1. Let $A(t)$ and $Y(t)$ denote respectively the age and excess at t. Find:

(a) $\mathbb{P}\{Y(t) > x | A(t) = s\}$.

(b) $\mathbb{P}\{Y(t) > x | A(t + x/2) = s\}$.

(c) $\mathbb{P}\{Y(t) > x | A(t + x) > s\}$ for a Poisson process.

(d) $\mathbb{P}\{Y(t) > x, A(t) > y\}$.

(e) If $\mu < \infty$, show that, with probability 1, $A(t)/t \to 0$ as $t \to \infty$.

Hint: For (d), use a regenerative process argument (E.g. Ross, section 3.7) to find $\lim_{t \to \infty} \mathbb{P}(Y(t) > x, A(t) > y)$. For (e), you may use without proof the following results on convergence with probability 1: (L1) $\lim_{n \to \infty} S_n/n = \mu$; (L2) $\lim_{t \to \infty} N(t) = \infty$; (L3) $\lim_{t \to \infty} N(t)/t = 1/\mu$.

Solution: (a)

$$
\mathbb{P}[Y(t) > x | A(t) = s] = \mathbb{P}[X_{N(t)+1} > s + x | S_{N(t)} = t - s] = \mathbb{P}[X_1 > s + x | X_1 > s] = \frac{\mathcal{F}(s + x)}{\mathcal{F}(s)}.
$$

Here is a more formal solution:

$$
\mathbb{P}[Y(t) > x | A(t) = s] = \mathbb{P}[S_{N(t)+1} > t + x | S_{N(t)} = t - s] = \mathbb{P}[X_{N(t)+1} > s + x | S_{N(t)} = t - s]
$$

$$
= \sum_{n=0}^{\infty} \mathbb{P}[X_{n+1} > s | S_{n} = t - s, N(t) = n] \mathbb{P}[N(t) = n | S_{N(t)} = t - s]
$$

$$
= \sum_{n=0}^{\infty} \mathbb{P}[X_{n+1} > s | S_{n} = t - s, X_{n+1} > s] \mathbb{P}[N(t) = n | S_{N(t)} = t - s] (\text{by independence})
$$

$$
= \mathbb{P}[X_1 > s + x, X_1 > s] = \frac{\mathcal{F}(s + x)}{\mathcal{F}(s)}
$$

(b)

$$
p := \mathbb{P}[Y(t) > x | A(t + x/2) = s]
$$

For $s \geq x/2$, an argument similar to (a) allows us to write

$$
p = \mathbb{P}[\text{no event in } (t + x/2 - s, t + x)] \text{ event at } t + x/2 - s, \text{ no events in } (t + x/2 - s, t + x/2)]
$$

$$
= \mathbb{P}[X_{N(t)+1} > s + x/2 | S_{N(t)} = t + x/2 - s, X_{N(t)+1} > s]
$$

$$
= \mathbb{P}[X_1 > s + x/2, X_1 > s] = \frac{\mathcal{F}(s + x/2)}{\mathcal{F}(s)}
$$

For $s < x/2$, $\{A(t + x/2) = s\} \Rightarrow \{Y(t) \leq s - x/2\}$. It follows that $p = 0$.

Homework 4 (Stats 620, Winter 2017)

Due Tuesday Feb 14, in class.

Questions are derived from problems in *Stochastic Processes* by S. Ross.
\[
q = \mathbb{P}[Y(t) > x | A(t + x) > y]
\]
\[
= \mathbb{P}[\text{no event in } [t, t + x] | \text{no events in } [t + x - s, t + x]]
\]

for \(0 \leq s \leq x\), since the process is Poisson with independent increments,

\[
q = \mathbb{P}[\text{no event in } [t, t + x - s]]
\]

= \exp(-\lambda(x-s)),

where \(\lambda\) is the rate of the Poisson process. For \(s > x\), \(q = 1\).

(d)

\[
\mathbb{P}(Y(t) > x, A(t) > y) = \mathbb{P}(X_{N(t)+1} > t - S_{N(t)} + x, t - S_{N(t)} > y)
\]
\[
= \mathbb{P}(X_1 > t + x, t > y | S_{N(t)} = 0)\mathbb{P}(S_{N(t)} = 0)
\]
\[
+ \int_0^t \mathbb{P}(X_{N(t)+1} > t - S_{N(t)} + x, t - S_{N(t)} > y | S_{N(t)} = s) \mathbb{P}(X_{N(t)+1} > t - S_{N(t)} + x - s)dF_{S_{N(t)}}(s)
\]
\[
= \mathbb{1}_{t>y} \mathbb{P}(X_1 > t + x | X_1 > t)\mathbb{P}(S_{N(t)} = 0)
\]
\[
+ \int_0^t \mathbb{1}_{t-s>y} \mathbb{P}(X > t + x - s | X > t - s)dF_{S_{N(t)}}(s)
\]
\[
= \mathbb{1}_{t>y} \mathbb{P}(t + x) + \int_{t-y}^{t} F(t + x - s)dm(s).
\]

Let \(P_t = \mathbb{P}[Y(t) > x, A(t) > y]\). Define a regenerative process to be “on” at \(t\) if \(S_{N(t)} < t - y\) and \(S_{N(t)+1} > t + x\). Thus, \(P_t\) is the probability that the process is “on” at time \(t\). By the regenerative process limit theorem

\[
\lim_{t \to \infty} P_t = \frac{\mathbb{E}[\text{time “on” during a cycle}]}{\mathbb{E}[\text{time of the cycle}]}
\]
\[
= \frac{\mathbb{E}[\max(X_1 - (x + y), 0)]}{\mu}
\]
\[
= \frac{1}{\mu} \int_{x+y}^{\infty} (z - x - y) dF(z)
\]

(e)

\[
\lim_{t \to \infty} \frac{A(t)}{t} = \lim_{t \to \infty} \frac{t - S_{N(t)}}{t}
\]
\[
= 1 - \lim_{t \to \infty} \frac{S_{N(t)}}{N(t)} \lim_{t \to \infty} \frac{N(t)}{t}
\]
\[
= 1 - \mu/\mu \quad \text{(by (L1), (L2) and (L3))}
\]
\[
= 0
\]

2. Consider a single-server bank in which potential customers arrive in accordance with a renewal process having interarrival distribution \(F\). However, an arrival only enters the bank if the
server is free when he or she arrives; otherwise, the individual goes elsewhere without being served. Would the number of events by time \(t \) constitute a (possibly delayed) renewal process if an event corresponds to a customer:

(a) entering the bank?
(b) leaving the bank after being served?
What if \(F \) were exponential?

Solution: Let \(X_i \) denote the length of the \(i \)-th service and let \(Y_i \) denote the time from the end of \(i \)-th service until the start of the \(i+1 \)-th service. Let \(Y_0 \) denote the time when first arrival enters the bank (and gets service). Note that \(X_i \) and \(Y_i \) may be dependent when the arrival is not a Poisson process.

(a) In this case, each cycle consists of \(Z_i = X_i + Y_i, i = 1, 2, \ldots \) and \(Z_0 = Y_0 \). Since \(X_i \) and \(Y_i \) are independent of \(X_j \) and \(Y_j \) with \(j = 1, \ldots, i-1 \), \(\{Z_i\}_{i \in \mathbb{N}} \) are i.i.d copies. We thus have a delayed renewal process.

(b) In this case, \(Z_i = Y_{i-1} + X_i \). When \(X_i \) and \(Y_i \) are dependent, \(\{Z_i\}_{i \in \mathbb{N}} \) are not i.i.d. copies. We do not have a (delayed) renewal process. One counter example can be constructed as in the sequel. Suppose the service distribution is given by

\[
Y_1 = \begin{cases}
1 & \text{w.p. 0.5} \\
10 & \text{w.p. 0.5}
\end{cases}
\]

and the interarrival times of the customers to the bank \(Z_n \sim F \) are given by, \(Z_1 = 6 \) w.p. 1. Then, given a previous interval between departures \(S_n - S_{n-1} = 3 \), we know that the next arrival will enter the bank at time \(S_n + 4 \).

If \(F \) is exponential (a) still gives a delayed renewal process. (b) now results in a (non-delayed) renewal process, since the memoryless property implies that \(Y_i \) is independent of \(X_i, i \in \mathbb{N} \). Hence, \(\{Z_i\}_{i \in \mathbb{N}} \) are i.i.d. copies.

3. On each bet a gambler, independently of the past, either wins or loses 1 unit with respective probability \(p \) and \(1 - p \). Suppose the gambler’s strategy is to quit playing the first time she wins \(k \) consecutive bets. At the moment she quits

(a) find her expected winnings.
(b) find the expected number of bets that she has won.

Hint: It may help you to look at Example 3.5(A) in Ross.

Solution: Let

\[
Y_n = \begin{cases}
1 & \text{if nth game is a win} \\
0 & \text{else}
\end{cases}
\]

and

\[
X_n = \begin{cases}
1 & \text{if nth game is a win} \\
-1 & \text{else}
\end{cases}
\]

and let \(N = \inf\{n \geq k : \sum_{m=n-k+1}^n X_m = k\} \) and \(W = \sum_{i=1}^N Y_i \), the first time \(k \) consecutive games are won. Let \(W = \sum_{i=1}^N X_i \), the gamblers total winnings. Also let \(N_W = \sum_{i=1}^N Y_i \), the number of games won.
From Ross, Example 3.5A, \(E[N] = \sum_{i=1}^{k} \frac{1}{p^i} \). Also \(N \) is a stopping time w.r.t \(X_i, i = 1, 2, \ldots \). By Wald’s equation, we have
\[
E[W] = E[N] E[X_1] = \left(\sum_{i=1}^{k} \frac{1}{p^i} \right) (2p - 1)
\]

(b) \(N \) is also a stopping time w.r.t. \(Y_i, i = 1, \ldots \), so Wald’s equation gives
\[
E[NW] = E[N] E[Y_1] = \left(\sum_{i=1}^{k} \frac{1}{p^i} \right) p = \sum_{i=0}^{k-1} \frac{1}{p^i}
\]

4. Prove Blackwell’s theorem for renewal reward processes. That is, assuming that the cycle distribution is not lattice, show that, as \(t \to \infty \),
\[
E[\text{reward in} \ (t, t+a)] \to a \frac{E[\text{reward incycle}]}{E[\text{time of cycle}]}.
\]
Assume that any relevant function is directly Riemann integrable.

Hint: You may adopt an informal approach by assuming that one can write
\[
E[\int_t^{t+a} dR(s)] = \int_t^{t+a} E[dR(s)],
\]
and then developing the identity
\[
E[dR(t)] = E[R_1|X_1 = t] dF(t) + \int_0^t \{E[R_1|X_1 = t - x] dF(t - x)\} dm(x).
\]
If you can find a more elegant or more rigorous solution, that would also be good!

Solution: Let \(R(t) \) be the reward accumulated by time \(t \). Then,
\[
E[\text{reward in} \ (t, t+a)] = E[R(t+a) - R(t)]
= E[\int_t^{t+a} dR(s)]
= \int_t^{t+a} E[dR(s)]
\]
assuming that the interchange is allowed, e.g. if \(R(t) \) is increasing. Now,
\[
E[dR(t)] = E[E[dR(t)|S_{N(t)}]]
= E[dR(t)|S_{N(t)} = 0] \mathbb{P}[S_{N(t)} = 0] + \int_0^\infty E[dR(t)|S_{N(t)} = y] dF_{S_{N(t)}}(y)
= E[dR(t)|S_{N(t)} = 0] \mathcal{F}(t) + \int_0^\infty E[dR(t)|S_{N(t)} = y] \mathcal{F}(t - y) dm(y).
\]
Now, since $R(t)$ only increases when an event occurs,

$$
\mathbb{E}[dR(t) | S_N(t) = y] = \mathbb{E}[R_{N(t)} + 1 | X_{N(t)} = t - y] dF(t_{N(t)} | S_N(t) = y) = \mathbb{E}[R_1 | X_1 = t - y] \frac{dF(t - y)}{F(t - y)}.
$$

This established the identity

$$
\mathbb{E}[dR(t)] = \mathbb{E} \left[R_1 | X_1 = t \right] dF(t) + \int_0^t \left(\mathbb{E}[R_1 | X_1 = t - y] dF(t - y) \right) dm(x).
$$

Now the key renewal theorem gives

$$
\lim_{t \to \infty} \mathbb{E}[dR(t)] = \int_0^t \mathbb{E}[R_1 | X_1 = t] dF(t) dt = \mathbb{E}[R_1] dt.
$$

Thus

$$
\lim_{t \to \infty} \int_t^{t+a} \mathbb{E}[dR(t)] = \int_t^{t+a} \mathbb{E}[R_1] ds = a \frac{\mathbb{E}[R_1]}{\mu}.
$$

Another approach: Note that

$$
\mathbb{E}[\text{reward in } (t, t+a)] = \mathbb{E} \left[\sum_{n=1}^{N(t+a)} R_n - \sum_{n=1}^{N(t)} R_n \right]
= \mathbb{E} \left[\sum_{n=1}^{N(t+a) + 1} R_n \right] - \mathbb{E} \left[\sum_{n=1}^{N(t) + 1} R_n \right] + \mathbb{E}[R_{N(t)+1}] - \mathbb{E}[R_{N(t)+a+1}]
$$

Now $N(t+a) + 1$ and $N(t) + 1$ are stopping times for the sequence $(X_i, R_i), i = 1, \cdots$. Thus from (generalized) Wald’s equation

$$
\mathbb{E} \left[\sum_{n=1}^{N(t)+1} R_n \right] = \mathbb{E}[N(t) + 1] \mathbb{E}[R]
$$

and

$$
\mathbb{E} \left[\sum_{n=1}^{N(t+a)+1} R_n \right] = \mathbb{E}[N(t+a) + 1] \mathbb{E}[R],
$$

where $\mathbb{E}[R]$ is the expected reward in a cycle. Thus

$$
\mathbb{E}[\text{reward in } (t, t+a)] = \mathbb{E}[N(t+a) + 1] \mathbb{E}[R] - \mathbb{E}[N(t) + 1] \mathbb{E}[R] + \mathbb{E}[R_{N(t)+1}] - \mathbb{E}[R_{N(t+a)+1}]
= (m(t+a) - m(t)) \mathbb{E}[R] + \mathbb{E}[R_{N(t)+1}] - \mathbb{E}[R_{N(t+a)+1}].
$$

Now

$$
\lim_{t \to \infty} (m(t+a) - m(t)) \mathbb{E}[R] = a \mathbb{E}[R] / \mathbb{E}[X].
$$
from Blackwell’s theorem. Now, it suffices to show that \(\lim_{t \to \infty} \mathbb{E}[R_{N(t)+1}] \) exists and is finite. Indeed,

\[
\mathbb{E}[R_{N(t)+1}] = \mathbb{E}[R_{N(t)+1}|S_{N(t)} = 0] \overline{F}(t) + \int_0^t \mathbb{E}[R_{N(t)+1}|S_{N(t)} = s] \overline{F}(t-s)dm(s)
\]

\[
= \mathbb{E}[R|X > t] \overline{F}(t) + \int_0^t \mathbb{E}[R|X > t-s] \overline{F}(t-s)dm(s)
\]

\[
= h(t) + \int_0^t h(t-s)dm(s),
\]

where \(h(t) = \mathbb{E}[R|X > t] \overline{F}(t) \). Then by the Key Renewal theorem, we have

\[
\lim_{t \to \infty} \mathbb{E}[R_{N(t)+1}] = \frac{1}{\mathbb{E}[X]} \int_0^\infty h(s)\,ds.
\]

Here we assumed that \(h(t) \) is directly Riemann integrable.

5. The life of a car is a random variable with distribution \(F \). An individual has a policy of trading in his car either when it fails or reaches the age of \(A \). Let \(R(A) \) denote the resale value of an \(A \)-year-old car. There is no resale value of a failed car. Let \(C_1 \) denote the cost of a new car and suppose that an additional cost \(C_2 \) is incurred whenever the car fails.

(a) Say that a cycle begins each time a new car is purchased. Compute the long-run average cost per unit time.

(b) Say that a cycle begins each time a car in use fails. Compute the long-run average cost per unit time.

Note: In both (a) and (b) you are expected to compute the ratio of the expected cost incurred in a cycle to the expected time of a cycle. The answer should, of course, be the same in both parts.

Solution: (a) Clearly,

\[
\mathbb{E}[\text{cost per cycle}] = C_1 - \overline{F}(A)R(A) + F(A)C_2
\]

and

\[
\mathbb{E}[\text{time of cycle}] = \int_0^A xdF(x) + A(1 - F(A)).
\]

So, treating the cost as the reward, the renewal reward theorem gives

\[
\lim_{t \to \infty} \frac{\mathbb{E}[\text{accumulated cost by } t]}{t} = \frac{\mathbb{E}[\text{cost per cycle}]}{\mathbb{E}[\text{time of cycle}]} = \frac{C_1 - \overline{F}(A)R(A) + F(A)C_2}{\int_0^A xdF(x) + A\overline{F}(A)}
\]

(b) The chance that a car fails is \(F(A) \), so the number, \(N \), of cars bought between failures has the geometric distribution with parameter \(p = F(A) \). We have,

\[
\mathbb{E}[\text{cost per cycle}] = \mathbb{E}[NC_1 - (N-1)R(A) + C_2] = C_1/F(A) + (1 - 1/F(A))R(A) + C_2
\]
and

$$E[\text{time of cycle}] = E[(N-1)A] + E[\text{car life}|\text{car life} < A] = \bar{F}(A)A/F(A) + \int_0^A x\,dF(x)/F(A).$$

Thus,

$$\lim_{t \to \infty} \frac{E[\text{accumulated cost by } t]}{t} = \frac{C_1/F(A) + (1 - 1/F(A))R(A) + C_2}{\bar{F}(A)A/F(A) + \int_0^A x\,dF(x)/F(A)}.$$

Multiplying numerator and denominator by $F(A)$ gives the same expression as in (a).

Recommended reading:
Sections 3.4 through 3.7, excluding subsections 3.4.3, 3.6.1, 3.7.1. We will not cover the material in Section 3.8, though you may like to look through it.

Supplementary exercises: 3.24, 3.27, 3.35.
These are optional, but recommended. Do not turn in solutions—they are in the back of the book.