Announcement: For purposes of the homework, you can cite any results in the handouts or the text-book or any others proved in class, without proof. The homework carries a total of 50 points, but contributes 5 points towards your total grade.

- 1. Prove that for three not necessarily disjoint events A, B and C,

\[P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C) - P(A \cap C) + P(A \cap B \cap C). \]

Hint: You can write $A \cup B \cup C$ as $(A \cup B) \cup C$ and use the formula for the union of two events (on page 2 of the first handout) and proceed from there. (5 points)

- 3. (a) Show that if events A_1, A_2, \ldots, A_n are mutually independent, then so are $A_1, A_2, \ldots, A_{n-1}, A_n^c$. (Hint: Use the definition of mutual independence)

(b) Use this result repeatedly to show that if $B_1, B_2, \ldots B_n$ are independent events then so are C_1, C_2, \ldots, C_n where each C_i is either B_i or B_i^c. (Hint: Observe that it suffices to prove that if $B_1, B_2, \ldots B_n$ are independent, then so are $B_1, B_2, \ldots, B_m, B_m^c, B_m^c, \ldots, B_n^c$. (Why ?)) (3 + 2 = 5 points)

- 4. We call X a geometric random variable if X takes values \{1, 2, 3, \ldots\} and

\[P(X = m) = pq^{m-1}, \text{ where } 0 < p, q < 1 \text{ and also } p + q = 1. \]

Refer to the handout for a random experiment that produces a geometric random variable.

(a) Prove that for any two positive integers m, n, it is the case that,

\[P(X > m + n \mid X > m) = P(X > n). \]

This is the **memoryless property** which is discussed a bit in the Probability Refresher notes. To show this, first prove that the memoryless property is equivalent to the assertion that

\[P(X > m + n) = P(X > m) P(X > n). \]
Next, show that for the geometric distribution, for any positive integer \(l \),

\[P(X > l) = q^l, \]

and proceed.

(b) We will prove the converse of (a). We will show that if \(X \) is a discrete random variable taking values \(\{1, 2, 3, \ldots\} \) with probabilities \(\{p_1, p_2, p_3, \ldots\} \) and satisfies the memoryless property, then \(X \) must follow a geometric distribution.

Follow these steps to establish the fact that \(X \) is geometric. Using the fact that \(X \) has the memoryless property, show that

\[P(X > m) = (P(X > 1))^m, \]

for any \(m \geq 2 \). As a first step towards proving this show that

\[P(X > 2) = (P(X > 1))^2. \]

Define \(p = P(X = 1) \) and \(q = P(X > 1) \). You now have,

\[P(X > m) = q^m, \]

for any \(m \geq 2 \). Use this to show that for any \(m \geq 2 \),

\[P(X = m) = pq^{m-1}. \]

Hint: Note that the event \(\{X > m - 1\} \) is the disjoint union of the events \(\{X > m\} \) and \(\{X = m\} \).

But for \(m = 1 \),

\[P(X = m) = P(X = 1) = p = pq^{m-1}, \]

trivially and the proof is complete. (5 + 5 = 10 points)

• 5. If \(X \) is random variable with distribution function \(F \), with continuous non-vanishing density \(f \), obtain the density function of the random variable \(Y = X^2 \), from first principles; i.e. **without** using the extended change of variable theorem on Page 14 of the first handout.

Hint: Express the probability of the event \((X^2 \leq y) \) in terms of the distribution function \(F \) of \(X \) and proceed from there. (5 points)
6. (i) Let X be a continuous random variable with distribution function F. Let $f(x) = F'(x)$ denote the density function of X. Assume that this is continuous and never vanishes. Use the change of variable theorem to show that $Y = F(X)$ has the uniform distribution on $(0, 1)$.

(ii) Let T be an exponential random variable with parameter λ and let W be a random variable independent of T which assumes the value 1 with probability $1/2$ and the value -1 with probability $1/2$. Show that the density of $X = WT$ is,

$$f_X(x) = \frac{\lambda}{2} e^{-\lambda|x|},$$

using first principles. This distribution is called the double exponential distribution.

Hint: It would help to split up the event \{\(X \leq x\)\} as the union of \{\(X \leq x, W = 1\)\} and \{\(X \leq x, W = -1\)\}. (5 + 5 = 10 points)

7. Consider a population of N voters who will either vote for Democrats or Republicans (i.e. no one abstains from voting, or cancels their vote). The goal is to estimate the proportion p of Democrats in the population.

Sampling without replacement: A sample of size n is collected at random without replacement from this population. Let X_i denote the affiliation (1 if Democrat, 0 if Republican) of the i'th individual in the sample.

(i) Write down the p.m.f of X_1 and the joint p.m.f. of (X_1, X_2). Compute the p.m.f. of X_2 and show that it is identical to the p.m.f. of X_1. Also show that X_1 and X_2 are not independent.

In general, X_1, X_2, \ldots, X_n all have identical marginal distributions but are dependent. Also, the joint p.m.f. of (X_i, X_j) is the same for all pairs (i, j).

(ii) Consider the special case when the sample size n is equal to the population size N, so that your random sample is (X_1, X_2, \ldots, X_N). Compute $E(S)$ and $\text{Var}(S)$.

(iii) Let $\hat{p} = n^{-1}(X_1 + X_2 + \ldots + X_n)$ be the natural estimate of p. Compute $E(\hat{p})$ and $\text{Var}(\hat{p})$. (10 points)