8. Overview of further topics

The Weak Law of Large Numbers

• If X_1, X_2, \ldots are i.i.d. RVs, with common mean $\mathbb{E}(X_i) = \mu$, then for any $\epsilon > 0$

$$\mathbb{P}\left(\left|\frac{X_1 + \cdots + X_n}{n} - \mu\right| > \epsilon\right) \rightarrow 0$$

in the limit as $n \rightarrow \infty$. This is the weak law of large numbers (WLLN).

• The WLLN says that the sample average (for an i.i.d. sample of size n) converges to the expectation.

• This theorem can also be described as saying that the sample mean converges to the population mean.

• The WLLN says nothing about the rate of convergence. It also applies if $\text{Var}(X) = \infty$.
Chebyshev’s Inequality

• To prove the WLLN, we first obtain Chebyshev’s inequality.

Proposition. If X is any RV, with $\mathbb{E}(X) = \mu$, $\text{Var}(X) = \sigma^2$, then

$$\mathbb{P}(|X - \mu| \geq \epsilon) \leq \frac{\sigma^2}{\epsilon^2} \text{ for any } \epsilon > 0$$

Proof.
Example. Suppose the daily change in value of stock is an i.i.d. sequence X_1, X_2, \ldots with $\mathbb{E}(X_i) = 0$ and $\text{Var}(X_i) = 1$. What can you say, using Chebyshev’s inequality, about the chance that the value changes by more than 5 in 10 days?

Solution.
Proof of Weak Law of Large Numbers

- X_1, X_2, \ldots are i.i.d. with mean μ.
- Suppose an additional, unnecessary, condition that X_1, X_2, \ldots have variance σ^2.
- Apply Chebyshev’s inequality to $\bar{X}_n - \mu$ for
 \[
 \bar{X}_n = \frac{X_1 + \cdots + X_n}{n}
 \]
The Central Limit Theorem

- If X_1, X_2, \ldots are i.i.d., with mean μ and variance σ^2, then for any constant a,

$$
P \left(\frac{X_1 + \cdots + X_n - n\mu}{\sigma \sqrt{n}} \leq a \right) \to P(Z \leq a)
$$

in the limit as $n \to \infty$, where Z is standard normal, i.e. $Z \sim N(0, 1)$.

Comments on the CLT

- The CLT may be re-written as

$$
\frac{X_1 + \cdots + X_n - n\mu}{\sigma \sqrt{n}} \to Z
$$

where the limit is interpreted as convergence of the c.d.f. (this type of limit is called convergence in distribution). This in turn can be rewritten as

$$
\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \to Z.
$$

- A remarkable thing about the CLT is that the behavior of the average depends only on the mean and the variance.
More Comments

• The CLT can be proved, but we can also view it as an empirical result. The CLT proposes a normal approximation for the distribution of an average; an approximation which can be tested by a computer experiment. How?

• The CLT “often” gives a good approximation for n as small as 10 or 20.

• The closer X_1, X_2, \ldots are to having the normal distribution, the smaller the n required for a good approximation.

• If X_1, X_2, \ldots are themselves i.i.d. $N(\mu, \sigma^2)$ then it is exactly true that $\frac{\sqrt{n}}{\sigma}(\bar{X}_n - \mu)$ has the standard normal distribution.
Example. A die is rolled 10 times. Use the CLT to approximate the chance that the sum is between 25 and 45.

Solution.
Example. A sequence of independent trials is carried out, each with chance p of success. Let M be the number of failures preceding the first success, and N the number of failures between the first two successes. Find the joint probability mass function of M and N.

Solution.
Example. A die is rolled repeatedly. Find the probability that the first roll is strictly greater than the next k rolls (i.e. if the values of the rolls are X_1, X_2, \ldots then $X_1 > X_j$ for $j = 2, \ldots, k + 1$).

Solution.
Example. A die is thrown \(N \) times. Let \(X \) be the number of times the die lands showing six spots, and \(Y \) the number of times it lands showing five spots. Find the mean and variance of \(Z = X - Y \).

Solution.
Example. If X and Y are independent and identically distributed Uniform$[0, 1]$ random variables, find the density of $Z = X/(X + Y)$.

Solution.
Example. Suppose X and Y have joint density

$$f(x, y) = ce^{-(x+y^2)}$$

on the region $x \geq 0$ and $-\infty < y < \infty$, with c being an unknown constant. Find the expected value of $X + Y^2$. You do not necessarily have to do any integration!

Solution.