Computation in Cluster Analysis

K-means

- **Cluster analysis:** Suppose we observe $X_1, X_2, \ldots, X_n \in \mathcal{R}^d$, and we wish to partition the X_i into k groups ("clusters") such that a pair of elements in the same cluster tends to be more similar than a pair of elements belonging to distinct clusters.

- **Similarity measures:** The first step is to define a similarity measure $d : \mathcal{R}^d \times \mathcal{R}^d \rightarrow \mathcal{R}$. We will consider squared L_2 distance $d(X, Y) = \sum_j (X_j - Y_j)^2$, and L_1 distance $d(X, Y) = \sum_j |X_j - Y_j|$.

- **Loss function:** Represent a clustering by a map
 \[\phi : \{1, \ldots, n\} \rightarrow \{1, \ldots, k\}. \]
 Let
 \[\mu_j(\phi) = \arg\min_{\mu \in \mathcal{R}^d} \sum_i d(X_i, \mu) \mathbb{1}(\phi(i) = j) \]
be the optimal representative of the objects assigned to class j by ϕ. If d is squared L_2 distance, $\mu_j(\phi)$ is the centroid of all objects assigned to class j by ϕ. If d is L_1 distance, $\mu_j(\phi)$ is the sample median.

The goal of K-means is to minimize the loss function
\[\mathcal{L}(\phi) = \sum_i d(X_i, \mu_{\phi(i)}(\phi)). \]

To be concrete, when d is squared L_2 distance, the loss function becomes
\[\mathcal{L}(\phi) = \sum_i \|X_i - \operatorname{Avg}\{X_\ell : \phi(X_\ell) = \phi(X_i)\}\|^2. \]

- **Optimization:** The global minimum of \mathcal{L} can be found by enumerating the k^n possible assignments of the X_i into the k clusters. In most applications this is not practical. An alternative is to use the following greedy algorithm:

1. Initialize ϕ in some way.
2. Set $\mu_j(\phi) = \operatorname{Avg}\{X_\ell : \phi(X_\ell) = j\}$.
3. For $i = 1, \ldots, n$, set $\phi^*(i) = \arg\min_{1 \leq \ell \leq k} \|X_i - \mu_{\phi(i)}(\phi)\|^2$. If $\phi^* \equiv \phi$ stop. Else set $\phi = \phi^*$ and return to 2.
Like all greedy algorithms, the K-means algorithm will reach a local, but not necessarily a global minimum. For this particular loss function, there are a very large number of local minima. Small changes in the initial assignment (step 1) can lead to very different solutions.

- **Implementation**: The following Octave code implements the greedy K-means algorithm using squared L_2 distance.

```octave
## Apply the greedy K-means algorithm to identify K clusters among
## the rows of X.
function [M,Q] = KM(X, K)

    ## Number of observation vectors.
    n = size(X,1);

    ## Number of variables.
    q = size(X,2);

    ## The initial map.
    Q = ceil(K*rand(n,1));

    for it=1:100

        ## Update the class centers.
        for k=1:K
            ii = find(Q == k);
            M(:,k) = mean(X(ii,:))';
        endfor

        ## Distance from each object to each class center.
        for k=1:K
            D(k,:) = sum((X' - M(:,k)*ones(1,n)).^2);
        endfor

        ## Reassign the objects to the closest class.
        [u,ix] = sort(D);  
        if (all(Q == ix(1,:)'))  
            break;
        endif
        Q = ix(1,:)';
    endfor

endfunction
```
• **Bottom-up clustering** Rather than attempting to directly cluster the data into \(K \) clusters, as in K-means, we can initially put the data into many small clusters, then sequentially merge clusters until we are left with only \(K \) of them.

• **Partitions:** The final result of a bottom-up clustering procedure is a sequence of partitions of the data, where a *partition* is a set of disjoint subsets \(S_1, \ldots, S_q \subset \{X_1, \ldots, X_n\} \) whose union is the set of all observed values. The \(S_i \) are the *components* of the partition.

• **Hierarchy of partitions:** A *hierarchy* of partitions is a sequence of partitions \(Q_1, \ldots, Q_m \) such that each component of \(Q_{i+1} \) is the union of components in \(Q_i \). Generally \(Q_1 \) places every object into its own component and \(Q_m \) places all objects into a single component.

For example:

\[
\begin{align*}
Q_5 &: 1 \quad 2 \quad 3 \quad 4 \quad 5 \\
Q_4 &: 1 \quad 2 \quad 3 \mid 4 \quad 5 \\
Q_3 &: 1 \mid 2 \quad 3 \mid 4 \quad 5 \\
Q_2 &: 1 \mid 2 \quad 3 \mid 4 \mid 5 \\
Q_1 &: 1 \mid 2 \mid 3 \mid 4 \mid 5
\end{align*}
\]

For any pair of objects there is a greatest index \(k \) such that the two objects are in different components of \(Q_k \). In the above example, the index for objects 1 and 3 is 3. For clustering, the sequence of partitions should have the property that a pair of similar objects should have a small value for this index.

• **Construction of the partition sequence:** The partitions \(Q_k \) are constructed in sequence starting with \(Q_1 \). To form \(Q_{k+1} \) from \(Q_k \) the two components that are most similar are merged.

We must also keep track of a similarity matrix defined on the set of components of the active partition. For \(Q_1 \) this is just the similarity matrix of the data (a \(n \times n \) symmetric matrix). Since \(Q_2 \) has only \(n-1 \) components, the similarity matrix must be reduced to an \(n-1 \times n-1 \) matrix. The size of the similarity reduces by 1 at each level. The final similarity matrix is just a scalar.

• **Updating the similarity matrix:** If neither \(\ell_1 \) nor \(\ell_2 \) are among the partitions to be joined, then the similarity between \(\ell_1 \) and \(\ell_2 \) is unchanged.

If \(\ell_1 \) and \(\ell_2 \) are the two components being joined, and \(r \) is some third component, then we have three ways to define the similarity between \(r \) and the new component:

- **Single linkage:** \(\min\{D(\ell_1, r), D(\ell_2, r)\} \).
- **Complete linkage:** \(\max\{D(\ell_1, r), D(\ell_2, r)\} \).
- **Average linkage:** \((V_{\ell_1}D(\ell_1, r) + V_{\ell_2}D(\ell_2, r))/(V_{\ell_1} + V_{\ell_2}) \), where \(V_{\ell} \) is the number of objects in component \(\ell \).
• **Example (single linkage):** Suppose we are clustering vectors in \mathbb{R}^2, and Q_1 is:

$$\{(5, 9)\} \quad \{(6, 4)\} \quad \{(9, 4)\} \quad \{(1, 6)\}$$

If the similarity is L^1 distance, we have the following similarity matrix:

$$
\begin{pmatrix}
0 & 6 & 9 & 7 \\
0 & 3 & 7 \\
0 & 10 \\
0 \\
\end{pmatrix}
$$

The second partition is

$$\{(5, 9)\} \quad \{(6, 4), (9, 4)\} \quad \{(1, 6)\}$$

and the new similarity matrix under single linkage is

$$
\begin{pmatrix}
0 & \min\{6, 9\} & 7 \\
0 & \min\{7, 10\} \\
0 \\
0 \\
\end{pmatrix}
=
\begin{pmatrix}
0 & 6 & 7 \\
0 & 7 \\
0 \\
0 \\
\end{pmatrix}.
$$

The third partition is

$$\{(5, 9), (6, 4), (9, 4)\} \quad \{(1, 6)\}$$

with similarity matrix

$$
\begin{pmatrix}
0 & \min\{7, 7\} \\
0 \\
\end{pmatrix}
=
\begin{pmatrix}
0 & 7 \\
0 \\
\end{pmatrix}.
$$

The fourth partition is

$$\{(5, 9), (6, 4), (9, 4), (1, 6)\}.$$

• **Example (complete linkage):** Using the same data and similarity as the previous example, the second partition is

$$\{(5, 9)\} \quad \{(6, 4), (9, 4)\} \quad \{(1, 6)\}$$

and the new similarity matrix under single linkage is

$$
\begin{pmatrix}
0 & \max\{6, 9\} & 7 \\
0 & \max\{7, 10\} \\
0 \\
0 \\
\end{pmatrix}
=
\begin{pmatrix}
0 & 9 & 7 \\
0 & 10 \\
0 \\
0 \\
\end{pmatrix}.
$$
The third partition is

\{ (5, 9), (1, 6) \} \{ (6, 4), (9, 4) \}

with similarity matrix

\[
\begin{pmatrix}
0 & \max\{9, 10\} \\
0 & 0 \\
\end{pmatrix} = \begin{pmatrix}
0 & 10 \\
0 & 0 \\
\end{pmatrix}.
\]

The fourth partition is

\{ (5, 9), (6, 4), (9, 4), (1, 6) \}.

Implementation: Here is Octave code for the three hierarchical clustering methods:

```octave
## Hierarchical clustering using: single linkage (M=1), complete linkage
## (M=2), or average linkage (M=3). The matrix D contains dissimilarities.
## The rows of 'cluster' are the partitions.
function cluster = hclust(D, M)

[R, C] = size(D);

for i=1:size(D,1)
    D(i,i) = inf;
endfor

## Put every point is in its own cluster.
cluster(1,:) = [1:R];

for i=2:size(D,1)
    cluster(i,:) = cluster(i-1,:);

    ## Find closest clusters
    [MR, ID] = min(D);
    [T, J] = min(MR);
    I = ID(J);

    ## Swap so that I <= J.
    U = sort([I, J]);
    I = U(1);
    J = U(2);

    ## Merge cluster j with cluster i, then delete cluster j.
```

5
ii = find(cluster(i,:)==J);
cluster(i,ii) = I;
ii = find(cluster(i,:)>J);
cluster(i,ii) = cluster(i,ii) - 1;

Calculate new distance matrix
if (M == 1)
 D(:,I) = min(D(:,I), D(:,J));
 D(I,:) = min(D(I,:), D(J,:));
elseif (M == 2)
 D(:,I) = max(D(:,I), D(:,J));
 D(I,:) = max(D(I,:), D(J,:));
elseif (M == 3)
 D(:,I) = (D(:,I) + D(:,J)) / 2;
 D(I,:) = (D(I,:) + D(J,:)) / 2;
endif

ii = complement(J, [1:size(D,2)]);
D(I,I) = Inf;
D = D(ii,ii);

endfor
endfunction