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Summary:

Analyzing the national transplant database, which contains about 300,000 kidney transplant 

patients treated in over 290 transplant centers, may guide the disease management, and inform 

the policy of kidney transplantation. Cox models stratified by centers provide a convenient means 

to account for the clustered data structure, while studying more than 160 predictors with effects 

that may vary over time. As fitting a time-varying effect model with such a large sample size may 

defy any existing software, we propose a block-wise steepest ascent procedure by leveraging the 

block structure of parameters inherent from the basis expansions for each coefficient function. 

The algorithm iteratively updates the optimal block-wise search direction, along which the 

increment of the partial likelihood is maximized. The proposed method can be interpreted from 

the perspective of the Minorization-Maximization algorithm and increases the partial likelihood 

until convergence. We further propose a Wald statistic to test whether the effects are indeed time 

varying. We evaluate the utility of the proposed method via simulations. Finally, we apply the 

method to analyze the national kidney transplant data and detect the time-varying nature of the 

effects of various risk factors.
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1. Introduction

End-stage renal disease (ESRD) is one of the most deadly and costly diseases in the 

United States (Saran et al., 2018), and kidney transplantation is the most preferred treatment 

(Wolfe et al., 1999). Despite much effort to improve survival, the mortality of kidney 

transplant recipients is still thrice higher than that of the general population. Identifying 

risk factors associated with post-transplant mortality is pivotal in prolonging the survival of 
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transplant patients and optimizing organ allocations (Snyder et al., 2016). The widely used 

proportional hazards model (Cox, 1972) assumes that the effects of covariates are constant 

over time, which is often violated. For example, contrary to the common belief that obesity 

is a risk factor for mortality, Kalantar (2005) and Dekker et al. (2008) showed obesity 

has a short-term protective effect, but is a risk factor in the long run. Models that feature 

time-varying effects provide valuable clinical information. The national kidney transplant 

data, obtained from the U.S. Organ Procurement and Transplantation Network (OPTN), 

contains more than 160 predictors for over 300,000 patients who underwent transplantation 

between 1988 and 2012. Analyzing this dataset may guide the disease management and 

inform the transplantation policy. Existing statistical methods (Hastie and Tibshirani, 1993) 

that perform well for moderate sample sizes and small-dimensional data do not scale to 

this data because of the large size of the involved at-risk sets (He et al., 2017a). Of special 

interest is how time-varying effect models can be extended to accommodate large-scale 

time-to-event data.

Another important aspect of our motivating example is that patients came from multiple 

transplant centers. In the absence of adjustment for center effects, the estimation of covariate 

effects may be biased due to uncontrolled confounding by centers (Pan, 2002; Kalbfleisch 

and Wolfe, 2013; He and Schaubel, 2015). One could estimate the center effects through 

frailty models (He et al., 2017b). However, the commonly frailty approach assumes that the 

center effects are constant over time, which is often violated (He and Schaubel, 2014, 2015) 

and much work is needed to implement time-varying frailty models that can be applicable 

to the national kidney transplant database. We propose to adopt a stratified model with 

stratum-specific baseline hazards, which avoids modeling the center effects explicitly and 

simplifies the computation of the partial likelihood by downsizing the at-risk sets.

Methods have been proposed for relative risk models with time-varying effects: Zucker and 

Karr (1990) conducted a nonparametric estimation of the time-varying effects; a specialized 

algorithm for this problem was provided by Hastie and Tibshirani (1993); Gray (1992, 1994) 

proposed using fixed knots spline functions. He et al. (2017a) implemented a quasi-Newton 

algorithm; He et al. (2017b) further considered a frailty model with time-varying effects. 

Kernel-based partial likelihood approaches have also been developed (Tian et al., 2005). 

Some recent studies (Honda and Härdle, 2014; Yan and Huang, 2012) have proposed 

variable selection of time-varying effects using penalized methods such as adaptive lasso 

(Zou, 2006; Zhang and Lu, 2006). Xiao et al. (2016) combined the ideas of local polynomial 

smoothing and group non-negative garrote to achieve these goals. Alternatively, Hofner et 

al. (2013) proposed a component-wise likelihood boosting algorithm for survival data that 

permits the inclusion of both parametric and nonparametric time-varying effects.

These methods may not be applicable to studies with large sample sizes or many covariates. 

When implementing them, datasets are usually expanded in a repeated measurement format, 

where the time is divided into small intervals which contain a distinctive event. The 

covariate values and outcomes for all at-risk subjects at each interval are stacked to form a 

working dataset, which becomes infeasible for a large sample size. As a remedy, a routine 

based on the Kronecker product has been suggested (Perperoglou et al., 2006). Even with 
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this tool, for large-scale kidney transplant data, existing methods easily overwhelm powerful 

computers.

Moreover, time-varying effects are often represented by basis expansions using B-splines. 

The parameter vector, consisting of coefficients of the bases, possesses a block structure, 

of which the dimension increases quickly as the number of predictors grows. This leads 

to unstable estimates for the commonly used Newton (Perperoglou et al., 2006) and quasi-

Newton (He et al., 2017a) methods. To see this, we conducted a simulation (Setting B of 

Section 4) to assess the biases of the Newton approach, gradient ascent, and stochastic 

gradient ascent implemented by adaptive moment estimation (ADAM) (Diederik et al., 

2015); see Figure 1. Alternative stochastic gradient approaches such as Annealing (Robbins 

and Monro, 1951), Momentum (Qian, 1999), Adagrad (Duchi et al., 2011) and Adadelta 

(Zeiler, 2012) were also conducted; their performances were worse than ADAM and not 

shown. The Newton approach introduces large biases, and Gradient-based methods are 

less efficient by overlooking Hessian matrices. The issue becomes more exacerbated for 

the analysis of the kidney transplant database, wherein many comorbidities have rare 

frequencies.

We propose a block-wise steepest ascent (BSA) procedure for stratified time-varying 

effect models, which makes the following contributions. First, BSA iteratively updates 

the optimal block-wise search direction, avoids complicated computation of inverting 

the observed information matrix and, hence, is computationally efficient for large-scale 

problems. Second, BSA converts a high-dimensional optimization problem into a sequence 

of low-dimensional ones. Simplicity is achieved by substituting a surrogate function that 

is separable for different blocks of parameters. Third, BSA can be interpreted from the 

perspective of the Minorization-Maximization (MM) algorithm (Lange, 2012). The updated 

estimates ensure the increment of likelihood. Fourth, unlike the classical gradient-based 

procedures, which typically rely on a first order approximation and a large number of 

iterations, the proposed BSA utilizes a block-wise second order approximation and achieves 

faster convergence; see Figure 1. Finally, choosing a proper learning rate for classical 

gradient-based methods can be cumbersome, whereas BSA is less sensitive to the choice of 

learning rates and our numerical properties help clarify the required learning rates and their 

roles in various methods.

The remainder of this article is organized as follows. We describe the proposed BSA 

procedure and testing algorithm for time-varying effects in Section 2. Convergence 

properties are considered in Section 3. Numerical properties are examined in Section 4 

through simulations. We apply BSA to analyze the national kidney transplant data in Section 

5. The article concludes with a discussion in Section 6.

2. Method

2.1 Stratified Time-Varying Effect Model

Let Dij denote the time lag from transplantation to death and Cij be the censoring time for 

patient i in center j, i = 1, …, nj, and j = 1, …, J. Here nj is the sample size in center j, and J 

is the number of centers. The total number of patients is N = ∑j = 1
J nj, the observed time is 
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Tij = min{Dij, Cij}, and the death indicator is given by δij = I(Dij ⩽ Cij). Let Xij = (Xij1, …, 
XijP)T be a P-dimensional covariate vector. We assume that Dij is independent from Cij given 

Xij. Consider a stratum-specific hazard function

λ t ∣ Xij = λ0j(t)exp XijT β(t) ,

where λ0j(t) is the baseline hazard for stratum j. To estimate the time-varying coefficients 

β(t) = {β1(t), …, βP(t)}, we span β(·) by a set of cubic B-splines defined on a given number 

of knots:

βp(t) = θpTB(t) = ∑
k = 1

K
θpkBk(t), p = 1, …, P,

where B(t) = {B1(t), …, BK(t)}T forms a basis, K is the number of basis functions, and θp 

= (θp1, …, θpK)T is a vector of coefficients with θpk being the coefficient for the k-th basis 

of the p-th covariate. With a length-PK parameter vector θ = vec(Θ), the vectorization of the 

coefficient matrix Θ = (θ1, …, θP)T by row, the log-partial likelihood function is

l(θ) = ∑
j = 1

J
∑
i = 1

nj
δij Xij

TΘB T ij − log ∑
i′ ∈ Rij

exp Xi′j
T ΘB T ij , (1)

where Rij = i′:1 ⩽ i′ ⩽ nj, Ti′j ⩾ Tij  is the at-risk set for stratum j. That θ has P “blocks” 

of subvectors, i.e. θp, p = 1, …, P, each corresponding to a covariate, will inform the 

development of our proposed block-wise steepest ascent algorithm.

2.2 Review of Newton Approach

When both N and P are moderate, maximization of (1) can be achieved by a Newton 

approach, which requires computation of the gradient and Hessian matrix, given by 

∇l(θ) = ∑j ∑iΨij(θ) and

∇2l(θ) = − ∑
j = 1

J
∑
i = 1

nj
δij V ij Θ, T ij ⊗ B T ij BT T ij , (2)

respectively. Here ⊗ is the Kronecker product, and

Ψij(θ) = δij Xij −
Sij

(1) Θ, T ij
Sij

(0) Θ, T ij
⊗ B T ij , (3)

where

Vij Θ, Tij =
Sij

(2) Θ, Tij Sij
(0) Θ, Tij − Sij

(1) Θ, Tij
⊗ 2

Sij
(0) Θ, Tij

2 ,
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Sij
(r) Θ, Tij = ∑

i′ ∈ Rij
exp Xi′j

T ΘB Tij Xi′j
⊗ r,

for r = 0, 1, 2. For a column vector v, v⊗0 = 1, v⊗1 = v and v⊗2 = vvT.

Computational burden mainly comes from two sources. First, summations across all the 

risk sets are cumbersome, especially when N is large. Second, with a large P, inversions 

of Hessian matrices are costly. In summary, the computation complexities of the Newton 

method for the un-stratified time-varying effect model and the stratified time-varying effect 

model are at the order of O(N2P2K2 + P3K3) and O(N2P2K2/J + P3K3), respectively. 

Though stratified models reduce the first term by a factor of J, the Newton approach is 

still numerically challenging or even impractical for large sample and high-dimensional 

problems. This motivates us to propose a feasible approach that reduces the computation 

complexity to an order of O(N2PK2/J + PK3); see the next section.

2.3 Proposed Block-Wise Steepest Ascent

Given a current estimate θ , we consider a first-order Taylor’s expansion:

l(θ + αμ) = l(θ) + α∇l(θ)Tμ + 1
2α2μT ∇2l(θ + wμ)μ,

where μ is the update direction of θ, α is a small positive value, w ∈ [0, α], and the term 

∇l(θ)Tμ is the directional derivative along μ. If ∇l(θ)Tμ > 0, the direction μ is an ascent 

direction of θ to increase ℓ(θ). We identify an update direction (with a unit norm), along 

which ℓ(θ) ascends most rapidly. This motivates us to find a steepest ascent direction,

μ⋆ = argmax
μ

{∇l(θ)Tμ ∣ ‖μ‖† = 1}, (4)

where || · ||† is a vector norm on ℝPK. As the choice of norm ||μ||† plays a crucial role in 

computational efficiency and numerical stability, we propose to use a block-quadratic norm 

by leveraging the block structure of the parameter vector θ,

‖μ‖† = ∑
p = 1

P
‖μp‖Hp(θ), (5)

where μp Hp(θ) is a quadratic norm, defined as μp A = μpT Aμp
1/2 for a positive semi-

definite matrix A. Here μp is a K-dimensional vector corresponding to the p-th block of μ, 

and Hp(θ) is a K × K-dimensional matrix.

A simple choice is to set Hp(θ) as an identity matrix, leading to a block-wise gradient ascent 

method with low computation cost at each iteration; however, its convergence can be slow, 

especially when the condition numbers of the observed information matrix are large; see 

Section 3. To address this problem, for p = 1, …, P, we choose
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Hp(θ) = − ∇l(θ)p
T{− ∇2l(θ)p}−1∇l(θ)p ∇2l(θ)p, (6)

where ∇l(θ)p is the p-th block of the gradient vector and ∇2l(θ)p is the block diagonal 

of the Hessian matrix defined in (2), corresponding to the p-th variable. Here the scalar 

∇l(θ)p
T{− ∇2l(θ)p}−1∇l(θ)p is a normalization factor.

With the Cauchy-Schwarz inequality,

∇l(θ)Tμ ⩽ ∑
p = 1

P
∇l(θ)p Hp−1(θ) μp Hp(θ) ⩽ maxp ∇l(θ)p Hp−1(θ) ∑

p = 1

P
μp Hp(θ) .

With μ satisfying ∑p μp Hp(θ) = 1, we have

∇l(θ)Tμ ⩽ max
p

∇l(θ)p Hp−1(θ) .

The resulting block-wise steepest ascent direction

μ⋆ = argmax
μ

{∇l(θ)Tμ ∣ μ † = 1} = 0, …, 0, μp⋆T , 0, …, 0
T

, (7)

maximizes the directional derivative, i.e.

∇l(θ)Tμ⋆ = max
p

∇l(θ)p Hp−1(θ) ,

and let

p⋆ = argmax
p

∇l(θ)p Hp−1(θ) , (8)

with μp⋆ given by

μp⋆ = Hp⋆(θ) −1∇l(θ)p⋆ . (9)

We summarize the proposed algorithm as follows:

BSA Algorithm

a. Initialize θ (0) = 0. For m = 1,2,3, …, identify p⋆ as in (8).

b. Update the estimate by θ p⋆
(m) = θ p⋆

(m − 1) + νμp⋆.
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c. The iteration continues until the directional derivative ∇l θ (m) T
μ⋆ or the relative 

change in the log-partial likelihood is less than a convergence threshold (e.g. 

10−6).

We comment that the block-wise algorithm ranks the importance of each predictor and 

measures how fast the log-partial likelihood would increase by including each predictor; 

the proposed algorithm converts a difficult optimization problem into a simpler surrogate 

function that is separable across blocks of the parameter vector and avoids iterative 

inversions of high dimensional Hessian matrices; the learning rate, ν, can be chosen to 

be a small positive value, e.g. 0.05. Further clarification for the choice of ν is provided in 

Section 3.

2.4 Minorization-Maximization-Based Interpretation

The proposed method can be interpreted from the perspective of the MM algorithm, which 

reaffirms the ascent property and helps clarify the numerical advantage of the proposed 

procedure. To see this, we note the block-quadratic norm considered in (5) leads to a 

minority surrogate function

g(θ ∣ θ) = l(θ) + ∇l(θ)T(θ − θ) − 1
2ν(θ − θ)TH(θ)(θ − θ),

where ν is a small positive value to be specified and H(θ) = diag H1(θ), H2(θ), ⋯, Hp(θ)

is a block-diagonal matrix, and Hp(θ) is defined in (6). Here, the blocks correspond to the 

basis expansions for each variable. With g(θ ∣ θ) = l(θ), Proposition 1 in Section 3 shows 

that, given a suitable g(θ ∣ θ) ⩽ l(θ) for all θ. Thus, g(θ ∣ θ) serves as a minority surrogate 

function of ℓ(θ). Leveraging the block-diagonal structure of H(θ), the minority surrogate 

function g(θ ∣ θ) is separable across the blocks of parameters. Therefore, this “minorization” 

step reduces a high-dimensional optimization problem to simpler ones.

The block-wise update [as in (8) and (9)] maximizes g(θ ∣ θ) subject to the constraint that 

only one variable is updated at each iteration. This “Maximization” step, coupled with 

the previous “minorization” step, is essentially a Minorization-Maximization-based steepest 

ascent procedure, which iteratively pursues the optimal block-wise update direction.

2.5 Connection with Existing Optimization Approaches

It is instructive to assess several commonly used norms for (4) and tie them to the existing 

steepest ascent approaches. For example, an ℓ2 norm corresponds to the gradient ascent 

method:

μ⋆ = argmax
μ

∇l(θ)Tμ ∣ ‖μ‖2 = 1 = ∇l(θ)/‖∇l(θ)‖2 .

As illustrated in Figure 1 and Web Figures S1 and S2 in the Supplementary Material, 

the convergence of gradient-based methods is slow, especially when the observed 
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information matrix is ill-conditioned (i.e. near singular). One may consider a quadratic 

norm μ A = μTAμ 1/2 with A = − ∇2l(θ), with the update direction coinciding with the 

Newton update, which becomes numerically unstable or even impractical for large-scale 

data. Also, an ℓ1 norm leads to the coordinate-wise gradient boosting procedure (Bühlmann 

and Yu, 2003, 2006; He et al., 2016). However, this procedure does not take into account the 

group structure and will lead to sparse basis presentations, and is not suitable for estimating 

time-varying effects.

2.6 Testing for Time-Varying Effects

To test whether the effects are time-varying, we use the constant property of B-splines, 

that is, if θp1 = ⋯ = θpK, the corresponding covariate effect is time-independent. Specify a 

matrix Cp such that Cpθ = 0 corresponds to the contrast that θp1 = ⋯ = θpK. Following He et 

al. (2017a), a Wald statistic can be constructed by

Cpθ T Cp − ∇2l(θ) −1CpT
−1

Cpθ ,

where θ  is obtained through the proposed BSA.

In the kidney transplant database with large N and P, computation of the observed 

information matrix is infeasible as discussed in Section 2.2, though gradients are easier 

to compute. We consider a modified statistic

Sp = Cpθ T CpV−1(θ)Cp
T −1 Cpθ , (10)

where V(θ) = ∑j = 1
J ∑i = 1

nj Ψij(θ)Ψij(θ)T  is an approximation of the empirical information 

matrix (McLachlan and Krishnan, 2007), with Ψij defined in (3). Under the null hypothesis 

that the effect is time-independent, Sp is asymptotically chi-square distributed with K − 1 

degrees of freedom. To incorporate potential correlations among patients within strata, a 

robust inference procedure (Lin and Wei, 1989; Schaubel and Cai, 2005) can be adopted.

2.7 Variable Selection with High-Dimensional Covariates

Our proposed BSA algorithm can also be extended to accommodate a large P small N 
problem. Specifically, BSA is a group-wise procedure. With only one variable updated 

at each iteration, variable selection can be achieved if the procedure is set to stop at a 

finite number of steps. Effectively, the step number is a tuning parameter and can be 

determined by cross-validation. Compared with the penalized methods, BSA is flexible and 

easily implemented without the need to apply constrained optimizations, and the parallel 

computing algorithms can be integrated with separable minority surrogate functions. Further 

discussion and empirical results are provided in the Web Supplementary Material.
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3. Convergence Properties

We impose the following conditions: (A) For any initial value θ(0), the matrices, Hp(θ), p 
= 1, …, P, are positive definite in the super-level set {θ : ℓ(θ) ⩾ ℓ(θ(0))}; (B) The negative 

log-partial likelihood function satisfies lim θ 2 ∞ − l(θ) = ∞ . Condition (A) guarantees 

the existence of the BSA update; Condition (B) ensures that the super-level set is compact 

and the maximum value of ℓ(θ) is attained, and a cluster point of BSA exists. We show that 

there exists a learning rate ν such that the proposed algorithm satisfies the ascent property.

Proposition 1 (Ascent Property)

Suppose Conditions (A) and (B) hold. For ν > 0 satisfying

sup
θ:l(θ) ⩾ l(θ(0))

λmax {H θ (m − 1) }
−1/2

{− ∇2l(θ)}{H θ (m − 1) }
−1/2

< 1/ν, (11)

then g(θ ∣ θ (m − 1)) ⩽ l(θ) for all θ, where λmax(·) represent the largest eigenvalues.

Proposition 1 shows that g(θ ∣ θ (m − 1)) serves as a minority surrogate function of ℓ(θ). Thus, 

the resulting estimates θ (m) from the BSA ensure the ascent property,

l(θ(m)) ⩾ g(θ(m) ∣ θ(m − 1)) ⩾ g(θ(m − 1) ∣ θ(m − 1)) = l(θ(m − 1)) .

Proposition 1 also informs the choice of the learning rate ν and gives an upper bound of ν 
(which is small) to ensure the ascent property. For example, in classical gradient-based 

procedures, H(θ (m − 1)) equals an identity matrix and the updates at each iteration are 

computed based on gradient information only. When the conditional number of the observed 

information matrix is large, a sufficiently small learning rate is needed in Proposition 

1 to ensure that the estimates in each iteration of the gradient-based procedure serve 

as refinements of the previous step, which requires a large number of iterations and 

more computation time. Thus, empirically we find that the performance of gradient-based 

methods is more sensitive to the choice of the learning rate. In contrast, the proposed 

BSA is based on the block diagonal of the observed information matrix, which is an 

improved approximation compared to the identity matrix used in the gradient methods. 

Thus, a learning rate of 0.05 typically ensures the inequality in Proposition 1. Our numerical 

experience also indicates that BSA is less sensitive to the choice of the learning rate.

Proposition 2 (Numerical Convergence)

Suppose Conditions (A) and (B) hold. Then every cluster point of the iterates 

θ (m) = M(θ (m − 1)) generated by the iteration map M(θ) of the BSA algorithm is a stationary 

point of ℓ(θ). Furthermore, the set of stationary points ℱ is closed, and the limit of the 
distance function is zero:
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lim
m ∞

inf
θ ∈ ℱ

‖θ(m) − θ‖2 = 0.

Moreover, if the observed information matrix −∇2ℓ(θ) is positive definite in the super-level 

set defined in Condition (A), any sequence of θ (m) possesses a limit, θ , and this limit is a 
stationary point and hence maximizes the log-partial likelihood in (1).

The convergence mode involved in this proposition is with respect to a sequence of real 

vectors, and not embedded in a probability space. All technical proofs have been deferred to 

the Web Supplementary Material.

4. Simulations

We compare the computational speed and parameter estimation of the proposed BSA with 

various methods, and then assess the performance of the proposed testing procedure for 

time-varying effects. Ten knots are used in all settings in Sections 4.1 and 4.3. In section 

4.2, we vary the numbers of knots to assess its influence on the performance. Following the 

suggestion by Gray (1992), the locations of knots in further analyses are chosen to include 

an equal number of events within each time interval.

4.1 Evaluation of Computational Speed

We first consider the following simulation setting (termed Setting A). Death times are 

generated from an exponential model with a baseline hazard 0.5. Censoring times are 

generated from the Uniform distribution over (0,3), with a censoring proportion of 

approximately 20−30%. Continuous predictors are generated from a multivariate normal 

distribution, with mean zero and an AR1 covariance matrix with an auto-correlation 

parameter of 0.6. We vary the sample size between N = 10,000 (from 10 center) and N 
= 351,719 (from 290 centers). The number of covariates varies from P = 10 to P = 164. We 

choose β2(t) = sin{3(πt/4)} and β4(t) = −(t/3)2 exp(t/2) to represent time-varying effects. 

The remaining covariate coefficients are set to be 1. For each data configuration, 100 data 

are generated.

With N = 10,000 and P = 10, the computation time for the Newton method (implemented 

by R Survival package), the quasi-Newton method (implemented in Rcpp through R package 

RcppArmadillo in combination with the R function optim), the likelihood-based boosting 

(implemented by R package COXflexBoost) and the proposed BSA is 0.17 minutes, 15.43 

minutes, 10.36 hours and 0.12 minutes, respectively. The original quasi-Newton work of He 

et al. (2017a) was implemented in R, but we re-implement it in Rcpp for improved speed. 

With N = 351,719 and P = 164 as in the motivating example, all of the aforementioned 

competing methods fail due to their intensive computation, and the proposed method takes 

11.64 hours. The experiments are conducted on a HP workstation with 4-core 3.50-GHz 

Intel Core E5–1620v3 processor and 32GB RAM.
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4.2 Estimation of Time-Varying Effects

To mimic the motivating real data, we consider a simulation setting (termed Setting B) 

and generate binary covariates (0 or 1) with means between 0.05 and 0.2. The number of 

covariates varies from 5, 10, 20 to 50, and the sample size is chosen to be N = 10,000 from 

10 center. The remaining set-ups are the same as Setting A.

Table 1 compares the average computing time, the average biases and the average integrated 

mean square error (IMSE) over the simulated time points for the Newton approach, 

the gradient ascent, the stochastic gradient ascent with step size determined by ADAM 

algorithm (Diederik et al., 2015), and the proposed BSA, under simulation Setting B with N 
= 10,000 and various numbers of covariates.

Table 1 shows that the Newton approach incurs large biases and IMSE; the gradient 

ascent and the stochastic gradient ascent improve upon the biases, but converge slowly; the 

proposed BSA is computationally efficient and achieves the smallest biases in all scenarios. 

Web Figure S2 further compares the average estimated coefficients across various iterations 

of the proposed method and the gradient ascent, using simulation setting B. Compared 

with gradient-based procedure, the proposed BSA is less sensitive to the choice of learning 

rate, which confirms the numerical properties provided in Section 3. Figure 2 compares the 

average estimates and the 95% empirical percentiles over 100 simulation replications for 

the conventional Newton approach and the BSA algorithm. We vary the number of basis 

functions from 5 to 10. The simulation set-up is based on Setting A with 10 variables. The 

performance of the Newton is more sensitive to the number of basis function, which can be 

explained in part as follows: in the late stage of the follow-up period, the at-risk set is small, 

causing unstable estimation of the Hessian matrix. The proposed BSA is less sensitive to the 

number of basis functions, achieving more stable results. Web Table S1 compares the biases 

and IMSE for various approaches which select the number of basis functions based on the 

simulation setting B. Five-fold cross-validation achieves the smallest estimation biases in all 

scenarios and outperforms alternative approaches such as AIC and BIC. Web Table S2 and 

Figures S3 and S4 compare the performance of various methods under the simulation setting 

with heterogeneous center effects. Web Table S2 and Figure S4 further assess a simulation 

setting with a high censoring proportion (approximately between 50% and 60%).

4.3 Testing for Time-Varying Effects

Finally, to assess the testing performance for time-varying effects, we consider a simulation 

setting (termed Setting C) with two continuous predictors. The corresponding coefficients 

are set to be β1 = 1 and β2(t) = γsin{3(πt/4)} with γ varying between 0 and 3, representing 

the magnitude of the time-varying effects. We vary the number of centers from 10 (with 

1,000 subjects per center) to 100 (with 100 subjects per center). The remaining set-ups are 

the same as Setting A.

Comparing the proposed testing algorithm with the test based on the scaled Schoenfeld 

residuals (implemented by R Survival package), Figure 3 reports the empirical Type-I error 

and the empirical power based on Setting C. The proposed algorithm (10) outperforms 

the Schoenfeld method with a higher power and a smaller Type-I error. Web Table S3 
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further assesses the empirical Type-I error and the empirical power for the robust inference 

procedure, using simulation setting C with 100 centers.

5. Analysis of the National Kidney Transplant Dataset

Data are obtained from the U.S. Organ Procurement and Transplantation Network (OPTN). 

Included in our analysis are 351,719 patients (from 293 centers) who underwent kidney 

transplantation between January 1988 and December 2012. Failure time is defined as the 

time from transplantation to graft failure or death, whichever occurred first. To study the 

10-year post-transplant survival, patient survival is censored 10 year post-transplant or at the 

end of study in 2012. The overall censoring rate was 62%. Covariates (P = 164) in this study 

include baseline recipient characteristics such as age, race, gender, BMI, time on dialysis, 

indicator of previous kidney transplant, immunosuppression, and cormorbidity conditions 

(e.g. glomerulonephritis, polycystic kidney disease, diabetes, and hypertension), and donor 

characteristics such as blood type, cold ischemic time and donor type. Race is categorized as 

White, African American, Asian, and the other. Cold ischemia time is categorized as low (20 

hours or less) and high (longer than 20 hours). Donors are categorized as living, of standard 

criteria, and of expanded criteria. Waiting time on dialysis is categorized as low (less than 1 

years), medium (1–5 years) and high (greater than 5 years). More details are in Table 2.

To determine the number of basis functions, we perform 5-fold cross-validation (Verweij 

and van Houwelingen, 1993) and choose 10 basis functions for further analysis. Our 

proposed test identifies a total of 12 variables with significant time-varying effects; see 

Figure 4 with 95% point-wise confidence intervals (dashed lines) as well as additional 

results provided in Web Figure S5. Figures 4a and 4b show that anti-viral therapies and 

anti-rejection immunosuppressant medications have a strong protective effect shortly after 

transplantation, but the association weakens over time. One possible explanation is that 

these therapies prevent rejection of new kidneys and declining rates of acute rejection 

have led to improvements in short term kidney transplant survival, but the effects may 

wane over time (Muntean and Lucan, 2013). Figure 4c supports the previous findings 

(Meier et al., 2000) that long waiting on dialysis (greater than 5 years) negatively impacts 

post-transplant survival. Figure 4d indicates that the effects of stroke, the most frequent 

donor cause of death, varies over time, showing an increased risk of worsening recipient 

outcomes initially, followed by a slightly weakening association over time. Though stroke is 

a predictor for worse survival for kidney transplantation, it is associated with a low rate of 

rejection immediately after the renal transplantation (Frohnert et al., 1997), which may lead 

to time-varying associations.

Figure 4e indicates that the survival of African Americans continues to be poorer than that of 

non-African Americans. The change of its covariate effect after transplant may be partly due 

to higher immunological risk among American Africans, leading to higher acute rejection 

rates and graft loss (Harding et al., 20017). We have detected some novel signals. For 

example, polycystic kidney disease (PKD) is the most common genetic kidney disease and is 

present among 2% to 9% of ESRD patients (Rozanski et al., 2005). With conflicting reports 

of renal allograft outcomes for PKD patients (Hadimeri et al., 1997), Figure 4g suggests 

time-varying associations of PKD with survival; thus, accounting for time-varying effects 
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provides valuable clinical information that could have been missed otherwise. Finally, Web 

Figure S5c shows that male recipients is a protective factor immediately after the renal 

transplantation and then has a much worse prognosis than female. One possible explanation 

is that women have better immunosuppressant compliance than men, and females undergo 

follow-up visits and show more concern to protect graft function (Puoti et al., 2016).

6. Discussion

Detecting and accounting for time-varying effects are particularly important in the context 

of clinical studies (Dekker et al., 2008; Yu et al., 2014; Chen et al., 2015; Estes, 2018). 

However, in survival analysis, the computational burden to model time-varying effects 

increases quickly as the sample size or the number of predictors grows. We propose a block-

wise steepest ascent method, which iteratively updates the optimal block-wise direction 

along which the directional derivative is maximized and, hence, the approximate increment 

in log-partial likelihood is greatest. Numerical results show that the proposed algorithm 

provides sufficient and rapid updates, achieving much computational efficiency.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Comparisons of iterations, computation time and biases; Setting B with N=10,000 and P=5; 

the Newton approach is implemented by R Survival package, the stochastic gradient ascent 

is implemented by the adaptive moment estimation (ADAM) approach. The timings were 

taken on a HP workstation with 4-core 3.50-GHz Intel Core E5–1620v3 processor and 32GB 

RAM. This figure appears in color in the electronic version of this article, and any mention 

of color refers to that version.
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Figure 2: 
Average estimated coefficient functions (solid lines) and 95% empirical percentiles (dashed 

lines) for different number of spline basis functions; 100 simulation iterations; Setting A 

with N=10,000 and P=10. This figure appears in color in the electronic version of this 

article, and any mention of color refers to that version.
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Figure 3: 
Comparisons of Type-I error and Power for testing of time-varying effects at significance 

level 0.05; Setting C with N=2,000; Two continuous covariates are generated with 

coefficients β1 = 1 and β2(t) = γsin{3(πt/4)}, where γ varies between 0 and 3, representing 

the magnitude of the time-varying effects; The average type-I error rate is only evaluated for 

the time-invariant β1(t), and the average power is only evaluated for the time-variant β2(t). 
This figure appears in color in the electronic version of this article, and any mention of color 

refers to that version.
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Figure 4: 
Data analysis results: estimated coefficient functions (solid lines) and 95% point-wise 

confidence interval (dashed lines) for time-varying effects. This figure appears in color in 

the electronic version of this article, and any mention of color refers to that version.
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Table 1:

Average computation time (in seconds), average estimation error (Bias) and average integrated mean square 

error (IMSE) for various methods; based on Setting B with N=10,000.

P Method Time Bias IMSE

5

Newton 0.22 0.646 0.592

Gradient Ascent 169.33 0.249 0.202

Stochastic Gradient Ascent 183.51 0.290 0.256

BSA 25.60 0.156 0.136

20

Newton 1.10 0.305 0.169

Gradient Ascent 687.15 0.136 0.058

Stochastic Gradient Ascent 415.43 0.140 0.070

BSA 43.48 0.075 0.055

50

Newton 9.05 0.147 0.086

Gradient Ascent 1620.21 0.150 0.050

Stochastic Gradient Ascent 757.07 0.118 0.038

BSA 95.27 0.064 0.030
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Table 2:

Baseline characteristics of kidney transplantation data.

Variable Categories Counts Proportions

Donor Type
Deceased 229,465 65.2%

Living 122,254 34.8%

Recipient Gender
Male 211,880 60.2%

Female 139,839 39.8%

Recipient Race

White 248,254 70.6%

Black 82,816 23.5%

Asian 15,347 4.4%

Other 5,302 1.5%

Recipient BMI

Underweight 16,866 4.8%

Normal 109,385 31.1%

Overweight 152,765 43.4%

Obesity 72,703 20.7%

Recipient Age

< 10 years 6,596 1.9%

[10,18) years 12,405 3.5%

[18, 25) years 18,059 5.1%

[25, 35) years 47,894 13.6%

[35,45) years 68,963 19.6%

[45, 55) years 84,151 23.9%

[55, 65) years 76,081 21.6%

[65, 75) years 34,281 9.7%

>= 75 years 3,289 0.9%

Recipient Anti-viral Therapies
Yes 169,037 48.1%

No 182,682 51.9%

Recipient Immunosuppressant Medications
Yes 341,677 97.1%

No 10,042 2.9%

Recipient: Polycystic Kidney Disease
Yes 31,558 9.0%

No 320,161 91.0%

Waiting Time on Dialysis

Short (< 1 years) 135,585 38.5%

Medium (1 – 5 years) 165,012 46.9%

Long (> 5 years) 51,122 14.5%

Cold Ischemia Time
High (> 20 hours) 91,861 26.1%

Low (<= 20 hours) 259,858 73.9%

Expanded Criteria Donor
Yes 31,126 8.8%

No 320,593 91.2%
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Variable Categories Counts Proportions

Donor Cause of Death: Stroke
Yes 82,474 23.4%

No 269,245 76.6%
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