|H) =
(

1

γ + 1
+

γ

(γ + 1)(α + 1)
+

γα

(γ + 1)(α + 1)(αu + 1)

)

(Hx1,x2
(A,B) − Hx1

(A)Hx2
(B)).
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In all expressions above, a priori, the concentration parameters regulate the fraction of variance or

correlation that are passed from one level in the Bayesian hierarchy to the next, starting from the

base measureH, which regulates the dependence with respect to covariatex. Lastly, we note that

similar calculations can be carried out between populations. We omit the details.

7.4 Appendix 4: Posterior computation for the model in (9)

We recall and introduce key notations:φk is a random draw fromH, ψt a random draw fromG0,

ϕur a random draw fromGu. Finally, θui(x) is a random draw fromQux.

Let kt denote the index of theφk associated with the functional atomψt, i.e.,ψt = φkt
. Let

tur denote the index of theψt associated with the functional atomϕur in groupu, i.e.,ϕur = ψtur
.

Let rx
ui denote the index of theϕur(x) associated with the atomθui(x), i.e., θui(x) = ϕurx

ui
(x).

The local and functional atoms are related by:θui(x) = ϕurx
ui

(x) = ψturx
ui

(x) = φkturx
ui

(x).

Recall that a prioriG0 ∼ DP(γ,H). Due to a standard property of a Dirichlet process, con-

ditioning on the global factorsφk’s and the index vectork, the posterior distribution ofG0 is

distributed according to a DP:[G0|k,φ1, . . . ,φK ] ∼ DP(γ +q·,
γH+

PK
k=1

qkδφk

γ+q·
), whereqk = #{t :

kt = k} denotes the number ofψt’s associating withφk, andq· =
∑K

k=1 qk. This implies an

explicit representation forG0 as follows:

G0 =
K

∑

k=1

βkδφk
+ βnewG

new
0 ,

β = (β1, . . . , βK , βnew) ∼ Dir(q1, . . . , qK , γ) (15)

Gnew
0 ∼ DP(γ,H).

Similarly, conditionally onG0, the random distributionsGu are independent across the group

indicesu. In particular, givenG0, k, tu and theφk’s, the posterior ofGu is distributed as:

[Gu|G0,k, t, (φk)
K
k=1] ∼ DP(α0 + mu·,

α0G0+
PK

k=1
mukδφk

α0+mu·

), wheremuk = #{r : ktur
= k}, the

number ofϕur associated withφk, andmu· =
∑K

k=1 muk. This implies the following representa-

tion for Gu: Gu =
∑K

k=1 πukδφk
+ πunewG

new
u , whereGnew

u ∼ DP(α0βnew, G
new
0 ) and

πu = (πu1, . . . , πuK , πunew) ∼ Dir(α0β1 + mu1, . . . , α0βK + muk, α0βnew). (16)

Once more, conditionally onGu, the random distributionsQux are independent across levelsx. In
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particular, givenGu, k, tu, rx
u, and theφk’s, the posterior ofQux is distributed as:

[Qux|Gu,k, tu, r
x
u, (φk)

K
k=1] ∼ DP(αu + nux·,

αuGux +
∑K

k=1 nuxkδφk(x)

αu + nux·

),

wherenuxk = #{i : kturx
ui

= k}, the number ofθui(x) associated withφk(x), andnux· =
∑K

k=1 nuxk. This implies the following representation forQux:

Qux =
K

∑

k=1

ωuxkδφk(x) + ωuxnewQ
xnew
u

ωux = (ωux1, . . . , ωuxK , ωuxnew) ∼ Dir(αuπu1 + nux1, . . . , αuπuK + nuxK , αuπunew) (17)

Qxnew
u ∼ DP(αuπunew, G

xnew
u ).

The above characterization suggests a straightforward Gibbs sampling algorithm by construct-

ing a Markov chain for(φk)
K
k=1,k, t, r). To simplify the implementation by avoiding the book-

keeping steps of the index variables, we will consider a modified block Gibbs sampling algorithm

by constructing a Markov chain for the count variables (e.g., q,m,n) instead. We will still need

the index variablezuxi, which denotes the index of the global atomφk that local atomθui(x) is

associated with, i.e.,zuxi = kturx
ui

. Note that the likelihood of the data involves only thezuxi

variables, and thatnux can be calculated directly in terms ofzuxi’s:

nuxk =
∑

i

I(zuxi = k).

We proceed to describe a block Gibbs sampler by considering aMarkov chain for(φ, q,m,n,z,β,π,ω).

Sampling β,π,ω. Conditional probabilities:[β|q, γ]×
∏

u[πu|mu,β, α0]×
∏

u

∏

x[ωux|nux,πu, αu]

are given by Eqs. (15)(16)(17).

Sampling of z. Note that a priori,zuxi|ωux ∼ ωux. Let n−uxi
uxk denote the number of data items

in the groupu and levelx, exceptyui(x), associating with the mixture componentk. Then,

p(zuxi = k|z−uxi,ω,φk, Data) =











(αuπuk + n−uxi
uxk )F (yui(x)|φk(x)) if k is previously used

αuπunewf
yui(x)
uxknew(yui(x)) if k = knew,

wheref
yui(x)
uxknew(yui(x)) =

∫

F (yui(x)|φ(x))dH(φ(x)) is the prior density ofyui(x).
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Sampling of mu. Recall thatmuk is the number of functional atomsϕur associated withφk

within each groupu. This set of functional atomsϕur’s can be subdivided into disjoint subsets

associated with levelsx ∈ D when the functional atomsϕur are first generated. Letmuxk be the

number of such functional atoms corresponding to the levelx. To be precise,

muxk = #{rx
ui : zuxi = kturx

ui

= k for somei}

muk =
∑

x∈D

muxk.

muxk corresponds to the number of partitions among thenuxk atomsθui(x) such thatzuxi = k. To

obtain the distribution ofmuxk, consider the distribution ofrx
ui conditionally onGu (i.e.,πu, φk’s).

Note that givenGu, theQux are independent acrossx’s. For each atomθui(x), the probability of

being assigned to an existing atomϕur(x) such thatktur
= k is

p(rx
ui = r|ktur

= k, r−uxi,πu) ∝ n−uxi
ux·r

while the probability of being assigned to a new atomϕurnew(x) is

p(rx
ui = rnew|kturnew = k, r−uxi,πu) ∝ αuπuk

wheren−uxi
ux·r := #{i′ : rx

ui′ = r; uxi 6= uxi′}, the number of data items at groupu and levelx

exceptyui(x) that are associated withϕur. This implies thatmuxk is the number of partitions that

arise in a population ofnuxk data items, whose distribution is distributed according toa Dirichlet

process with concentration parameterαuπuk. It was shown by Antoniak (1974) that the distribution

of muxk has the form:

p(muxk = m|z,m−uxk,πu) =
Γ(αuπuk)

Γ(αuπuk + nuxk)
s(nuxk,m)(αuπuk)

m,

wheres(n,m) are unsigned Stirling number of the first kind.

Sampling q. The conditional distribution ofq can be obtained in a similar manner asm. It

can be shown thatqk =
∑

u∈V quk wherequk = #{t : ktur
= k for somer}. Moreover,quk is

the number of partitions that arise in a population ofmuk atoms, whose distributed according to a

Dirichlet process with concentration parameterα0βk:

p(quk = q|z, q−uk,β) =
Γ(α0βk)

Γ(α0βk + muk)
s(muk, q)(α0βk)

q.
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Sampling φ. The conditional distribution forφ can be obtained easily. Suppose that the prior

distributionH for φk is given by a mean functionµ and covariance functionC, which is reduced

to a covariance matrixCk when restricted to a finite number of covariate values forx. Then

the posterior distribution forφk is also Gaussian with mean and covariance expressions givenas

follows:

C̃
−1

k = C−1
k +

∑

u∈V

diag(· · · ,
∑

x

nuxk, · · · )/τ
2
u

C̃
−1

k µ̃k = C−1
k µk+

(

· · · ,
∑

u∈V

nu
∑

i=1

Yui(·)I(zu·i = k)/τ 2
u , · · ·

)T

.
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Figure 2: Distance measures for group 1 and group 2, usingd1, d2, d3.

0 10 20 30 40 50

−1.5

−1

−0.5

0

0.5

1

1.5
group1

0 10 20 30 40 50

−1.5

−1

−0.5

0

0.5

1

1.5
group2

Figure 3: Data set 2.
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Figure 4: Data set 2. Posterior distribution of the number offunctional atoms (left). Right panel:

Estimates of population meansµ(Gu) in two dash lines. Estimates of two functional atoms in

dotted lines. (Note two of the four lines at the top are almostindistingushable in the plot).
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Figure 5: Data set 2. Left panel: Group assignment – the first 40 curves belong to group 1, the

second 40 curves group 2. Right panel: Posterior probabilitythat two sample curves share the

same functional atom.

Pairwise comparison using d1 on [1,10]
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Figure 6: Pairwise comparison usingd1 for varying domains as indicated at the top of each panel.
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Figure 7: Data set 3. Data given are collection of “dots”, notcurves, indexed by group membership

u, and levelx.
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Figure 8: Data set 3. Left panel: Posterior distribution of the functional atoms. Right panel: Mean

estimate and credible intervals (in dash) for the functional atoms. The “true” functional atoms are

solid plots with square markers.
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Figure 9: Data set 3. Comparing number of local atoms acrossu andx.
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Figure 10: Data set 4. Ocean temperature and depth data, collected in 4 groups in the Atlantic

Ocean. Left panel: Y axis represents temperature (Celsius),X axis represents depth (in meters).

Measurements from group 1 are illustrated in circles, Group2’s are ’+’s, Group 3’s are ’x”s, Group

4’s are squares. The geographical locations of the 4 groups are depicted in the right panel.
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Figure 11: Data set 4. Posterior means and (.05,.95) credible intervals of the functional atoms.
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Figure 12: Data set 4. Posterior distributions of distance measuresd2 andd3, applied to windows

of depth interval[x, x + 4] × 20 meters.
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Figure 13: Data set 4. Comparing number of local clusters thatvary with depth levelx. The plots

show posterior mean (solid) and (.05,.95) credible intervals.
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