The Central Limit Theorem (CLT) and the Law of Large Numbers (LLN)

The Law of Large Numbers

Let

\[X_1, X_2, \ldots \]

be an infinite sequence of iid observations with expected value \(\mu \) and variance \(\sigma^2 \). Let

\[A_k = (X_1 + \cdots + X_k)/k \]

be the \(k^{th} \) partial average. We know that

\[EA_k = \mu \]

and

\[\text{var}A_k = \sigma^2/k. \]

Thus when \(k \) gets large, \(A_k \) is a random variable with mean \(\mu \) and very small variance. It follows (with some additional definitions and mathematics) that the sequence of \(A_k \) values always converges to \(\mu \). This is the "law of large numbers."

A related fact is that if \(B_k = A_k - \mu \), then \(B_k \) always converges to zero.

The Central Limit Theorem

Since \(B_k = A_k - \mu \) converges to zero, we can multiply \(B_k \) term by term with a sequence going to infinity and try to get things to balance out (i.e. not converge to zero or infinity). We will construct a sequence

\[Z_k = C_k \cdot B_k \]

where the \(C_k \) are constants (not random). The goal is that the \(C_k \) are big enough to counteract the tendency of \(B_k \) to converge to zero, but not so big that the sequence blows up.
Since the variance of B_k is σ^2/k, and
\[
\text{var}(C_k B_k) = C_k^2 \text{var}(B_k),
\]
if we want the variance to stay bounded, then C_k should be \sqrt{k}:
\[
Z_k = \sqrt{k}(A_k - \mu).
\]
For every value of k, the expected value of Z_k is zero and the variance of Z_k is σ^2.

What can we say about the distribution of Z_k? For any particular value of k, the distribution of Z_k can be complex. But as k grows large, the distribution of Z_k becomes approximately normal with mean zero and variance σ^2. Surprisingly, this is true regardless of the distribution of A_k (as long as some technical conditions are satisfied – in particular, A_k must have a finite variance).

• Program 1

```r
## Generate a 20 x 10000 array of Bernoulli trials with success probability 0.2.
X <- array(runif(20*10000), c(20, 10000))
X <- (X < 0.2)
## Get the proportion of successes in each column.
Y <- colMeans(X)
## This should be approximately normal with expected value 0.
Z <- sqrt(20) * (Y - 0.2)
## Are the results of this command consistent with the CLT?
summary(Z)
## How can you explain where the result of this command comes from?
var(Z)
```
After running this program, type the commands `hist(Z)` and `qqnorm(Z)` to get a histogram and a normal quantile-quantile (“QQ”) plot. Are these consistent with the CLT?

Now modify the program to use different distributions for the raw data in \(X \), and different sample sizes (i.e. the number of rows of \(X \)). Evaluate your results in the context of the CLT.