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Summary

While many statistical models and methods are now available for network analysis, resampling
of network data remains a challenging problem. Cross-validation is a useful general tool for model
selection and parameter tuning, but it is not directly applicable to networks since splitting network
nodes into groups requires deleting edges and destroys some of the network structure. In this
paper we propose a new network resampling strategy, based on splitting node pairs rather than
nodes, that is applicable to cross-validation for a wide range of network model selection tasks.
We provide theoretical justification for our method in a general setting and examples of how the
method can be used in specific network model selection and parameter tuning tasks. Numerical
results on simulated networks and on a statisticians’ citation network show that the proposed
cross-validation approach works well for model selection.

Some key words: Cross-validation; Model selection; Parameter tuning; Random network.

1. Introduction

Statistical methods for analysing networks have received a great deal of attention because
of their wide-ranging applications in areas such as sociology, physics, biology and the medical
sciences. Statistical network models provide a principled approach to extracting salient informa-
tion about the network structure while filtering out noise. Perhaps the simplest statistical network
model is the famous Erdős–Rényi model (Erdős & Rényi, 1960), which served as a building
block for a large body of more complex models, including the stochastic block model (Holland
et al., 1983), the degree-corrected stochastic block model (Karrer & Newman, 2011), the mixed
membership block model (Airoldi et al., 2008) and the latent space model (Hoff et al., 2002), to
name a few.

While there has been plenty of work on models for networks and algorithms for fitting them,
inference for these models is often lacking, making it hard to take advantage of the full power of
statistical modelling. Data splitting methods provide a general, simple and relatively model-free
inference framework and are commonly used in modern statistics, with cross-validation being the
tool of choice for many model selection and parameter tuning tasks. For networks, both of these
tasks are important; while there are plenty of models to choose from, it is a lot less clear how to
select the best model for the data and how to choose tuning parameters for the selected model,
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2 T. Li, E. Levina AND J. Zhu

which is often necessary in order to fit it. In classical settings where the data points are assumed
to be an independent and identically distributed sample, cross-validation works by splitting the
data into multiple parts, or folds, holding out one fold at a time as a test set, fitting the model on
the remaining folds and computing its error on the held-out fold, and finally averaging the errors
across all folds to obtain the cross-validation error. The model or the tuning parameter is then
chosen to minimize this error. To explain the challenge of applying this idea to networks, we first
introduce a probabilistic framework.

Let V = {1, 2, . . . , n} =: [n] denote the node set of a network, and let A be its n × n adjacency
matrix, where Aij = 1 if there is an edge from node i to node j and 0 otherwise. We view the
elements of A as realizations of independent Bernoulli variables, with E(A) = M , where M is
a matrix of probabilities. For undirected networks, Aji = Aij, so both A and M are symmetric
matrices. We further assume that the unique edges Aij, for i < j, are independent Bernoulli
variables. The general network analysis task is to estimate M from the data A, under various
structural assumptions we might make to address the difficulty of having a single realization of A.

To perform cross-validation on networks, one has to decide how to split the data contained
in A and how to treat the resulting partial data which no longer form a complete network. To
the best of our knowledge, there is little work available on this topic. Cross-validation was used
by Hoff (2008) under a particular latent space model, and Chen & Lei (2018) proposed a novel
cross-validation strategy for model selection under the stochastic block model and its variants. In
this paper we do not assume a specific model for the network, but instead make a more general
structural assumption of M being approximately of low rank, which holds for most of the popular
network models. We propose a new general edge cross-validation strategy for networks, splitting
node pairs rather than nodes into different folds, which is a natural yet crucial choice. Treating
the network after removing the entries of A for some node pairs as a partially observed network,
we apply low-rank matrix completion to complete the network and then fit the relevant model.
This reconstructed network has the same rate of concentration around the true model as the
full network adjacency matrix, allowing for valid analysis. Our method is valid for directed and
undirected, binary, and weighted networks. As concrete examples, we show how edge cross-
validation can be used to determine the latent space dimension of random dot product graph
models, select between block model variants, tune regularization for spectral clustering, and tune
neighbourhood smoothing for graphon models.

2. The edge cross-validation algorithm

2.1. Notation and model

For simplicity of presentation, we derive all our results for binary networks, but it will be clear
that our framework is directly applicable to weighted networks, which are prevalent in practice,
and in fact the application in § 5 is on a weighted network.

Recall that n is the number of nodes and A is the n × n adjacency matrix. Let D =
diag(d1, . . . , dn) be the diagonal matrix with the node degrees di = ∑

j Aij on the diagonal.
The normalized Laplacian of a network is defined as L = D−1/2AD−1/2. Finally, we write In for
the n × n identity matrix and 1n for the n × 1 column vector of ones, suppressing the dependence
on n when it is clear from the context. For any matrix M , ‖M‖ will denote its spectral norm and
‖M‖F its Frobenius norm.

Throughout the paper, we work with the widely used inhomogeneous Erdős–Rényi model
for networks, defined by an n × n matrix of probabilities, M , with unique edges Aij drawn as
independent Bernoulli variables such that pr(Aij = 1) = Mij. All the information about the
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Network cross-validation 3

structure of the network is thus contained in M . While the Mij can all be different, with no
additional assumptions on M inference is impossible, since we only have one observation. On
the other hand, we would like to avoid assuming a specific parametric model, since choosing the
type of model is one of the primary applications of cross-validation. As a compromise, we make
a generic structural assumption on M , assuming that it is of low rank, which is true for many
popular network models. We describe three classes of examples as follows.

Example 1 (The stochastic block model and its generalizations). The stochastic block model is
perhaps the most widely used undirected network model with communities. The model assumes
that M = ZBZT where B ∈ [0, 1]K×K is a symmetric probability matrix and Z ∈ {0, 1}n×K has
exactly one 1 in each row, with Zik = 1 if node i belongs to community k . Let c = (c1, . . . , cn)

be the vector of node membership labels, with ci taking values in {1, . . . , K}. In particular, it
is assumed that pr(Aij = 1) = Bcicj , that is, the probability of an edge between two nodes
depends only on the communities they belong to. One of the commonly pointed-out limitations
of the stochastic block model is that it forces equal expected degrees for all the nodes in the same
community, thereby ruling out hubs. The degree-corrected stochastic block model corrects this by
allowing individual degree parameters θi to be associated with each node i and assuming models
pr(Aij = 1) = θiθjBcicj . The degree-corrected model needs a constraint to ensure identifiability,
and here we use the constraint

∑
ci=k θi = 1 for each k , proposed in the original paper of Karrer

& Newman (2011). The popular configuration model of Chung & Lu (2002) can be viewed as
a special case of the degree-corrected model, and both these models have a probability matrix
M of rank K . There are multiple other low-rank variants of the stochastic block model, such
as the mixed membership block model (Airoldi et al., 2008) and the popularity-adjusted model
(Sengupta & Chen, 2018). For a review of recent developments with regard to this class of model,
see Abbe (2018).

Example 2 (The random dot product graph model). The random dot product graph model
(Young & Scheinerman, 2007) is a general low-rank network model. It assumes that each node of
the network is associated with a latent K-dimensional vector Zi ∈ R

K and that Mij = ZT
i Zj. This

model has been successfully applied to a number of network problems (Sussman et al., 2014;
Tang et al., 2017), and its limiting behaviour has also been studied (Tang & Priebe, 2018). More
details can be found in the review paper of Athreya et al. (2017). The random dot product graph
model can include the stochastic block model as a special case, but only if the probability matrix
M of the stochastic block model is positive semidefinite.

Example 3 (The latent space model and graphon models). The latent space model (Hoff et al.,
2002) is another popular inhomogeneous Erdős–Rényi model. Like the random dot product graph,
it assumes that the nodes correspond to n latent positions Zi ∈ R

K and that the probability matrix is
some function of the latent positions; examples include the distance model f (Mij) = α−‖Zi − Zj‖
and the projection model f (Mij) = α − ZT

i Zj/(‖Zi‖‖Zj‖), where f is a known function such as
the logit function. More generally, the Aldous–Hoover representation (Aldous, 1981; Diaconis
& Janson, 2007) says that the probability matrix of any exchangeable random graph can be
written as Mij = f (ξi, ξj) for ξi (i ∈ [n]) independent uniform random variables on [0, 1] and a
function f : [0, 1] × [0, 1] → [0, 1] that is symmetric in its two arguments, determined up to a
measure-preserving transformation. There is a substantial literature on estimating the function f ,
called the graphon, under various assumptions (Wolfe & Olhede, 2013; Choi & Wolfe, 2014; Gao
et al., 2015). Under this framework M is random, but the network follows an inhomogeneous
Erdős–Rényi model conditionally on M , and so our method is applicable conditionally. The
latent space model and the more general graphon models typically do not assume that M is of
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4 T. Li, E. Levina AND J. Zhu

low rank, instead enforcing certain smoothness conditions on the function f . Fortunately, when
these smoothness assumptions hold, the corresponding matrix M can typically be approximated
reasonably well by a low-rank matrix (Chatterjee, 2015; Zhang et al., 2017). In this setting, the
edge cross-validation procedure works with the best low-rank approximation to the model; see
the details in § 4.2.

2.2. The edge cross-validation procedure

For notational simplicity, we only present the algorithm for directed networks; the only modi-
fication needed for undirected networks is to treat node pairs (i, j) and (j, i) as one pair. The key
idea of the edge cross-validation procedure is to split node pairs rather than nodes, resulting in a
partially observed network. We randomly sample node pairs, regardless of the value of Aij, with
a fixed probability 1 − p of being in the held-out set. By the exchangeable model assumption, the
values of A corresponding to held-out node pairs are independent of those corresponding to the
rest. The leftover training network now has missing edge values, which means that many models
and methods cannot be applied to it directly. Our next step is to reconstruct a complete network Â
from the training node pairs. Fortunately, the missing entries are missing completely at random
by construction, and this is the classic setting for matrix completion. Any low-rank-based matrix
completion algorithm (e.g., Candès & Plan, 2010; Davenport et al., 2014) can now be used to fill
in the missing entries. We defer the details of the algorithm to § 2.3.

Once we complete Â through matrix completion, we can fit the candidate models on Â and
evaluate the relevant loss on the held-out entries of A, just as in standard cross-validation. There
may be more than one way to evaluate the loss on the held-out set if the loss function itself is
designed for binary input; we will elaborate on this issue in the examples in § 3. The general
algorithm is summarized as Algorithm 1. We present the version with many random splits into
training and test pairs, but the same procedure is obviously applicable to K-fold cross-validation
if the computational cost of many random splits is prohibitive.

Algorithm 1. The general edge cross-validation procedure.

Input: an adjacency matrix A, a loss function L, a set C of Q candidate models or tuning
parameter values to select from, the training proportion p, and the number of replications
N .

Step 1. Select the rank K̂ for matrix completion, either from prior knowledge or using
the model-free cross-validation procedure in § 3.1.

Step 2. For m = 1, . . . , N :
(a) Randomly choose a subset of node pairs � ⊂ V × V by selecting each pair independ-

ently with probability p.
(b) Apply a low-rank matrix completion algorithm to (A,�) to obtain Â with rank K̂ .
(c) For each of the candidate models q = 1, . . . , Q, fit the model on Â and evaluate its loss

L(m)q by averaging the loss function L with the estimated parameters over the held-out
set Aij, (i, j) ∈ �c.

Step 3. Let Lq = ∑N
m=1 L(m)q /N and return q̂ = arg minqLq, the best model from set C.

The two crucial parts of edge cross-validation are splitting node pairs at random and applying
low-rank matrix completion to obtain a full matrix Â. The two internal parameters that need to
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Network cross-validation 5

be set for the edge cross-validation are the selection probability p and the number of repetitions
N . Our numerical experiments suggest that the accuracy is stable for p ∈ (0.85, 1) and that the
choice of N does not have much effect after applying stability selection; see the Supplementary
Material. In all of our examples, we take p = 0.9 and N = 3.

2.3. Network recovery by matrix completion

There are many algorithms that can be used to recover Â from the training pairs. Define the
operator P� : R

n×n → R
n×n by (P�A)ij = Aij I{(i, j) ∈ �}, where I denotes the indicator func-

tion, which replaces held-out entries by zeros. A generic low-rank matrix completion procedure
solves the problem

min
W

F(P�W , P�A) subject to rank(W ) � K̂ , (1)

where K̂ is the rank constraint and F is a loss function measuring the discrepancy between
W and A on entries in �, e.g., the sum of squared errors or the binomial deviance. Since the
problem is nonconvex due to the rank constraint, many computationally feasible variants of (1)
have been proposed for use in practice, which are obtained via convex relaxation and/or problem
reformulation. While any such method can be used in edge cross-validation, for concreteness we
follow the singular value thresholding procedure to construct a low-rank approximation

Â = SH

(
1

p
P�A, K̂

)
, (2)

where SH (P�A, K̂) denotes the rank-K̂ truncated singular value decomposition of a matrix
P�A; that is, if the singular value decomposition of P�A is P�A = UDV T where D =
diag(σ1, . . . , σn) with σ1 � σ2 � · · · � σn � 0, then SH (P�A, K̂) = UDK̂ V T where
DK̂ = diag(σ1, . . . , σK̂ , 0, . . . , 0).

This matrix completion procedure is similar to the universal singular value thresholding method
of Chatterjee (2015), except that we fix K and always use the top K eigenvalues rather than a
universal constant to threshold the σi. This method is computationally efficient as it requires only
a partial singular value decomposition of the adjacency matrix with held-out entries replaced by
zeros, which is typically sparse. It runs easily on a network of size 104−105 on a laptop computer.
In principle, one can use any matrix completion algorithm satisfying a bound similar to the one in
Theorem 1. One can choose a more sophisticated method such as that of Keshavan et al. (2009)
or Mazumder et al. (2010) if the size of the network allows, but since cross-validation is already
computationally intensive, we have prioritized lowering the computational cost. Additionally,
imputation accuracy is not the primary goal; we expect, and in fact need, noisy versions of A. As
a small-scale illustration, we compare our singular value decomposition method with the iterative
hardImpute algorithm of Mazumder et al. (2010) in the context of edge cross-validation; see the
Supplementary Material. We find that while the hardImpute algorithm improves the accuracy
of matrix completion by itself, it takes longer to compute and does not provide any tangible
improvement in model selection, which is the ultimate goal here.

Remark 1. In some situations, the rank of M itself is directly associated with the model to be
selected; see the examples in the Supplementary Material. In such cases, the matrix completion
rank K̂ should be selected as part of the model selection, omitting Step 1 in Algorithm 1 and
instead merging Steps 2(b) and 2(c) and using a value of K̂ corresponding to the model being
evaluated. See § § 3.1 and 3.2 for details.
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6 T. Li, E. Levina AND J. Zhu

Remark 2. If an upper bound on ‖M‖∞ = maxij |Mij| is available, say ‖M‖∞ � d̄/n, an
improved estimator Ã can be obtained by truncating the entries of Â to the interval [0, d̄/n], as in
Chatterjee (2015). A trivial option of truncating to the interval [0, 1] is always available, which
ensures that Ã will be a better estimator of M than Â is in Frobenius norm. We did not observe
any substantial improvement in model selection performance from truncation, however. In some
applications, a binary adjacency matrix may be needed for subsequent model fitting; if that is
the case, a binary matrix can be obtained from Ã by using one of the standard link prediction
methods, for example by thresholding at 0.5.

Remark 3. An alternative to matrix completion is to simply replace all the held-out entries
with zeros and use the resulting matrix A0 for model estimation. The resulting model estimate
M̂ 0 of the probability matrix E(A0) is a biased estimator of M , but since we know the sampling
probability p, we can remove this bias by setting M̂ ∗ = M̂ 0/p, as in Chatterjee (2015) and Gao
et al. (2016), and then use M̂ ∗ for prediction and for calculating the cross-validation error. This
method is valid as long as the adjacency matrix is binary, and it is probably the simplest of
all methods, though surprisingly we did not find any explicit references to it in the literature.
In particular, for the stochastic block model it is equivalent to our general edge cross-validation
procedure when (2) is used for matrix completion. However, in applications beyond block models
these two approaches will give different results, and we have empirically observed that edge
cross-validation with matrix completion works better and is much more robust to the choice of
p. Moreover, filling in zeros, unlike performing matrix completion, does not work for weighted
networks since it would clearly change the weight distribution, which cannot be fixed via a simple
rescaling by p. We will not pursue this approach further.

Remark 4. Another matrix completion option is the 1-bit matrix completion approach (Cai &
Zhou, 2013; Davenport et al., 2014; Bhaskar & Javanmard, 2015), which uses binomial deviance
instead of the least squares loss, and assumes that some smooth transformation of M is of low
rank. In particular, the special case of the projection latent space model fits within this framework.
However, 1-bit matrix completion methods are generally much more computationally demanding
than Frobenius norm-based completion, and given that computational cost is paramount for cross-
validation while accurate matrix imputation is of secondary concern, we will not pursue 1-bit
matrix completion further.

2.4. Theoretical justification

Intuitively, edge cross-validation should work well if Â reflects relevant structural properties
of the true underlying model. The following theorem formalizes this intuition. All our results
will be expressed in terms of the number of nodes n, the sampling probability p, which controls
the size of the training set, the rank K of the true matrix M , and an upper bound on the expected
node degree d, defined to be any value such that maxij Mij � d/n, a crucial quantity for network
concentration results. We can always trivially set d = n, but we will also consider the sparse
network case with d = o(n).

Theorem 1. Let M be a probability matrix of rank K and let d be as defined above. Let A be
an adjacency matrix with edges sampled independently and E(A) = M. Let� be an index matrix
for a set of node pairs selected independently with probability p � C1(log n)/n for some absolute
constant C1, where �ij = 1 if the node pair (i, j) is selected and 0 otherwise. If d � C2 log n for
some absolute constant C2, then with probability at least 1−3n−δ for some δ > 0, the completed
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Network cross-validation 7

matrix Â defined in (2) with K̂ = K satisfies

‖Â − M‖ � C̃ max

{(
Kd2

np

)1/2

,
(

d

p

)1/2

,
(log n)1/2

p

}
, (3)

where C̃ = C̃(δ, C1, C2) is a constant that depends only on C1, C2 and δ. This also implies

‖Â − M‖2
F

n2 � C̃2

2
max

(
K2d2

n3p
,

Kd

n2p
,

K log n

n2p2

)
.

This theorem holds for both directed and undirected networks; it can also be equivalently
written in terms of the size |�|, since |�| ∼ n2p. From now on, we treat p as a constant for
simplicity, considering it is a user-chosen parameter. We first compare Theorem 1 with known
rates for previously studied network problems. In this case, the spectral norm error bound (3),
taking into account the assumption d � C2 log n, becomes

‖Â − M‖ � C̃ max

{(
Kd

n

)1/2

, 1

}
d1/2. (4)

The bound (4) implies that the rate of concentration of Â around M is the same as the rate of
concentration of the full adjacency matrix A around its expectation (Lei & Rinaldo, 2014; Chin
et al., 2015; Le et al., 2017), as long as Kd/n � 1. The sparser the network, the weaker the
requirement on K . For instance, when the network is moderately sparse with d = O(log n), we
only need K � n/(log n). Although it may seem counter-intuitive, this is because the dependence
on K in the bound comes entirely from M itself. A sparse network means that most entries of M
are very small, so replacing the missing entries in A with zeros does not contribute much to the
overall error and thus the requirement on K can be less stringent. While for sparse networks the
estimator is noisier, the noise bounds are of the same order for the complete and the incomplete
networks when p is a constant, and so the two concentration bounds still match.

Theorem 1 essentially indicates that ‖Â − M‖ ≈ ‖A − M‖ if we assume Kd � n. Thus, in
the sense of concentration in spectral norm, we can treat Â as a network sampled from the same
model. Under many specific models, such a concentration of Â is sufficient to ensure model
estimation consistency at the same rate as can be obtained by using the original matrix A, and it
also gives good properties with respect to model selection.

3. Examples of edge cross-validation for model selection

3.1. Model-free rank estimators

The rank constraint in the matrix completion problem for Algorithm 1 may be unknown,
and we need to choose or estimate it in order to apply edge cross-validation. When the true
model is a generic low-rank model such as the random dot product graph model, selecting K̂ is
essentially the same as selecting its latent space dimension. Rank selection for a general low-
rank matrix, not a network, by cross-validation was studied in Owen & Perry (2009) and Kanagal
& Sindhwani (2010), where the matrix was split by blocks or multiple blocks instead of by
individual entries, and performance was evaluated on the task of nonnegative matrix factorization,
a completely different setting from ours. More generally, selection of K̂ can itself be treated as a
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8 T. Li, E. Levina AND J. Zhu

model selection problem, since the completed matrix Â itself is a low-rank approximation to the
unknown underlying probability matrix M .

To find a suitable value for K̂ , one has to compare the completions Â for each candidate rank
with A in some way. We take the natural approach of directly comparing the values of Â and A on
the held-out set. We can use the sum of squared errors on the held-out entries,

∑
(i,j)∈�c(Aij−Âij)

2,
or, when A is binary, the binomial deviance as the loss function to be optimized.Another possibility
is to evaluate how well Â predicts links for unweighted networks. We can predict Ãij = I{Âij > c}
for all entries in the held-out set �c for a threshold c, and vary c to obtain a sequence of link
prediction results. A common measure of prediction performance is the area under the receiver
operating characteristic curve, which compares false positive rates and true positive rates for all
values of c, with perfect prediction corresponding to an area under the curve of 1, and random
guessing corresponding to an area of 0.5. Therefore, the negative area under the curve can also
be used as the loss function. In summary, the completion rank K can be chosen as described in
Algorithm 2.

Algorithm 2. Model-free edge cross-validation for rank selection.

Input: an adjacency matrix A, the training proportion p, the maximum possible rank Kmax,
and the number of replications N .

Step 1. For m = 1, . . . , N :
(a) Randomly choose a subset of node pairs � ⊂ V × V by selecting each pair inde-

pendently with probability p.
(b) Apply a low-rank matrix completion algorithm to (A,�) to obtain Â with rank K̂ .
(c) For each of the candidate models k = 1, . . . , Kmax, apply the low-rank matrix

completion algorithm to (A,�) with rank k to obtain Â; calculate the value of the loss
function for using Â to predict A on �c, denoted by L(m)k .

Step 2. Let Lk = ∑N
m=1 L(m)k /N and return K̂ = mink Lk .

If the loss is the sum of squared errors, Algorithm 2 can be viewed as a network analogue of the
tuning strategy of Mazumder et al. (2010). In practice, we have observed that both the imputation
error and the area under the curve work well in general rank estimation tasks. For block models,
they perform comparably to likelihood-based methods most of the time.

From a theoretical perspective, the model of rank K is a special case of the model of rank
K + 1, and while the former is preferable for parsimony, the two models will give very similar
model fits, unless overfitting occurs. A reasonable goal for model selection in this situation is to
guarantee that the selected rank is not underselected; the same guarantee was provided by Chen
& Lei (2018). The lack of protection against overselection is a known issue for cross-validation
in many problems and has been rigorously shown for regression (Shao, 1993; Zhang, 1993;Yang,
2007; Lei, 2017) whenever the training proportion is nonvanishing.

Assumption 1. We have M = ρnM 0 with M 0 = U	0U T being a probability matrix,
where 	0 = diag(λ0

1, . . . , λ0
K ) is the diagonal matrix of nonincreasing eigenvalues and U =

(U1, . . . , UK ) contains the corresponding eigenvectors. There exists a positive constant ψ1 such
that nψ−1

1 � λ0
K � λ0

1 � ψ1n, and the minimum gap between any two distinct eigenvalues is at
least n/(2ψ1). Also, maxi∈[n]

∑
j∈[n] M 0

ij � ψ2n maxij M 0
ij for some positive constant ψ2, i.e., the

values of M 0 are all of similar magnitude. With this parameterization, the expected node degree
is bounded by λn = nρn.
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Network cross-validation 9

Another quantity that we need is matrix coherence, introduced by Candès & Recht (2009).
Under the parameterization of Assumption 1, coherence of P is defined as

μ(M ) = max
i∈[n]

n

K
‖U Tei‖2 = n

K
‖U‖2

2,∞.

To control prediction errors on the held-out entries in edge cross-validation, we need matrix
completion to work well for most entries, for which it is generally believed in the literature that
matrix incoherence is necessary (Chen et al., 2015; Chi & Li, 2019). We will follow this literature
and assume μ(M ) to be bounded, although in our context this assumption can be relaxed at the
cost of a stronger condition on the network density.

Assumption 2 (Incoherent matrix). Under Assumption 1, the coherence of P0 is bounded, with
μ(P0) � a for some constant a > 1.

Intuitively, Assumption 2 says that the mass of the eigenvectors of P is not concentrated on
a small number of coordinates. There is a large class of matrices satisfying the above bounded
incoherence condition (Candès & Recht, 2009; Candès & Tao, 2010). In the context of networks,
it is easy to verify that, for example, the stochastic block model with a positive-semidefinite prob-
ability matrix and nonvanishing communities satisfies both Assumptions 1 and 2. In the special
case of a fixed K and B = ρ ·[(1−β)I +β 11T], a sufficient condition for positive semidefinitive-
ness is β � 1/K , implying a certain degree of assortativity in the network. The degree-corrected
stochastic block model and the configuration model also satisfy these assumptions with similar
restrictions on the parameters, as long as the variability in the node degrees is of the same order
for all nodes. In general, any model that does not have spiky nodes that are very different from
the other nodes should satisfy these assumptions, possibly with some additional constraints on
the parameter space.

We next state a result on model selection, which is the primary task of edge cross-validation.

Theorem 2 (Consistency under the random dot product graph model). Assume that A is gen-
erated from a random dot product graph model satisfying Assumptions 1 and 2, with latent space
dimension K. Let K̂ be the output of Algorithm 2. If the sum of squared errors is used as the loss
and the expected degree satisfies λn/(n1/3 log4/3 n) → ∞, then

pr(K̂ < K) → 0.

To the best of our knowledge, Theorem 2 gives the first model selection guarantee under the
random dot product graph model.

3.2. Model selection for block models

We now apply edge cross-validation to model selection under the stochastic block model and
its degree-corrected version, referred to as block models for conciseness. The choice of fitting
method is not crucial for model selection, and many consistent methods are now available for
fitting both models (Karrer & Newman, 2011; Zhao et al., 2012; Amini et al., 2013; Bickel et al.,
2013). Here we use one of the simplest, fastest and most common methods, namely spectral
clustering on the Laplacian L = D1/2AD1/2, where D is the diagonal matrix of node degrees. For
the stochastic block model, spectral clustering takes the K leading eigenvectors of L, arranges
them in an n × K matrix U , and applies the K-means clustering algorithm to the rows of U to
obtain cluster assignments for the n nodes. For the degree-corrected block model, the rows are
normalized first and then the same algorithm applied.
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10 T. Li, E. Levina AND J. Zhu

Spectral clustering enjoys asymptotic consistency under the block models when the average
degree grows at least as fast as log n (Rohe et al., 2011; Lei & Rinaldo, 2014; Sarkar & Bickel,
2015). The possibility of strong consistency for spectral clustering was recently discussed in
Eldridge et al. (2017), Abbe et al. (2017) and Su et al. (2019). Variants of spectral clustering,
such as spherical spectral clustering (Qin & Rohe, 2013; Lei & Rinaldo, 2014) and the SCORE
method (Jin, 2015), are consistent under the degree-corrected model.

Since both the stochastic block model and the degree-corrected model are undirected network
models, we use the undirected edge cross-validation procedure, selecting edges at random from
pairs (i, j) with i < j and including the pair (j, i) whenever (i, j) is selected. Once node mem-
berships are estimated, the other parameters are easy to estimate by conditioning on node labels,
for example using the maximum likelihood estimation evaluated on the available node pairs. Let
Ĉk = {i : (i, j) ∈ �, ĉi = k} be the estimated member sets for each group k = 1, . . . , K . Then
we can estimate the entries of the probability matrix B as

B̂kl =
∑
(i,j)∈� Aij I(ĉi = k , ĉj = l)

n̂�kl

, (5)

where

n̂�kl =
{

|{(i, j) ∈ � : ĉi = k , ĉj = l}|, k |= l,

|{(i, j) ∈ � : i < j, ĉi = ĉj = k}|, k = l.

Under the degree-corrected model, the probability matrix can be estimated similarly to Karrer
& Newman (2011), Zhao et al. (2012) and Joseph & Yu (2016) via the Poisson approximation,
by letting

Ô∗
kl =

∑
(i,j)∈�

Aij I(ĉi = k , ĉj = l)

and setting

θ̂i =
∑

j: (i,j)∈� Aij∑K
k=1 Ô∗

ĉi ,k

, P̂ij = θ̂iθ̂jÔ
∗
ĉi ĉj

/
p.

The probability estimate P̂ is scaled by p to reflect missing edges, which makes it slightly different
from the estimator for the fully observed degree-corrected model (Karrer & Newman, 2011). This
rescaling happens automatically in the estimator (5) since the sums in both the numerator and
the denominator range over � only. Finally, the loss function can again be the sum of squared
errors or the binomial deviance; we have found that the L2 loss works slightly better in practice
for the block models.

The model selection task here includes the choice of the stochastic block model versus the
degree-corrected model and the choice of K . Suppose we consider the number of communities
ranging from 1 to Kmax. The candidate set of models in Algorithm 1 is then both of the block
models with K varying from 1 to Kmax. The edge cross-validation procedure for this task is
presented next, in Algorithm 3.
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Network cross-validation 11

Algorithm 3. Parametric edge cross-validation procedure.
Input: an adjacency matrix A, the largest number Kmax of communities to consider, the

training proportion p, and the number of replications N .

Step 1. For m = 1, . . . , N :
(a) Randomly choose a subset of node pairs �, selecting each pair (i, j), for i < j,

independently with probability p, and adding (j, i) if (i, j) is selected.
(b) For k = 1, . . . , Kmax:

(i) Apply matrix completion to (A,�) with rank constraint k to obtain Âk .
(ii) Run spectral clustering on Âk to obtain the estimated stochastic block model

membership vector ĉ(m)1,k , and use spherical spectral clustering to obtain the

estimated degree-corrected model ĉ(m)2,k .

(iii) Estimate the two models’ probability matrices, M̂ (m)
1,k and M̂ (m)

2,k based on ĉ(m)1,k and

ĉ(m)2,k , respectively, and evaluate the corresponding losses L(m)q,k (q = 1, 2) by applying
the loss function L with the estimated parameters to Aij for (i, j) ∈ �c.

Step 2. Let Lq,k = ∑N
m=1 L(m)q,k /N . Return (q̂, K̂) = arg minq=1,2 mink=1,...,Kmax Lq,k as

the best model, with q̂ = 1 indicating no degree correction and q̂ = 2 indicating degree
correction.

As a special case, one can also consider the task of just choosing K under a specific model, the
stochastic block model or the degree-corrected model, for which there are many methods available
(Latouche et al., 2012; McDaid et al., 2013; Bickel & Sarkar, 2016; Lei, 2016; Saldana et al.,
2017; Wang & Bickel, 2017; Chen & Lei, 2018; Le & Levina, 2019). In particular, Theorem 1
can be modified, as detailed in the Supplementary Material, to show that the parametric edge
cross-validation procedure, Algorithm 3, achieves one-sided consistency in choosing K under the
stochastic block model, under the following standard assumption (Lei & Rinaldo, 2014).

Assumption 3. The probability matrix B(n) is of the form B(n) = ρnB0, where B0 is a fixed
K × K symmetric nonsingular matrix with all entries in [0, 1] and with K fixed, and therefore
the expected node degree is λn = nρn. There exists a constant γ > 0 such that mink nk > γ n,
where nk = |{i : ci = k}|.

Theorem 3 (Consistency under the stochastic block model). Let A be the adjacency matrix
of a network generated from the stochastic block model satisfying Assumption 3, and suppose
that, as prior knowledge, the model is known to be the stochastic block model, but the number
of communities K is to be estimated. Assume λn/ log n → ∞. Let K̂ be the selected number of
communities obtained using Algorithm 3 with the L2 loss. Then

pr(K̂ < K) → 0.

If we assume λnn−2/3 → ∞ and that all entries of B0 are positive, then the same result holds
also for the binomial deviance loss.

The theorem requires a stronger assumption for the binomial deviance result than for the L2
loss. While these conditions may not be tight, empirically the L2 loss performs better, as shown in
the Supplementary Material, which can intuitively be explained by the instability of the binomial
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12 T. Li, E. Levina AND J. Zhu

deviance near 0. Just as in our result for the random dot product graph and in Chen & Lei (2018),
we have a one-sided guarantee, but the assumption on the expected degree is much weaker than
that of Theorem 2. This reflects a natural trade-off between gaining better rates under a parametric
version of the edge cross-validation and imposing additional model assumptions.

3.3. Parameter tuning in graphon estimation

Graphon, or probability matrix, estimation is another general task which often relies on tuning
parameters that can be determined by cross-validation. Zhang et al. (2017) proposed a method,
called neighbourhood smoothing, for estimating M instead of f under the assumption that f is
a piecewise-Lipschitz function, avoiding the ambiguity associated with the measure-preserving
transformation. They showed that their method achieves a nearly optimal rate while requiring
only polynomial complexity for computation. The method depends on a tuning parameter h which
controls the degree of smoothing. The theory suggests taking h = τ(log n/n)1/2 for some τ .

This is a setting in which we have no reason to assume a known rank for the true probability
matrix and M does not have to be of low rank. However, for a smooth graphon function, a low-
rank matrix can approximate M reasonably well (Chatterjee, 2015). The edge cross-validation
procedure under the graphon model now has to select the best rank for its internal matrix com-
pletion step. Specifically, in each split we can run the rank estimation procedure discussed in
§ 3.1 to estimate the best rank for approximation and the corresponding Â as the input for the
neighbourhood smoothing algorithm. The selected tuning parameter is the one that minimizes
the average prediction error.

The edge cross-validation algorithm can also be used in other tuning parameter selection
problems. In the Supplementary Material we demonstrate its application to tuning network
regularization in spectral clustering.

3.4. Stability selection

Stability selection (Meinshausen & Bühlmann, 2010) was proposed as a general method for
reducing noise by repeating model selection many times over random splits of the data and keeping
only those features that are selected in the majority of splits; any cross-validation procedure can
benefit from stability selection since it relies on random data splits. An additional advantage
of stability selection in our context is increased robustness to the choices of p and N ; see the
Supplementary Material. Chen & Lei (2018) used this idea as well, repeating the procedure
multiple times and choosing the most frequently selected model. We adopt the same strategy for
edge cross-validation, along with the cross-validation method of Chen & Lei (2018), choosing
the model selected most frequently out of 20 replications. When we need to select a numerical
parameter rather than a model, we can also average the values selected over the 20 replications
(and round to an integer if needed, say for the number of communities). Overall, picking the most
frequent selection is more robust to different tasks, although picking the average may work better
in certain situations. More details are given in § 4.

4. Numerical performance evaluation

4.1. Model selection under block models

Following Chen & Lei (2018), we evaluate the performance under the block models in choosing
both the model, with or without degree correction, and the number K of communities simul-
taneously. The setting for all simulated networks in this section is as follows. For the degree-
corrected block model, we first sample 300 values from the power-law distribution with lower
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Network cross-validation 13

bound 1 and scaling parameter 5, and then set the node degree parameters θi (i = 1, . . . , n)
by randomly and independently choosing one of these 300 values. For the stochastic block
model, we set θi = 1 for all i. We take the size of the communities to be equal; the imbalanced
community situation is studied in the Supplementary Material. Let B0 = (1 − β)I + β 11T

and B ∝ �B0�, so that β is the out-in ratio, the ratio of the between-block probability to the
within-block probability of an edge. The scaling is selected so that the average node degree is λ.
We consider several combinations of the size and the number of communities: (n = 600, K = 3),
(n = 600, K = 5) and (n = 1200, K = 5). For each configuration we then vary two aspects of
the model.

(I) Sparsity: set the expected average degree λ to 15, 20, 30 or 40, fixing t = 0 and β = 0.2.
(II) Out-in ratio: set β to 0, 0.25 or 0.5, fixing λ = 40 and t = 0.

All results are based on 200 replications. The four methods compared on this task are: the
edge cross-validation procedure, Algorithm 3, with the L2 loss; its stable version where the
most frequent selection of 20 independent repetitions is returned; and the corresponding versions
of the procedure of Chen & Lei (2018). Here we present only the results from using the L2
loss for model selection, since we have observed that it works better than binomial deviance
for both methods. The performance using the binomial deviance as the loss is reported in the
Supplementary Material.

Table 1 shows the fraction of times the correct model was selected when the true model is the
degree-corrected model. Across all settings, stability selection improves performance as long as
the single cross-validation is working reasonably well to start with. This is to be expected, since
stability selection is only a variance-reduction step, and it cannot help if the original procedure is
not working. Although the method of Chen & Lei (2018) works well in easier settings that involve
a smaller number of communities, e.g., a denser network or a smaller out-in ratio, it quickly loses
accuracy in model selection as the problem becomes harder. In contrast, the edge cross-validation
method yields better selection in all cases, and in more difficult settings the difference is very
large. In the Supplementary Material we present results from the experiment with the stochastic
block model as the underlying truth, and the findings remain the same.

Another popular model selection problem under the block models is selection of the number of
communities assuming that the true model, with or without degree correction, is known. We have
conducted extensive simulation experiments on this task by comparing the two cross-validation
methods above and a few other model-based methods; the details are given in the Supplementary
Material. Between the two cross-validation methods, the edge cross-validation procedure is again
a clear winner. However, the model-based methods are overall more effective than cross-validation
methods, as expected.

4.2. Tuning nonparametric graphon estimation

In this subsection we demonstrate the performance of edge cross-validation in tuning τ in the
neighbourhood smoothing estimation for a graphon model used in Zhang et al. (2017).

The tuning procedure is very stable for the graphon problem and stability selection is unneces-
sary. Figure 1 shows the tuning results for two graphon examples taken from Zhang et al. (2017),
both for networks with n = 500 nodes. Graphon 1 is a block model, though this information
is never used, which is a piecewise-constant function, and M is of low rank. Graphon 2 is a
smoothly varying function that is not of low rank; see Zhang et al. (2017) for more details. The
errors are displayed as the median over 200 replications with a 95% confidence interval, calcu-
lated by bootstrap, of the normalized Frobenius error ‖M̂ − M‖F/‖M‖F. For graphon 1, which is
of low rank, the edge cross-validation procedure works extremely well and picks the best τ from
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14 T. Li, E. Levina AND J. Zhu

Table 1. Overall model selection by two cross-validation methods; the true model is the degree-
corrected block model

Configuration Proposed method Chen & Lei (2018)
K n λ β L2 loss L2 loss + stability L2 loss L2 loss + stability

3 600

15 0.2 0.73 0.87 0.00 0.00
20 0.2 0.97 0.99 0.02 0.00
30 0.2 1.00 1.00 0.43 0.40
40 0.2 1.00 1.00 0.88 0.98

5 600

15 0.2 0.49 0.58 0.00 0.00
20 0.2 0.90 0.95 0.00 0.00
30 0.2 0.99 1.00 0.05 0.01
40 0.2 0.99 1.00 0.27 0.24

5 1200

15 0.2 0.67 0.76 0.00 0.00
20 0.2 0.99 0.99 0.00 0.00
30 0.2 1.00 1.00 0.04 0.00
40 0.2 1.00 1.00 0.41 0.33

3 600
40 0.1 1.00 1.00 0.99 1.00
40 0.2 1.00 1.00 0.88 0.98
40 0.5 0.95 0.97 0.00 0.00

5 600
40 0.1 1.00 1.00 0.79 0.96
40 0.2 0.99 1.00 0.27 0.24
40 0.5 0.00 0.00 0.00 0.00

5 1200
40 0.1 1.00 1.00 0.90 0.99
40 0.2 1.00 1.00 0.41 0.33
40 0.5 0.00 0.00 0.00 0.00

the candidate set most of the time. For graphon 2, which is not of low rank and therefore more
challenging for a procedure based on a low-rank approximation, the edge cross-validation does
not always choose the best τ , but it still achieves a fairly competitive error rate by successfully
avoiding the bad range of τ values. This example illustrates that the choice of constant can lead
to a big difference in estimation error, and that the edge cross-validation method is successful at
choosing it.

5. Community detection in a statistician citation network

In this section, we demonstrate model selection on a publicly available dataset compiled by
Ji & Jin (2016). This dataset contains information on the title, author, year, citations and DOI
of all papers published between 2003 and 2012 in the four top statistics journals, The Annals of
Statistics, Biometrika, Journal of the American Statistical Association and Journal of the Royal
Statistical Society, Series B, and includes 3607 authors and 3248 papers in total. The dataset was
carefully curated by Ji & Jin (2016) to resolve name ambiguities and is relatively interpretable,
at least to statisticians.

Because the citations of all the papers are available, we can construct the citation network
between authors, as well as between papers; here we focus on authors as we are looking for
research communities of people. We therefore construct a weighted undirected network between
authors, where the weight is the total number of their mutual citations. The largest connected
component of the network contains 2654 authors. Thresholding the weight to binary resulted in all
methods for estimating K selecting an unrealistically large and uninterpretable value, suggesting
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Fig. 1. Parameter tuning for piecewise-constant graphon estimation, comparing the edge cross-validation (ECV, red)
and predefined (blue) methods: (a) graphon 1 heatmap; (b) graphon 2 heatmap; (c) graphon 1 errors; (d) graphon 2

errors.

that the network is too complex to be adequately described by a binary block model. Since the
weights are available and contain much more information than just the presence of an edge,
we analyse the weighted network instead; seamlessly switching between binary and weighted
networks is a strength of the edge cross-validation approach. Many real-world networks display
a core-periphery structure, and citation networks are especially likely to have this form. We focus
on analysing the core of the citation network, following the procedure proposed by Wang & Rohe
(2016) to extract it: we delete nodes with fewer than 15 mutual citations and their corresponding
edges, and repeat until the network no longer changes. This results in a network with 706 authors,
as shown in Fig. 2. The individual node citation count ranges from 15 to 703, with a median of 30.

Block models are not defined for weighted networks, but the Laplacian is still well-defined
and so the spectral clustering algorithm for community detection can be applied. The model-
free version, Algorithm 2, can be used to determine the number of communities. We apply the
edge cross-validation procedure with the sum-of-squared-errors loss and repeat it 200 times,
with the candidate values for K ranging from 1 to 50. The stable version of the edge cross-
validation method selects K = 20. We also used edge cross-validation to tune the regularization
parameter for spectral clustering, as described in the Supplementary Material. It turns out that
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16 T. Li, E. Levina AND J. Zhu

Fig. 2. The core of the statistician citation network: the network has 706 nodes, and the node citation count, ignoring
directions, ranges from 15 to 703; node size and colour indicate the citation count, with nodes having larger citation

counts being larger and darker.

the regularization does make the result more interpretable. We list the 20 communities in Table 2,
with each community represented by the 10 authors having the largest number of citations, along
with subjective and tentative names that we assigned to these communities. The names were
chosen according to the interests or area of contributions of the majority of the authors; as they
are based exclusively on data collected in the period 2003–2012, people who have worked on
many topics over many years tend to appear under the topic they devoted the most attention
to in that time period. Many communities can be easily identified by their common research
interests; high-dimensional inference, a topic that many researchers published on in that period,
is subdivided into several subcommunities that are themselves interpretable: communities 1, 2,
4, 5, 10, 12 and 15 in Table 2. Overall, these groups are fairly easy to interpret for those familiar
with the statistics literature of the decade 2003–2012.

6. Discussion

The general scheme of leaving out entries at random followed by matrix completion may
be useful for other resampling-based methods. In particular, an interesting question we plan to
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Network cross-validation 17
Table 2. The eight authors with the largest total citation numbers, ignoring the direction, in each
of 20 communities, along with the community interpretations; the communities are ordered by

size, and authors within a community are ordered by mutual citation count
Interpretation [size] Authors

1 High-dimensional inference
(multiple testing, machine
learning) [57]

T. Tony Cai, Jiashun Jin, Larry Wasserman, Christopher Genovese, Bradley
Efron, John D. Storey, David L. Donoho, Yoav Benjamini

2 High-dimensional inference
(sparse penalties) [53]

Hui Zou, MingYuan,Yi Lin, Trevor J. Hastie, Robert J. Tibshirani, Xiaotong
Shen, Jinchi Lv, Gareth M. James

3 Functional data analysis [52] Hans-Georg Muller, Jane-Ling Wang, Fang Yao, Yehua Li, Ciprian M.
Crainiceanu, Jeng-Min Chiou, Alois Kneip, Hulin Wu

4 High-dimensional inference
(theory and sparsity) [45]

Peter Buhlmann, Nicolai Meinshausen, Cun-Hui Zhang, Alexandre B.
Tsybakov, Emmanuel J. Candes, Terence Tao, Marten H. Wegkamp, Bin
Yu

5 High-dimensional covariance
estimation [43]

Peter J. Bickel, Ji Zhu, Elizaveta Levina, Jianhua Z. Huang, Mohsen
Pourahmadi, Clifford Lam, Wei Biao Wu, Adam J. Rothman

6 Bayesian machine learning [41] David Dunson, Alan E. Gelfand, Abel Rodriguez, Michael I. Jordan, Peter
Muller, Gareth Roberts, Gary L. Rosner, Omiros Papaspiliopoulos

7 Spatial statistics [41] Tilmann Gneiting, Marc G. Genton, Sudipto Banerjee, Adrian E. Raftery,
Haavard Rue, Andrew O. Finley, Bo Li, Michael L. Stein

8 Biostatistics (machine learning)
[40]

Donglin Zeng, Dan Yu Lin, Michael R. Kosorok, Jason P. Fine, Jing Qin,
Guosheng Yin, Guang Cheng, Yi Li

9 Sufficient dimension reduction
[39]

Lixing Zhu, R. Dennis Cook, Bing Li, Chih-Ling Tsai, Liping Zhu,Yingcun
Xia, Lexin Li, Liqiang Ni

10 High-dimensional inference
(penalized methods) [38]

Jianqing Fan, Runze Li, Hansheng Wang, Jian Huang, Heng Peng, Song Xi
Chen, Chenlei Leng, Shuangge Ma

11 Bayesian (general) [33] Jeffrey S. Morris, James O. Berger, Carlos M. Carvalho, James G. Scott,
Hemant Ishwaran, Marina Vannucci, Philip J. Brown, J. Sunil Rao

12 High-dimensional theory and
wavelets [33]

Iain M. Johnstone, Bernard W. Silverman, Felix Abramovich, Ian L. Dryden,
Dominique Picard, Richard Nickl, Holger Dette, Marianna Pensky

13 Mixed (causality + theory +
Bayesian) [32]

James R. Robins, Christian P. Robert, Paul Fearnhead, Gilles Blanchard,
Zhiqiang Tan, Stijn Vansteelandt, Nancy Reid, Jae Kwang Kim

14 Semiparametrics and nonpara-
metrics [28]

Hua Liang, Naisyin Wang, Joel L. Horowitz, Xihong Lin, Enno Mammen,
Arnab Maity, Byeong U. Park, Wolfgang Karl Hardle

15 High-dimensional inference
(machine learning) [27]

Hao Helen Zhang, J. S. Marron, Yufeng Liu, Yichao Wu, Jeongyoun Ahn,
Wing Hung Wong, Peter L. Bartlett, Michael J. Todd

16 Semiparametrics [24] Peter Hall, Raymond J. Carroll, Yanyuan Ma, Aurore Delaigle, Gerda
Claeskens, David Ruppert, Alexander Meister, Huixia Judy Wang

17 Mixed (causality + financial)
[22]

Qiwei Yao, Paul R. Rosenbaum, Yacine Ait-Sahalia, Yazhen Wang, Marc
Hallin, Dylan S. Small, Davy Paindaveine, Jian Zou

18 Biostatistics (survival, clinical
trials) [22]

L. J. Wei, Lu Tian, Tianxi Cai, ZhiliangYing, Zhezhen Jin, Peter X.-K. Song,
Hui Li, Bin Nan

19 Biostatistics (genomics) [21] Joseph G. Ibrahim, Hongtu Zhu, Jiahua Chen, Amy H. Herring, Heping
Zhang, Ming-Hui Chen, Stuart R. Lipsitz, Denis Heng-Yan Leung

20 Bayesian (nonparametrics) [15] Subhashis Ghosal, Igor Prunster, Antonio Lijoi, Stephen G. Walker, Aad van
der Vaart, Anindya Roy, Judith Rousseau, J. H. van Zanten

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article-abstract/doi/10.1093/biom
et/asaa006/5816043 by guest on 06 April 2020



18 T. Li, E. Levina AND J. Zhu

investigate in the future is whether this strategy can be used to create something akin to bootstrap
samples from a single network realization. Another direction that we have not explored in this
paper is cross-validation under alternatives to the inhomogeneous Erdős–Rényi model, such as
the models of Crane & Dempsey (2018) and Lauritzen et al. (2018). Edge cross-validation can
also be modified for the setting in which additional node features are available (Newman &
Clauset, 2016; Li et al., 2019). We leave these questions for future work.
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Erdős, P. & Rényi, A. (1960). On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci. 5, 17–61.
Gao, C., Lu, Y., Ma, Z. & Zhou, H. H. (2016). Optimal estimation and completion of matrices with biclustering

structures. J. Mach. Learn. Res. 17, 1–29.
Gao, C., Lu, Y. & Zhou, H. H. (2015). Rate-optimal graphon estimation. Ann. Statist. 43, 2624–52.
Hoff, P. (2008). Modeling homophily and stochastic equivalence in symmetric relational data. In Advances in

Neural Information Processing Systems 20 (NIPS 2007). San Diego, California: Neural Information Processing
Systems Foundation, pp. 657–64.

Hoff, P. D., Raftery, A. E. & Handcock, M. S. (2002). Latent space approaches to social network analysis. J. Am.
Statist. Assoc. 97, 1090–8.

Holland, P. W., Laskey, K. B. & Leinhardt, S. (1983). Stochastic blockmodels: First steps. Social Networks 5,
109–37.

Ji, P. & Jin, J. (2016). Coauthorship and citation networks for statisticians. Ann. Appl. Statist. 10, 1779–812.
Jin, J. (2015). Fast community detection by SCORE. Ann. Statist. 43, 57–89.
Joseph, A. & Yu, B. (2016). Impact of regularization on spectral clustering. Ann. Statist. 44, 1765–91.
Kanagal, B. & Sindhwani, V. (2010). Rank selection in low-rank matrix approximations:A study of crossvalidation

for NMFs. In Advances in Neural Information Processing Systems, vol. 1. San Diego, California: 635 Neural
Information Processing Systems Foundation, pp. 10–15.

Karrer, B. & Newman, M. E. (2011). Stochastic blockmodels and community structure in networks. Phys. Rev. E
83, 016107.

Keshavan, R., Montanari, A. & Oh, S. (2009). Matrix completion from noisy entries. In Advances in Neural
Information Processing Systems 22 (NIPS 2009). San Diego, California: Neural Information Processing Systems
640 Foundation, pp. 952–60.

Latouche, P., Birmele, E. & Ambroise, C. (2012). Variational Bayesian inference and complexity control for
stochastic block models. Statist. Mod. 12, 93–115.

Lauritzen, S., Rinaldo, A. & Sadeghi, K. (2018). Random networks, graphical models and exchangeability. J. R.
Statist. Soc. B 80, 481–508.

Le, C. M. & Levina, E. (2019). Estimating the number of communities in networks by spectral methods. arXiv:
1507.00827v2.

Le, C. M., Levina, E. & Vershynin, R. (2017). Concentration and regularization of random graphs. Random Struct.
Algor. 51, 538–61.

Lei, J. (2016). A goodness-of-fit test for stochastic block models. Ann. Statist. 44, 401–24.
Lei, J. (2017). Cross-validation with confidence. arXiv: 1703.07904v2.
Lei, J. & Rinaldo, A. (2014). Consistency of spectral clustering in stochastic block models.Ann. Statist. 43, 215–37.
Li, T., Levina, E. & Zhu, J. (2019). Prediction models for network-linked data. Ann. Appl. Statist. 13, 132–64.
Mazumder, R., Hastie, T. & Tibshirani, R. (2010). Spectral regularization algorithms for learning large incomplete

matrices. J. Mach. Learn. Res. 11, 2287–322.
McDaid, A. F., Murphy, T. B., Friel, N. & Hurley, N. J. (2013). Improved Bayesian inference for the stochastic

block model with application to large networks. Comp. Statist. Data Anal. 60, 12–31.
Meinshausen, N. & Bühlmann, P. (2010). Stability selection. J. R. Statist. Soc. B 72, 417–73.
Newman, M. E. J. & Clauset, A. (2016). Structure and inference in annotated networks. Nature Commun. 7, 11863.
Owen, A. B. & Perry, P. (2009). Bi-cross-validation of the SVD and the nonnegative matrix factorization. Ann.

Appl. Statist. 3, 564–94.
Qin, T. & Rohe, K. (2013). Regularized spectral clustering under the degree-corrected stochastic blockmodel. In

Proc. 26th Int. Conf. Neural Information Processing Systems. NewYork: Association for Computing Machinery,
pp. 3120–8.

Rohe, K., Chatterjee, S. & Yu, B. (2011). Spectral clustering and the high-dimensional stochastic blockmodel.
Ann. Statist. 39, 1878–915.

Saldana, D., Yu, Y. & Feng, Y. (2017). How many communities are there? J. Comp. Graph. Statist. 26, 171–81.
Sarkar, P. & Bickel, P. J. (2015). Role of normalization in spectral clustering for stochastic blockmodels. Ann.

Statist. 43, 962–90.
Sengupta, S. & Chen, Y. (2018). A block model for node popularity in networks with community structure. J. R.

Statist. Soc. B 80, 365–86.
Shao, J. (1993). Linear model selection by cross-validation. J. Am. Statist. Assoc. 88, 486–94.

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article-abstract/doi/10.1093/biom
et/asaa006/5816043 by guest on 06 April 2020



20 T. Li, E. Levina AND J. Zhu

Su, L., Wang, W. & Zhang, Y. (2019). Strong consistency of spectral clustering for stochastic block models. arXiv:
1710.06191v3.

Sussman, D. L., Tang, M. & Priebe, C. E. (2014). Consistent latent position estimation and vertex classification
for random dot product graphs. IEEE Trans. Pat. Anal. Mach. Intel. 36, 48–57.

Tang, M., Athreya, A., Sussman, D. L., Lyzinski, V. & Priebe, C. E. (2017). A nonparametric two-sample
hypothesis testing problem for random graphs. Bernoulli 23, 1599–630.

Tang, M. & Priebe, C. E. (2018). Limit theorems for eigenvectors of the normalized Laplacian for random graphs.
Ann. Statist. 46, 2360–415.

Wang, S. & Rohe, K. (2016). Discussion of “Coauthorship and citation networks for statisticians”. Ann. Appl.
Statist. 10, 1820–6.

Wang, Y. X. R. & Bickel, P. J. (2017). Likelihood-based model selection for stochastic block models. Ann. Statist.
45, 500–28.

Wolfe, P. J. & Olhede, S. C. (2013). Nonparametric graphon estimation. arXiv: 1309.5936.
Yang, Y. (2007). Consistency of cross validation for comparing regression procedures. Ann. Statist. 35, 2450–73.
Young, S. J. & Scheinerman, E. R. (2007). Random dot product graph models for social networks. In International

Workshop on Algorithms and Models for the Web-Graph. Cham, Switzerland: Springer, pp. 138–49.
Zhang, P. (1993). Model selection via multifold cross validation. Ann. Statist. 21, 299–313.
Zhang, Y., Levina, E. & Zhu, J. (2017). Estimating network edge probabilities by neighbourhood smoothing.

Biometrika 104, 771–83.
Zhao, Y., Levina, E. & Zhu, J. (2012). Consistency of community detection in networks under degree-corrected

stochastic block models. Ann. Statist. 40, 2266–92.

[Received on 10 May 2018. Editorial decision on 17 October 2019]

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/advance-article-abstract/doi/10.1093/biom
et/asaa006/5816043 by guest on 06 April 2020


