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ABSTRACT
Link prediction in networks is typically accomplished by estimating or ranking the probabilities of edges
for all pairs of nodes. In practice, especially for social networks, the data are often collected by egocentric
sampling, which means selecting a subset of nodes and recording all of their edges. This sampling mecha-
nism requires different prediction tools than the typical assumption of links missing at random. We propose
a new computationally efficient link prediction algorithm for egocentrically sampled networks, estimating
the underlying probability matrix by estimating its row space. We empirically evaluate the method on
several synthetic and real-world networks and show that it provides accurate predictions for network links.
Supplemental materials including the code for experiments are available online.
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1. Introduction

Networks are useful for representing connections or relations
between individual units, and a large body of work spread over
several disciplines, including statistics, has been devoted to net-
work analysis. In many network-related problems, especially in
social sciences, the network structure is recorded with noise
and missing values (Newman 2018). These problems can be
especially severe when the data are collected by a survey, which is
popular in social studies. Link prediction addresses this problem
by denoising the observed network and/or predicting missing
links. Many techniques have been developed for this task; see
Liben-Nowell and Kleinberg (2007) and Lü and Zhou (2011) for
reviews.

The scenario we focus on in this article is when the network
structure is constructed by egocentric sampling, a procedure
where a subset of nodes is sampled first, and all links involving
this subset of nodes are then recorded, while all the other infor-
mation is missing. Egocentric sampling can be used in surveys
and other data collection procedures under budget constraints
and accessibility of subjects (Laumann et al. 1995; Hurlbert,
Beggs, and Haines 2005; Morris et al. 2009; Banerjee et al. 2013).
Link prediction in this context can be directly applied to sci-
entifically meaningful problems, for example, to identify social
ties for different levels of socio-economic factors in the post-
disaster policy-making (Hurlbert, Beggs, and Haines 2005), or
to identify high-risk connections between terrorists (Anil et al.
2015). Even when the network structure itself is not of primary
interest, accurately predicting the links may help downstream
analysis of the data. For example, Chandrasekhar and Lewis
(2011) have shown that in regression models of individuals on
an egocentrically sampled network, it is crucial to identify the
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true connections between individuals to avoid serious bias in
covariate effects estimation.

Sampled or partially observed relational data have been stud-
ied, and multiple methods have been proposed to handle inde-
pendently missing links for network estimation (Butts 2003;
Newman 2018) and longitudinal studies (Manresa 2013). In par-
ticular, Butts (2003) proposes a Bayesian model with individual
missing status for every dyad under the ignorable missing mech-
anism as defined in Rubin (1976), which can be viewed as a more
systematic model-based approach to the informant inaccuracy
problem discussed in Romney, Weller, and Batchelder (1986)
and Batchelder and Romney (1988). Newman (2018) improves
this framework with more flexible parameterization. However,
the missing status is assumed to be independent at the dyad
level and does not adapt to egocentric sampling. Moreover, these
methods involve heavy computation and are not feasible for
large networks.

Methods for egocentric sampling have also been studied in
quantitative social sciences (Freeman 1982; Almquist 2012) and
more recently in physics, computer science and statistics (e.g.,
Newman 2003; Mcauley and Leskovec 2012; Handcock and
Gile 2010; Krivitsky and Morris 2017). In particular, Handcock
and Gile (2010) introduce a general framework for handling
a class of missing mechanisms, including egocentric sampling,
in the exponential random graph model (ERGM) framework.
The model can be fitted with a pseudo-likelihood method and
scales up to moderate-sized networks. More recently, Krivit-
sky and Morris (2017) extend the ERGM to model egocentric
networks in which even though links are recorded, one cannot
identify who are the corresponding nodes. An efficient model
fitting method is proposed. However, in this situation, the link
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prediction problem is not well-defined, so their method is not
applicable in our settings. In general, though the ERGM frame-
work admits many attractive statistical properties, the model is
known to suffer from multi-modal likelihood and degenerate
model space (Chatterjee and Diaconis 2013; Shalizi and Rinaldo
2013), significantly limiting its flexibility to predict links. In
economics, Chandrasekhar and Lewis (2011) introduce the ego-
centric sampling in a similar form, but the network recovery
only works on the unrealistically simple configuration model
(Chung and Lu 2002) or relies on additional attributes as side
information.

In this article, we propose a computationally efficient algo-
rithm for link prediction specifically designed for egocentrically
sampled network data. The method is motivated by a matrix
completion algorithm, with added subspace estimation. Empir-
ically, we observed competitive performance compared with a
wide range of benchmark methods for link prediction on both
synthetic networks from different models and on real-world
networks.

We start by setting up the probabilistic framework for our
discussion. An undirected network on N nodes can be repre-
sented with a symmetric adjacency matrix A ∈ {0, 1}N×N . The
ijth entry of A, denoted by Aij, is the edge indicator, such that
Aij = Aji = 1 if and only if there is an edge between nodes i
and j. There are many successful statistical models for random
networks (Frank and Strauss 1986; Robins et al. 2007; Crane
and Dempsey 2018; Lauritzen, Rinaldo, and Sadeghi 2018). Here
we follow the popular inhomogeneous Erdős-Rényi framework
for random networks: given an underlying probability matrix
P, all the upper triangular entries of the adjacency matrix A
are generated as independent Bernoulli random variables, with
probability of Aij = 1 given by the ijth entry of P, pij. We treat
the probability matrix P as fixed throughout the article.

1.1. Matrix Completion and Link Prediction

The link prediction problem can be viewed as the task of classify-
ing pairs of nodes into two categories, “linked” and “not linked.”
In practice, link prediction is frequently made on the basis of a
score for each pair (Liben-Nowell and Kleinberg 2007; Lichten-
walter, Lussier, and Chawla 2010; Zhao et al. 2017). Such a score
function can be an estimator of P or, alternatively, a monotone
function of the link probabilities if only a relative ranking of links
is important. This is closely related to the problem of matrix
completion.

Matrix completion is the task of completing a data matrix
where only some entries of the matrix A are observed, often
solved through a low-rank approximation. We assume that Aij =
pij + eij, where eij’s are independent random errors with E[eij] =
0 and P is the true signal matrix that is assumed to be at least
approximately low-rank. When A is constrained to be symmet-
ric, eij’s are only independent across upper triangular entries
and the symmetric restriction is applied to the lower triangular
entries.

A basic matrix completion procedure solves the optimization
problem

minimize
X

�(�(X), �(A))

subject to Rank(X) ≤ r,

where � is an entry-wise mask operator with �(Aij) = Aij if the
entry Aij is observed and �(Aij) = 0 otherwise, and � is a loss
function. This problem and its variants have been extensively
studied in recent years (Candès and Tao 2010; Candès and
Plan 2010; Keshavan, Montanari, and Oh 2010; Davenport et al.
2014); we refer readers to the review of Chi and Li (2019). All
of this work is under the assumption that entries in the data
matrix are missing independently, though the missing proba-
bility can be different across entries. Under this assumption,
matrix completion methods have been successfully used for
many link prediction problems (Pech et al. 2017; Gao et al.
2018; Li, Levina, and Zhu 2020b). The models of Butts (2003)
and Newman (2018) can also be viewed as probabilistic binary
matrix completion methods.

1.2. Egocentric Networks

The sampling mechanism we focus on in this article, egocentric
sampling, often arises from surveys that ask a sample of subjects
to name all of their social connections. We model this process as
sampling n nodes without replacement from the true network of
size N, and recording all edges involving these n nodes, giving
a random egocentric sample of n rows (and the corresponding
columns, since A is symmetric) from the full N × N adjacency
matrix A.

Formally, suppose that the network G = (V , E) has the node
set V = {1, . . . , N} and the edge set E with |E| = m. We sample
nodes I = {i1, . . . , in} ⊂ V , and observe the egocentriclaly
sampled network, or ego-network for short, Gego = (Vego, Eego),
where Vego = V , and Eego = ∪u∈I{(u, v) : (u, v) ∈ E}. See
Figure 1 for an illustration. Equivalently, when node i is sampled,
the ith row and ith column of A are observed.

Egocentric sampling evidently results in a different missing
mechanism from the traditional matrix completion settings dis-
cussed in Section 1.1. Therefore, new approaches are needed to
account for this difference.

The rest of this article is organized as follows. In Section 2, we
propose a new computationally efficient link prediction method
for egocentrically sampled networks. The key idea is subspace
estimation, since the observed rows allow us to estimate the
approximate row space of the probability matrix P. Empirical
results on synthetic data and real networks are presented in
Section 3 and Section 4. Section 5 concludes the article with a
discussion and future work.

2. A Subspace Estimation Algorithm

Without loss of generality, we assume that the first n nodes
are sampled, and the observed adjacency matrix can be parti-
tioned into blocks Aij for i, j ∈ {1, 2}, where A11 ∈ {0, 1}n×n,
A12 ∈ {0, 1}n×(N−n), A21 = A�

12, and the block A22 ∈
{0, 1}(N−n)×(N−n) is unobserved, as illustrated in Figure 2. The
corresponding submatrices of P are similarly labeled Pij for i, j =
1, 2. We also define Ain = [A11 A12]n×N with the corresponding
probability sub-matrix Pin = [P11 P12]n×N .

2.1. Motivating Background: The CUR Decomposition

Our goal is to predict links between the nodes that are not
sampled, or equivalently to estimate P22 from the available



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 3

Figure 1. An illustration of egocentric sampling.

Figure 2. Grey: observed blocks. White: the unobserved block.

information Ain. For illustrative purposes, consider the simpler
noiseless setting, where we observe Pin and aim to estimate P22
or equivalently, the entire matrix P. The egocentric sampling
mechanism gives a special structure to missing entries, since
we observe full rows (and the corresponding columns) of the
matrix. An effective way to recover P given this structure
is by using the so-called CUR decomposition from matrix
algebra, studied by Drineas, Kannan, and Mahoney (2006),
Drineas, Mahoney, and Muthukrishnan (2008), and Mahoney
and Drineas (2009). Mahoney and Drineas (2009) show that
any N × N symmetric low-rank matrix M can be approximately
represented by

M ≈ RTUR

where R is a matrix of q rows of M and U is q×q loading matrix,
for some q such that rank(M) < q � N.

Motivated by this representation, we make the assumption

P = PT
inUPin , (1)

where U is an n × n matrix.
A natural way to compute U is to solve the following least

square problem, restricted to the observed entries as in other
matrix completion problems:

U = arg min
U

‖�(P) − �(PT
inUPin)‖2

F , (2)

where �(pij) = I(i or j is sampled) · pij, and ‖ · ‖F is the matrix
Frobenius norm. This problem admits a closed-form solution in
the egocentric setting.

Theorem 2.1. Under the egocentric sampling model for � and
the CUR assumption (1),

U = P+
11 (3)

is a solution to problem (2), where P+
11 is the Moore-Penrose

inverse of P11 and the corresponding minimum of the objective
function is 0.

Based on Theorem 2.1, one can then use PT
inP+

11Pin as the
estimator of P. Such a procedure is not directly applicable in
practice when we observe Ain rather than Pin, but it serves as
the motivation of our algorithm.

2.2. Estimation Algorithm for Egocentric Link Prediction

In practice, we observe Ain, a noisy version of Pin. While it is
tempting to directly “plug-in” the data by replacing P and Pin
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in (2) and (3) by A and Ain, this naive approach does not work
well in practice, because it overfits the data and gives 0 training
error in the objective (2). One way to see this is to observe that
|Aij−pij| is either pij or 1−pij, so the error is as large as the signal
pij itself. Empirically this estimator often gives poor predictions
(see Section 3).

Regularization is a general approach to counteracting over-
fitting. A natural option in this setting is constraining the rank
of the estimator and replying on the low-rank approximation
to remove some of the noise. Such a strategy has also been
widely used in spectral algorithms in network settings (Rohe,
Chatterjee, and Yu 2011; Lei and Rinaldo 2015). Specifically,
we compute a regularized estimator of Pin as the best rank r
approximation to Ain, given by the partial SVD (Golub and Van
Loan 1989). Denoting this estimator by P̃in, we can then plug
it in (2) in the place of Pin and obtain a regularized estimator
of P from the CUR algorithm. This procedure is summarized as
follows.

1. Compute P̃in = UrDrV�
r , the optimal rank-r approximation

of Ain by partial SVD.
2. Let P̃11 be the n × n sub-matrix of P̃in consisting of the first

n columns. Set

X̂ = 1
2
(̃P+

11 + P̃�+
11 ). (4)

3. Estimate the probability matrix P by

P̂ = P̃�
inX̂P̃in. (5)

The algorithm for computing Vr can be viewed as estimating
the principal subspace of the row space of Pin, which is also the
row space of P according to the CUR assumption (1). From this
perspective, we can view our method as a subspace estimation
procedure (Cichocki and Amari 2002). Computationally, the
main step of this algorithm is the partial SVD, which can be
efficiently done for large networks. In our empirical evaluation,
the method can easily handle sparse networks of order 105 in an
ordinary laptop.

Another interpretation of our algorithm comes from a low-
rank approximation view. A rank-r approximation to P can
always be written as Pr = R�ZR, where R ∈ R

r×N and Z ∈
R

r×r . Recall that P̃in = UrDrV�
r . Therefore, we can rewrite (5)

as

P̂ = VrDrU�
r X̂UrDrV�

r = Vr(DrU�
r X̂UrDr)V�

r := R̂�ẐR̂.

Thus, Vr gives an estimated embedding of the network in a space
equipped with an inner product represented by the matrix Ẑ.

Our method relies on both the CUR form and the low-rank
assumption, which can in practice be relaxed to approximately
low-rank. Checking the approximately low rank assumption in
practice can be achieved via computing the stable rank SR(A) =
‖A‖2

F/‖A‖2. To understand where this set of assumptions fits in
with existing models, consider two special cases.

The first case is the stochastic block model (SBM) (Holland
and Leinhardt 1981), perhaps the most widely studied model for
networks with communities. It is easy to see that the SBM can be
written as a special case of the CUR form (1) because there are
only K different rows of P; thus, our assumptions include the
SBM and are strictly more general. The CUR condition holds

as long as we observe at least one node from each community.
We can get a rough estimate of the sample size n for which this
happens. Assume a data collection procedure from the popu-
lation where each community has the same proportion. When
n subjects are collected, the number of observations from each
community follows a binomial distribution with expectation
n/r. By Hoeffding’s inequality (e.g., chap. 2.6 of Vershynin 2018),
the probability of having zero subjects from one community is
bounded by 2 exp(− cn

r2 ) with some absolute constant c. There-
fore, the probability of missing at least one community in the n
subjects is upper bounded by

2r exp(− cn
r2 ).

So for any δ > 0, if n > r2 log 2r
δ

, we can ensure that all
communities have at least one subject in the sample (thus, the
CUR assumption holds exactly) with probability at least 1 − δ.

The other case is a general low-rank model for P. While
assuming a low-rank structure in P is more general than our
model, Drineas, Mahoney, and Muthukrishnan (2008) and
Mahoney and Drineas (2009) show that if one can control which
rows to sample, sampling O(r log r/ε2) rows would ensure that
the CUR decomposition can approximate the general low-rank
matrix up to a multiplicative factor ε with probability at least
0.7. Under uniform egocentric sampling, this statement still
holds if the incoherence condition of Candès and Tao (2010)
is further assumed for P. Thus, when the sampling fraction is
sufficiently large and the true model is low-rank but does not
satisfy the CUR assumption, our method may still perform
similarly to a generic low-rank model. In contrast, when n
is small, as is frequently the case with egocentric sampling in
practice (Fafchamps and Lund 2003; Bandiera and Rasul 2006;
Ali and Dwyer 2009; Conley and Udry 2010; Banerjee et al.
2013), the general low-rank model may be too flexible and lead
to overfitting, whereas our method can be viewed as a form of
regularization that can mitigate overfitting. These conjectures
are confirmed by our experiments in Section 3.

2.3. Tuning Parameter Selection

The approximation rank r is a tuning parameter we have to
choose in a data-driven fashion. We do this with a network
cross-validation method which can be viewed as a hybrid of
Chen and Lei (2018) and Li, Levina, and Zhu (2020b), adapted
to the ego-sampled setting. Specifically, we randomly sample
a subset of nodes T ⊂ {1, . . . , n} and set A−T ,in to be the
matrix resulting from deleting the rows in T from Ain. Applying
the subspace estimation algorithm to A−T ,in with a sequence
of r values, we then estimate predictive accuracy for each r by
computing the area under the ROC curve (AUC) on the entries
AT ,in, and choose the value of r that achieves the maximum
AUC. Moreover, as suggested in Chen and Lei (2018), repeating
the above procedure multiple times and aggregating the results
by picking a quantile or mode of the selection can significantly
improve the tuning stability. In our examples, we set |T | =
0.1n, and search for the rank from 2 to the stable rank plus
10. We also replicate this procedure 20 times, and picked the
80% quantile of the 20 selected ranks as our rank to use for
model fitting. Similar methods are used for other benchmark
methods involving tuning parameters in our empirical studies
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in Sections 3 and 4. Self-tuning or tuning-free methods, such as
the universal singular value thresholding (Chatterjee 2015), will
further reduce computational cost, but they give inferior results
in most settings of our evaluation.

3. Evaluation on Synthetic Networks

In this section, we compare our subspace estimation method
(SE) to several benchmark algorithms for link prediction. The
benchmark algorithms can be grouped into the following classes.

1. Matrix completion methods. The first method applies the
CUR algorithm to the “naive” plug-in estimate A11 for P11
in (3), as discussed at the beginning of Section 2.2. This
method is labeled “CUR” in the results. The second method
in this class is the nuclear norm regularization with inexact
augmented Lagrange multiplier method (Lin, Chen, and Ma
2010), labeled “MC.” The MC method is tuned by the cross-
validation method of Chen and Lei (2018), with five replicates
for stability selection.

2. Graphon methods. These include the popular universal
singular value thresholding method (Chatterjee 2015),
labeled “USVT,” and the neighborhood smoothing method
for graphon estimation (Zhang, Levina, and Zhu 2017),
labeled “NS.” The NS method is based on a similarity measure
between nodes and thus can be applied in the egocentric
sampling setting, with A2 replaced by A�

inAin in the algorithm
of Zhang, Levina, and Zhu (2017).

3. Parametric models. These include the exponential random
graph model (labeled “ERGM”) from Handcock and Gile
(2010) with egocentric sampling and the geometrically-
weighted edgewise shared partnerships of Hunter (2007), as
implemented in the R package ergm (Handcock et al. 2019).
The second parametric model is the stochastic block model
(labeled “SBM”), adapted to egocentric sampling with the
fitting strategy of Chen and Lei (2018) which is also used to
estimate the number of blocks, with 20 replicates for stability
selection. The third parametric model is the Bayesian version
of the random dot product graph model (labeled “RDPG”).
It is unclear how to fit the standard RDPG in the egocentric
setting, but the additive and multiplicative effect models of
Hoff (2009) include the Bayesian version of the RDPG as
a special case. The model fitting is based on the R package
amen (Hoff, Fosdick, and Volfovsky 2020), tuned by the
cross-validation of Chen and Lei (2018).

4. The oracle method. We directly use the true model P as the
oracle reference.

5. Ensemble learning for link prediction. In practice, combining
multiple single models or algorithms can result in significant
performance improvement for link prediction (Ghasemian
et al. 2020). In particular, if link prediction is the primary
task, Ghasemian et al. (2020) proposed using an approach
they called Optimal Link Prediction (OLP), exploiting a hier-
archical learning strategy to combine strengths of individual
methods by random forest. The final ensemble prediction
can be better than any of the individual methods (on aver-
age). We include two methods based on this strategy. One is
topological stacking (“Topo”) based on the implementation
of Ghasemian et al. (2020), with the one difference that we
drop the Adamic-Adar index, because it cannot be computed

for egocentrically sampled data, and rely on the remaining
41 topological link prediction metrics. We also include a
version that combines our SE method with the 41 topological
metrics (“SeTopo”), as the strategy of Ghasemian et al. (2020)
is general and, in principle, can combine any link prediction
methods. There are other ensemble learning link prediction
approaches in the literature, such as Peixoto (2015), Peixoto
(2018), Yao et al. (2021), and Li and Le (2021). We only
include Topo and SeTopo to demonstrate the potential of
ensemble learning for link prediction; we note that these
methods cannot be used to learn anything model-based, such
as network summary statistics, which are also part of the eval-
uation. For both “Topo” and “SeTopo,” we tune the random
forest using the cross-validation strategy of Ghasemian et al.
(2020), with the number of trees selected from {50, 100} and
tree depths selected from {3, 6, 10}.

The methods without publicly available software have been
implemented in Python. While only the SE and CUR methods
are designed specifically for the egocentric sampling setting, the
algorithms fitting NS, MC, ERGM, RDPG, and the SBM are
applicable to this setting either directly or with minor modi-
fications which we implemented. We conjecture that USVT is
not valid under egocentric sampling because it relies on the
uniform dyad sampling assumption for its threshold and scaling
values. The ensemble methods do not rely on any statistical
model or assumptions, so it is difficult to assess their validity,
but our results below show that empirically they work well under
egocentric sampling.

3.1. Network Generating Models

The synthetic networks are generated from three widely used
network models, which all fall under the inhomogeneous Erdös-
Renyi framework. The first model is the stochastic block model
(SBM) proposed by Holland, Laskey, and Leinhardt (1983), with
K = 5 communities. We randomly assign the community label
Zi for nodes i = 1, . . . , N, a value from {1, 2, 3, 4, 5}, all with
equal probability. The connection probability between nodes
is set to pij = 0.05 if Zi 
= Zj, and to pij = .05 + Zi−0.3

6
if Zi = Zj. The second model is the random dot product
graph (RDPG) model (Young and Scheinerman 2007). Follow-
ing Athreya et al. (2018), we generate five-dimensional vectors
Zi, i = 1, . . . , N independently with each coordinate being
sampled from Beta(0.5, 1) and define pij = ZT

i Zj. The third
model is the latent space model proposed by Hoff, Raftery,
and Handcock (2002). Here we generate five-dimensional latent
vectors Zi, i = 1, . . . , N from N(0, I5) and set pij = 1/(1 +
exp(‖Zi−Zj‖)). We call this the “distance model,” as the strength
of connectivity between two nodes is determined by the distance
between their positions in the latent space. The three models are

Table 1. Generative models for synthetic networks: distributions of latent variables,
link functions, and the rank of the matrix P. Unif{1, . . . , 5} is the uniform distribution
on the integers {1, . . . , 5}; Beta(0.5, 1) is a beta distribution with parameters 0.5 and
1; N(0, I5) is a five-dimensional multivariate standard Gaussian.

Model Distr. of Zi f (Zi , Zj) Rank(P)

SBM Unif{1, . . . , 5} 0.05 + i−0.3
6 1(i = j) 5

RDPG Beta(0.5, 1) Z�
i Zj 5

Distance N(0, I5) (1 + e(‖Zi−Zj‖))−1 full
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summarized in Table 1. The SBM is the simplest model of the
three, which admits community structures but does not allow
for any heterogeneity within a community. The product model
is a more general low-rank model that includes the (assortative)
SBM as a special case (Athreya et al. 2018). The latent vectors
Zi’s can be generated from many general distributions, as long as
their inner products give valid probabilities. The distance model
is the most general, with no constraint on the distribution of
Zi’s at all. It does not necessarily have a low-rank probability
matrix. For all simulations, we first generate iid Zi’s for i =
1, . . . , N, and then generate Aij ∼ Bernoulli(φf (Xi, Xj)), where
φ controls the average degree and f is specified by the model (see
Table 1).

For a given network model, the difficulty of the problem is
primarily controlled by two quantities, the sampling fraction
ρ and the average node degree determined by φ. Different
configurations of the two quantities are evaluated. All results are
based on average performance over 50 replications.

3.2. Evaluation Criterion

We will evaluate the methods in three different aspects that can
be crucial in practice: the link prediction accuracy, prediction of
network global statistics, and timing.

For link prediction accuracy, since the links are always either
1 or 0, a threshold set on the probability for prediction would
result in both true and false positives. There are various ways
to measure performance in this context. In particular, varying
the threshold allows us to trace the entire ROC curve described
by the true positive rate (TPR) and the false positive rate (FPR),
defined as

TPR = #{correctly predicted edges}
#{All true edges} ,

FPR = #{falsely predicted edges}
#{All null edges}

as well as the Precision-Recall (PR) curve described by precision
and recall, defined as

Precision = #{correctly predicted edges}
#{All predicted edges} ,

Recall = #{correctly predicted edges}
#{All true edges} .

Note that recall and the true positive rate are the same metric, so
the difference between the ROC and the PR curves lies in the dif-
ference between the false positive rate and precision. Generally
speaking, the ROC curve gives a more balanced measure, while
the PR curve focuses on performance on true edges rather than
both true and absent edges. When the network is very sparse,
the ROC curve may favor methods that do not predict any edges
at all, and the PR curve does not have that problem, so we will
report both measures when we can. Both curves depend only
on the ordering of the predicted probabilities of links, not their
magnitude, and are invariant under a monotone transformation
applied entry-wise to P̂.

Model-based methods can also be used to predict global net-
work summary statistics, from the partially observed network.
We focus on three widely used statistics: edge density, global

clustering coefficient and global eigencentrality. The density is
defined by

λ =
∑

i<j Aij

n(n − 1)/2
.

The global clustering coefficient of a network is defined to be

CC = # of closed triplets
# of all triplets

.

Given a connection probability estimate P̂, we can estimate
the clustering coefficient by replacing both the numerator and
denominator with their expectations under P̂.

The eigencentrality score of a node is defined to be the abso-
lute value of its coordinate in the leading eigenvector of A. Let w
be the leading eigenvector of A, and the global eigencentrality is
defined as

C =
∑

i
(max

i
wi − wi)/c,

where c is a computable constant that only depends on N.
Eigencentrality is widely used in many network algorithms, such
as Google’s PageRank (Page et al. 1999).

When only A22 is missing, we use the link prediction algo-
rithms to impute it by P̂22 as the point estimate. The network
statistics can then be computed from this imputed adjacency
matrix. As suggested by the associate editor, a natural predictor
for the density may be empirical estimator λemp =

∑
i<j,(i,j)∈� Aij

|�| .
This empirical estimator will also be included for evaluation. For
completeness, we also include two “naive” empirical estimators
for the global clustering coefficient and eigencentrality. These
are calculated by directly treating the missing entries of A as
zeros. Performance is measured by the relative absolute error
|Ĉ − C|/C, which does not depend on the constant c in the
definition of eigenvector centrality.

For the timing comparison, since many methods involve a
tuning procedure for which the configuration and preference
can vary a lot across users, we do not include the tuning pro-
cedure in timing evaluation and only focus on one model-fitting
procedure. For reference, SE can be tuned by cross-validation
for which the timing would be the number of cross-validations
times the single model fitting timing. Our implementation does
not take advantage of the sparse matrix structure, so in principle
the times for all of SE, CUR, USVT, NS, and the SBM can be fur-
ther improved. Also, some of the methods are implemented in
R and others in Python. However, we believe these approximate
comparisons are enough to get a sense of the relative scalability
of different methods.

3.3. Link Prediction Accuracy

For each of the three models, we consider the settings of ρ =
0.2, 0.5, 0.9 and the average degree of 20 or 100. The ROC curves
and PR curves are shown in Figures 3–4 (SBM), Figures 5–6
(product model) and Figures 7–8 (distance model). We start
from the single model-based methods.

When the true model is the SBM, the ROC curves in Figure 3
show that sometimes (when ρ = 0.2 and the degree is 20), our
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Figure 3. ROC curves of link prediction performance when the network is generated by the SBM.

method (SE) is more accurate than fitting the SBM model itself.
This is because cross-validation tends to be conservative for the
SBM and selects a smaller number of blocks than necessary. As

the network becomes denser, most methods improve, and in par-
ticular, the NS method performs similarly to our method. Fitting
the SBM eventually becomes the best for dense networks and
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Figure 4. PR curves of link prediction performance when the network is generated by the SBM.

matches the oracle performance, as expected. The performance
also improves when ρ increases, especially going from 0.2 to 0.5,
and less so from 0.5 to 0.9. USVT also performs well on dense

networks, but does not adapt well to sparsity. The comparison
remains overall similar when the performance is measured by
PR curves instead (Figure 4).
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Figure 5. ROC curves of link prediction performance when the network is generated by the product model.

The product model and the distance model produce similar
patterns. In the most challenging setting of ρ = 0.2 and the
average degree of 20, our method has the biggest advantage, with

smaller differences in easier settings. Overall, the NS method is
also competitive if ρ is not too small, and the network is not
too sparse. The USVT works well only for dense networks. The
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Figure 6. PR curves of link prediction performance when the network is generated by the product model.

SBM can achieve moderately good link prediction performance
in some settings.

Next, we compare our SE method with the ensemble learning
methods Topo and SeTopo based on the OLP strategy proposed

by Ghasemian et al. (2020). Due to space limitations, we only
show the PR curves, given in Figures 9–10. The corresponding
ROC curves are included in supplementary materials Section C
for completeness.
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Figure 7. ROC curves of link prediction performance when the network is generated by the distance model.

Our results show that while Topo can make reasonably
good predictions in most settings, it is less accurate than
the SE method. This is expected since Topo does not match

the true setting. SeTopo, in contrast, is always similar to
or better than SE. These results confirm the observation
of Ghasemian et al. (2020) that, for link prediction, an
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Figure 8. PR curves of link prediction performance when the network is generated by the distance model.

ensemble can outperform any individual method, and show
that including SE in the ensemble substantially improves
performance.

3.4. Predicting Global Network Summaries

Tables 2–4 present the results for global network density,
global clustering coefficient, and eigencentrality prediction.
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Figure 9. PR curves of link prediction performance in comparison with the ensemble methods when the average degree is 20.

The smallest error in each setting is shown in bold. If multiple
methods show no statistically significant difference from the
best one, they are also shown in bold.

3.4.1. Network Density Prediction (Table 2)
The SBM, as expected, is the best or close to the best in all
configurations when the true model is the SBM. It also gives
competitive estimators when ρ is large under other models. The
empirical estimator turns out to be the best in sparse settings
and close to the best in dense networks. Our proposed method,
SE, is the best in dense networks and close to the best in sparse
settings. The NS and ERGM are competitive in a few settings
but give poor results in other settings. For example, the ERGM

appears to work relatively well for sparse networks, but not for
denser ones.

3.4.2. Global Clustering Coefficient Prediction (Table 3)
The empirical estimator performs poorly on this task. The SBM
estimator is still the best under the SBM, as well as for sparse yet
high sampling proportion settings under the other two models.
The SE and NS are generally competitive for predicting this
statistic. The SE is again the best in dense networks and close
to the best in sparse settings, while the NS is the best in sparse
settings and close to the best in dense ones. The MC and USVT
give good estimators occasionally but are not competitive in
most settings.
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Figure 10. PR curves of link prediction performance in comparison with the ensemble methods when the average degree is 100.

3.4.3. Eigencentrality Prediction (Table 4)
There is not a clear winner for this statistic. The SBM is
the best or close to the best under the SBM. The SE, NS,
and ERGM are the most competitive overall. The empirical
estimator, CUR, and MC are not competitive with the best
methods.

Overall, our proposed method, the SE, provides the best or
close to the best predictions for all three statistics when the
network is dense and highly competitive in sparse settings. The
NS generally works well for global clustering coefficient and
eigencentrality, but is less accurate for network density. The
SBM estimator is mainly helpful if the network is generated
from the SBM. The empirical estimator is accurate for net-

work density but not for either global clustering coefficient or
eigencentrality.

3.5. Timing Comparisons

There are three main factors that impact timing: the network
size N, the sampling fraction ρ = n/N, and the average degree
of the network. We evaluate the average time that it takes to fit
a single model in the settings of the previous section. We also
include additional settings with N = 2000, 5000, the degree is
set to log n1.5, and ρ ∈ (0.2, 0.5, 0.9). The computation was done
on a Linux system with 128GB of RAM. Times longer than 3 hr
are considered not competitive and are not reported. The results



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 15

Table 2. Relative errors in predicting the densities of the synthetic networks.

Model (ρ, degree) avg. λ SE CUR NS MC USVT SBM ERGM RDPG Empirical

SBM (0.2, 20) 0.039 0.074 5.053 0.113 2.752 0.638 0.037 0.027 0.692 0.023
(0.2, 100) 0.197 0.018 0.865 0.092 0.291 0.494 0.008 0.504 0.054 0.017

(0.5, 20) 0.039 0.013 2.454 0.024 1.266 0.250 0.009 0.012 0.052 0.010
(0.5, 100) 0.197 0.005 0.359 0.017 0.042 0.104 0.004 0.184 0.055 0.007

(0.9, 20) 0.039 0.001 0.100 0.001 0.010 0.010 0.001 0.001 0.002 0.001
(0.9, 100) 0.197 <0.001 0.014 <0.001 0.006 0.002 0.001 0.003 0.001 0.001

Product (0.2, 20) 0.039 0.074 4.568 0.143 2.577 0.637 0.051 0.029 0.784 0.030
(0.2, 100) 0.197 0.017 0.851 0.048 0.355 0.632 0.026 0.271 0.173 0.022

(0.5, 20) 0.039 0.015 2.403 0.045 1.219 0.251 0.013 0.013 0.053 0.012
(0.5, 100) 0.197 0.005 0.342 0.022 0.049 0.103 0.009 0.078 0.075 0.009

(0.9, 20) 0.039 0.002 0.100 0.002 0.007 0.010 0.001 0.001 0.003 0.002
(0.9, 100) 0.197 0.001 0.014 0.001 0.006 0.002 0.001 0.003 0.003 0.001

Distance (0.2, 20) 0.039 0.066 4.779 0.133 2.589 0.640 0.050 0.034 0.826 0.022
(0.2, 100) 0.197 0.017 0.836 0.045 0.359 0.629 0.024 0.267 0.067 0.022

(0.5, 20) 0.039 0.013 2.440 0.041 1.214 0.250 0.013 0.010 0.072 0.010
(0.5, 100) 0.197 0.004 0.356 0.019 0.052 0.103 0.012 0.076 0.058 0.010

(0.9, 20) 0.039 0.002 0.103 0.002 0.009 0.010 0.001 0.001 0.002 0.001
(0.9, 100) 0.197 <0.001 0.014 0.001 0.006 0.002 0.001 0.003 0.004 0.001

NOTE: The relative error is defined as |λ̂ − λ|/λ

Table 3. The relative errors in predicting the global clustering coefficients of the synthetic networks.

Model (ρ, degree) avg. CC SE CUR NS MC USVT SBM ERGM RDPG Empirical

SBM (0.2, 20) 0.085 0.242 3.787 0.130 2.033 0.563 0.220 0.474 0.254 0.590
(0.2 ,100) 0.405 0.028 0.295 0.158 0.233 0.334 0.006 0.570 0.448 0.548

(0.5, 20) 0.089 0.063 2.926 0.047 1.770 0.206 0.039 0.247 0.097 0.216
(0.5, 100) 0.409 0.007 0.172 0.035 0.113 0.079 0.002 0.209 0.238 0.204

(0.9, 20) 0.086 0.004 0.313 0.004 0.010 0.008 0.003 0.014 0.014 0.010
(0.9, 100) 0.406 <0.001 0.015 <0.001 0.011 0.002 <0.001 0.013 0.009 0.010

Product (0.2, 20) 0.052 0.335 5.657 0.048 3.931 0.567 0.124 0.176 1.187 0.558
(0.2, 100) 0.258 0.041 0.845 0.045 0.219 0.545 0.171 0.348 0.062 0.560

(0.5, 20) 0.051 0.062 5.342 0.030 3.626 0.206 0.029 0.091 0.188 0.212
(0.5, 100) 0.263 0.014 0.373 0.022 0.010 0.083 0.081 0.128 0.127 0.203

(0.9, 20) 0.051 0.005 0.691 0.003 0.008 0.010 0.003 0.005 0.008 0.009
(0.9, 100) 0.261 0.001 0.006 0.001 0.002 0.001 0.004 0.006 0.005 0.009

Distance (0.2, 20) 0.052 0.310 7.183 0.056 3.717 0.560 0.140 0.220 1.043 0.562
(0.2, 100) 0.270 0.057 0.514 0.072 0.243 0.543 0.190 0.367 0.177 0.553

(0.5, 20) 0.051 0.055 5.309 0.035 3.346 0.212 0.040 0.101 0.184 0.211
(0.5, 100) 0.268 0.018 0.361 0.035 0.029 0.095 0.096 0.141 0.128 0.200

(0.9, 20) 0.052 0.005 0.636 0.004 0.008 0.010 0.004 0.005 0.007 0.010
(0.9, 100) 0.269 0.001 0.005 0.002 0.001 0.003 0.005 0.007 0.006 0.009

NOTE: The relative error is defined as |ĈC − CCtrue|/CCtrue

Table 4. Relative errors in predicting the eigencentralities of the synthetic networks.

Model (ρ, degree) avg. C SE CUR NS MC USVT SBM ERGM RDPG Empirical

SBM (0.2, 20) 45.2 0.329 0.636 0.171 0.233 1.002 0.173 0.276 0.222 0.985
(0.2, 100) 22.4 0.068 0.545 0.180 0.515 0.748 0.028 1.047 0.253 1.373

(0.5, 20) 44.4 0.149 0.484 0.053 0.090 0.248 0.068 0.094 0.087 0.262
(0.5, 100) 22.4 0.020 0.323 0.037 0.121 0.161 0.011 0.257 0.064 0.370

(0.9, 20) 44.7 0.011 0.314 0.006 0.029 0.014 0.004 0.011 0.003 0.019
(0.9, 100) 22.5 0.003 0.024 0.001 0.015 0.003 0.002 0.006 0.002 0.016

Product (0.2, 20) 30.1 0.483 0.446 0.288 0.156 1.237 0.236 0.136 0.486 1.280
(0.2, 100) 23.4 0.156 0.563 0.113 0.499 1.299 0.103 0.530 0.306 1.373

(0.5, 20) 32.4 0.173 0.279 0.079 0.487 0.317 0.089 0.084 0.637 0.300
(0.5, 100) 22.8 0.044 0.345 0.047 0.101 0.129 0.064 0.141 0.108 0.346

(0.9, 20) 31.0 0.013 0.736 0.008 0.028 0.020 0.011 0.021 0.011 0.019
(0.9, 100) 23.1 0.004 0.023 0.006 0.008 0.004 0.009 0.009 0.010 0.023

Distance (0.2, 20) 29.7 0.664 0.380 0.280 0.181 1.320 0.218 0.140 0.540 1.316
(0.2, 100) 20.4 0.179 0.526 0.096 0.596 1.367 0.138 0.510 0.202 1.424

(0.5, 20) 30.0 0.175 0.224 0.085 0.556 0.332 0.094 0.078 0.801 0.349
(0.5, 100) 20.5 0.063 0.271 0.050 0.121 0.139 0.054 0.133 0.108 0.357

(0.9, 20) 30.1 0.015 0.873 0.012 0.035 0.020 0.012 0.008 0.007 0.019
(0.9, 100) 20.1 0.002 0.027 0.005 0.016 0.004 0.007 0.014 0.034 0.026

NOTE: The relative error is defined as |̂C − Ctrue|/Ctrue.
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Table 5. Timing comparisons with different configurations under the distance model (in seconds) averaged over 50 replications.

N, degree, ρ SE CUR NS MC USVT SBM ERGM RDPG Topo SeTopo

(500, 20, 0.2) 0.007 0.003 0.183 1.865 0.022 0.057 25.84 75.60 110.86 124.11
(500, 20, 0.5) 0.032 0.019 0.223 2.215 0.022 0.069 13.75 80.19 118.98 144.73
(500, 20, 0.9) 0.114 0.076 0.298 2.258 0.023 0.089 9.60 57.80 131.75 139.62
(500, 100, 0.2) 0.007 0.003 0.185 1.821 0.021 0.032 80.96 61.69 467.63 484.78
(500, 100, 0.5) 0.031 0.019 0.221 2.208 0.022 0.045 160.64 42.97 503.25 537.46
(500, 100, 0.9) 0.113 0.076 0.300 2.253 0.023 0.063 190.95 48.29 514.32 476.119
(2000, 20.95, 0.2) 0.254 0.100 13.32 147.16 0.272 0.456 969.08 890.67 1873.12 2017.78
(2000, 20.95, 0.5) 1.616 0.719 20.48 156.22 0.269 0.988 296.33 554.68 2201.72 2381.38
(2000, 20.95, 0.9) 5.954 4.026 25.79 157.00 0.330 1.450 71.061 564.66 2264.30 2474.97
(5000, 24.85, 0.2) 5.013 1.439 224.83 >3hr 1.883 3.386 >3hr >3hr >3hr >3hr
(5000, 24.85, 0.5) 33.851 12.823 321.77 >3hr 2.066 9.252 3354.88 >3hr >3hr >3hr
(5000, 24.85, 0.9) 107.453 72.886 449.51 >3hr 2.124 15.132 255.93 >3hr >3hr >3hr

NOTE: The standard deviations are small and omitted.

Figure 11. Summary statistics of the 276 binary undirected networks.

are similar for different models, so we only show the times under
one of them, the distance model.

Table 5 shows results in seconds. Generally, it takes all meth-
ods longer as ρ grows, except for the ERGM. This is because
higher values of ρ usually correspond to models of higher com-
plexity chosen by cross-validation (e.g., a larger r in SE, and
a larger A11 for computing the pseudo-inverse). The times for
Topo, SeTopo, and the ERGM depend heavily on the density
of the network. Overall, the CUR and USVT are the fastest,
followed by the SE and the SBM. The NS is slower than these four
by an order of magnitude and is barely feasible for N = 5000.
The ERGM is even slower, unless ρ = 0.9. The RDPG, Topo,
and SeTopo are even slower and cannot easily handle N = 2000
or more. These results do not take memory usage into account,
but we have observed that SE, CUR, USVT, and the SBM are also
the most memory-efficient among all methods considered.

4. Link Prediction on Real-World Networks

Here we report the performance of all the methods considered so
far on a large set of real-world networks from Ghasemian et al.
(2020). The dataset contains networks from different domains
(biological, economic, informational, social, technological, and
transportation). The topological differences between different
domains have been investigated by Ikehara and Clauset (2017),
and the dataset has been used as a benchmark in many link
prediction evaluations (Mara, Lijffijt, and De Bie 2020; Kitsak,
Voitalov, and Krioukov 2020; Yao et al. 2021; Li and Le 2021). A
“no-free-lunch” phenomenon was observed by Ghasemian et al.
(2020) and further verified in other follow-up work, showing

that performance of any single method can vary significantly
across domains, and there is no single dominant method for
all domains, unless aggregation of multiple methods is used
(Ghasemian et al. 2020; Yao et al. 2021; Li and Le 2021). Our
goal here is to evaluate the SE method in real-world egocentric
settings across different domains.

The dataset contains 276 undirected networks with unweighted
edges, which is our focus: 43 biological, 106 economic, 108
social, 13 technological, and 6 transportation networks. Further,
many of the methods we test, including ours, assume a low-rank
structure and thus would not be appropriate to apply to networks
that are not even approximately low lank. While we cannot
check this assumption on the population probability matrix,
we can assess its plausibility by looking at the stable rank of the
adjacency matrix SR(A), as suggested in Section 2.2. Random
matrix theory (Eldridge, Belkin, and Wang 2017) implies that if
the true P has a low stable rank, the adjacency matrix A also has
a low stable rank. The distribution of the ratio SR(A)/

√
N for

these 276 networks shown in Figure 11(a). Intuitively, we treat
SR(A)/

√
N < 2 as a “low-rank” criterion for our focus. It turns

out that all transportation networks and almost all economic
networks (except for 3) are far from low rank. Therefore,
we remove these two domains. This procedure results in the
final evaluation set of 163 networks, of which 107 are social
networks, 43 are biological networks, and 13 are technological
networks.

These networks also tend to have different levels of transitiv-
ity, as shown in Figure 11(b). Social networks are more transitive
with significantly larger clustering coefficients than networks
from other domains, as previously observed by network scien-



JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS 17

Figure 12. Link prediction performance on the 163 “approximately low-rank” networks with a low sampling fraction, ρ = n/N = 0.2.

tists (Holland and Leinhardt 1971; Watts and Strogatz 1998).
Biological networks exhibit a wide range of transitivity, and thus,
we divided them into “high transitivity” (global clustering coeffi-
cient > 0.1) and “low transitivity” (the rest). As a reminder, these
networks are not a random sample of real-world approximately
low-rank networks: for instance, all 13 technological networks
are from the same study of BGP traffic among autonomous
systems (ASs) (Ghasemian et al. 2020), and they do not differ
much. Moreover, egocentric sampling is more likely to arise in
social networks in practice than in other domains.

For evaluation purposes, we randomly sample rows with
probability ρ from a given network to create an egocentrically
sampled network, and then predict unobserved entries, repeat-
ing this 50 times for each network. As before, we evaluate the
methods by (a) individual link prediction accuracy, measured by
the average AUC of the ROC curves (rocAUC) and the average
AUC of the PR curves (prAUC), reported in Section 4.1; and

(b) global statistics prediction, measured by the average relative
prediction error on each network, reported in Section 4.2.

4.1. Link Prediction Accuracy

Figure 12(a) shows boxplots of the rocAUC of all the meth-
ods with sampling faction ρ = 0.2, and Figure 12(b) shows
the prAUC in the same setting. As Ghasemian et al. (2020)
showed, methods fitting a single model perform very differently
in different domains. In fact, this is also true across different
performance metrics. Overall, among single model methods, the
SE, SBM, and NS are the best on both ROC and PR measures.
For social networks, SE is the best on ROC and marginally
inferior to NS on PR. The SBM is the clear winner in ROC for
technological networks, while NS is better in PR curves. Recall
that the technological networks are very similar, so variability for
that domain mainly reflects the randomness of data splitting. For
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Figure 13. Variable importance scores of all 42 features in SeTopo on the 163 “approximately low-rank” networks with a low sampling fraction, ρ = n/N = 0.2.

high-transitivity biological networks, SE, SBM, and NS are fairly
similar, while for low-transitivity biological networks, SBM is
the winner.

Ensemble methods outperform single models on link pre-
diction accuracy uniformly across all domains, which is to be
expected for a prediction task. As shown in Figure 12(a)–(b),
SeTopo and Topo are much better than the single models on
social networks and similar to the best single model on bio-

logical and technological networks. The SeTopo is uniformly
better than Topo, reflecting the importance of the additional
information provided by the SE method. This is also reflected in
the variable importance scores from the random forest shown
in Figure 13 for the 42 predictors on the 163 networks, where
the SE probability labeled “se_prob.” Variable importance scores
were proposed by (Breiman 2001) to measure the predictive
contributions of different variables, and while they are not direct
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Figure 14. Link prediction performance on the 163 networks with ρ = n/N = 0.9.

evidence of predictive power (Hastie et al. 2009), a high score
indicates that the variable is frequently used by the forest. The
SE probability is the most important variable on biological and
technological networks, and a fairly important one on social
networks.

Next, we evaluate the scenario with a high sampling fraction,
with ρ = 0.9, with results shown in Figure 14. A large sam-
pling fraction significantly helps NS, which becomes the best
single model except on technological networks. The SE method
remains competitive for both social networks and highly transi-
tive biological networks, and is comparable to SBM on low tran-
sitivity biological networks. The CUR and MC are more effective
on social networks but not competitive in other domains. The
SBM remains the best for technological networks.

For the ensemble methods, both Topo and SeTopo give better
predictions than any one of the individual models across all
domains and, in particular, deliver almost perfect predictions

on social networks. There is not much difference in ROC and PR
curves between Topo and SeTopo in this scenario, likely because
the signal is very strong for both. The variable importance
score for the SE probability remains high, however, as shown in
Figure 15, at least for biological and technological networks.

4.2. Global Statistics Prediction

Similarly to the simulations, we evaluate the methods for the
task of predicting global network statistics, with results shown
in Figure 16 for the low sampling fraction ρ = 0.2 and in Figure
17 for the high sampling fraction ρ = 0.9. For these tasks, Topo
and SeTopo are no longer applicable, but we can still use the
empirical estimators. In the low sampling scenario, the empirical
estimator is the best for density across all domains, but it cannot
predict the global clustering coefficient and eigencentrality effec-
tively. The SE does worse on predicting the clustering coefficient
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Figure 15. Variable importance scores of all 42 features in SeTopo on the 163 networks with a high sampling fraction, ρ = n/N = 0.9.

on low-transitivity biological networks, but remains competitive
in other domains on all three metrics. The NS estimator is less
effective in predicting the density but works well for the other
two metrics most of the time. For the high sampling fraction,
the SE is the best or close to the best in all three metrics across
all domains.

4.2.1. Summary of Results on the Real-World Networks
The choice of method in practice depends on the task at hand,
network properties that may correlate with the domain, and

computational constraints. For link prediction, our method (SE)
has the most significant advantage for small sampling fractions
and is the best for social networks in that setting; for high
sampling fractions, the NS method performs better due to its
generality. The SE is also more accurate on networks with higher
transitivity, including social networks and some biological net-
works. The ensemble methods based on feature stacking gener-
ally outperform single models, and more so in real-world net-
works. Including the SE predictions in the ensemble improves
the results, especially for small sampling fractions. For global
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Figure 16. The prediction error of the global statistics on the 163 networks with ρ = n/N = 0.2.

statistics prediction where ensemble methods are not applicable,
the SE delivers competitive predictions in most situations, and
NS achieves similar results but at a much higher computational
cost. The computational costs of the ensemble methods are even
higher.

5. Discussion
The subspace estimation link prediction algorithm we proposed
is, to the best of our knowledge, the first algorithm designed
specifically for egocentrically sampled networks and not generic
link prediction. The comparison with results from standard
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Figure 17. The prediction error of the global statistics on the 163 networks with ρ = n/N = 0.9.

matrix completion and link prediciton methods shows that ego-
centrically sampled networks deserve their own careful treat-
ment, given how often they are encountered in practice, and
should not be treated as generic matrices with missing entries.
Our method is computationally efficient and especially powerful
in the most challenging scenarios of low sampling rates and
sparse networks. It relies on assumptions more general than
block models but more parsimoniuous than simply low rank,

which may help explain its good performance with small sam-
pling fractions. In practice, the plausibility of these assumptions
can be assessed by cross-validation (Chen and Lei 2018; Li,
Levina, and Zhu 2020b), and the best prediction method is
chosen accordingly.

Many challenges in modeling realistic network data collec-
tion remain open. We have developed a method for egocentric
sampling, but even within that framework, practical compli-
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cations may occur—for instance, a survey of a social network
may limit how many friends a subject can name, or the subject
can give a biased and incomplete representation of their true
connections. For these scenarios, our approach provides the
first step that can be followed by an additional step modeling
subject’s reporting preferences, as in, for example, Li, Levina,
and Zhu (2020a), who modeled friendship reporting preferences
based on communities, and new approaches may be needed
for more complicated settings, such as snowball sampling and
others (Rohe 2019).

Another limitation of our method and matrix completion
methods in general is the assumption of missing at random.
More complex hierarchical models for missing data inference
are available (Little and Rubin 2019), but one would need to
balance the tradeoffs between model complexity, computational
efficiency, and sample size requirements. Traditional missing
data procedures for inference and bias correction tend to require
a large sample size and complicated models which are frequently
not scalable. Although not designed for inference and bias cor-
rection, matrix completion methods can work with a much
smaller sampling fraction and are computationally scalable. In
our view, finding a nuanced compromise between these compet-
ing considerations will be an important avenue for future work.

Supplementary Materials

The following are included in the supplementary materials available online.

Appendix (Appendix.pdf): References about empirical studies involv-
ing egocentric sampling of networks, proof of Theorem 2.1 and addi-
tional simulation results.

Code (Code.zip): Code for experiments of the article. Each subfolder
in the file has its own Readme.txt about the files and examples.
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