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Summary

Latent space models are frequently used for modelling single-layer networks and include many
popular special cases, such as the stochastic block model and the random dot product graph.
However, they are not well developed for more complex network structures, which are becoming
increasingly common in practice. In this article we propose a new latent space model for multi-
plex networks, i.e., multiple heterogeneous networks observed on a shared node set. Multiplex
networks can represent a network sample with shared node labels, a network evolving over time,
or a network with multiple types of edges. The key feature of the proposed model is that it learns
from data how much of the network structure is shared between layers and pools information
across layers as appropriate. We establish identifiability, develop a fitting procedure using convex
optimization in combination with a nuclear-norm penalty, and prove a guarantee of recovery for
the latent positions provided there is sufficient separation between the shared and the individual
latent subspaces. We compare the model with competing methods in the literature on simulated
networks and on a multiplex network describing the worldwide trade of agricultural products.

Some key words: Latent space model; Multilayer nework; Multiplex network.

1. Introduction

Network data have become commonplace in many statistical applications, such as in neuro-
science, the social sciences and computational biology. In the vast majority of cases, these network
data are represented as graphs.At a minimum, a graph G = (V , E) has a node set V and an edge set
E, with each edge connecting a pair of nodes, but frequently additional information is available,
such as node attributes, edge weights and multiple types of edges. Although a lot of work has
been done on a single network with binary edges, as the complexity of the network data structure
increases, the availability of statistical methods and models dwindles rapidly. There is a strong
need for rigorous statistical analysis to keep up with the rapidly increasing complexity of real
datasets.

One such complex network data structure is the multilayer graph (Kivelä et al., 2014), a highly
general mathematical object that can describe multiple graphs, dynamic graphs, hypergraphs, and
vertex-coloured or edge-coloured graphs. In addition to a node set and an edge set, a multilayer
graph includes a layer set. A node may appear on any or all layers, and each edge connects two
vertices, including the possibility of connection in the same layer, called an intra-layer edge; across
layers, called an inter-layer edge; and between the same node in different layers. For example, a
general multilayer network could be used to represent a multimodal urban transportation network
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of bus, train, bicycle and other connections, where each layer corresponds to a different mode of
transportation and edges define connections between stations.

The focus of this paper is on multiplex graphs, a type of multilayer graph in which a common
set of n nodes appears on every layer and no inter-layer edges are allowed. For example, the brain
connectivity networks of a sample of people or a multi-commodity international trade network
could be represented as a multiplex network where each layer corresponds to a subject or a
commodity, respectively.

For a single undirected graph G with |V (G)| = n, a common modelling approach is to assume
that there are n latent variables {Xi}n

i=1 ⊆ X , one for each node. Typically, one further assumes
that for each node pair i � j, Xi and Xj fully parameterize the distribution of the edge variable
Eij = 1{(i, j) ∈ E(G)}, and all the edge variables are mutually independent (Matias & Robin,
2014). The latent positions themselves are sometimes treated as fixed and sometimes treated as
independent random variables; in the latter case, the above assumptions are conditional on {Xi}n

i=1.
These models are called latent space models, and intuitively the latent variable Xi represents the
behaviour of node i through its position in the latent space X . Matias & Robin (2014) distinguish
between two cases: a discrete latent space X = {1, . . . , K}, so that each node is in one of K
latent classes; and X = R

d , so that each node is represented by its coordinates in Euclidean
space. The first case includes the ubiquitous stochastic block model (Holland et al., 1983), and a
well-studied example of the second case is the random dot product graph (Young & Scheinerman,
2007; Athreya et al., 2017). Models in the seminal papers of Hoff et al. (2002) and Handcock
et al. (2007) correspond to the second case as well. Throughout this paper we focus on the second,
continuous case and, following the convention in the literature, latent space will be understood
to refer to Euclidean space.

Some of the frequentist approaches to latent space models treat the latent variables as random,
and focus on estimation of and inference for the parameters governing their distribution(s), such
as Bickel et al. (2013) in the stochastic block model setting. Many other works perform inference
conditional on the latent variables and estimate them, especially when the goal is community
detection, for example Lei & Rinaldo (2015) in the stochastic block model setting, Athreya et al.
(2017) in the random dot product graph setting, and Ma et al. (2020) in a latent space model with
edge covariates.

Some extensions of latent space models to multilayer networks have been proposed in the
literature. These can be divided into two categories: general multiple networks, for instance from
repeated measurements or multiple subjects; and dynamic or time-varying networks, for which
the layers have a natural ordering.A review paper by Kim et al. (2018) details recent developments
in the dynamic setting.

In the multiple-networks setting, latent space models with a Bayesian approach to estimation
have been proposed by Gollini & Murphy (2016), Salter-Townshend & McCormick (2017),
D’angelo et al. (2019) and Sosa & Betancourt (2021), among others. While hierarchical Bayesian
approaches allow these models to adaptively share information or model dependence across
layers, they tend to be computationally expensive for large networks.

For the larger networks we aim to work with, we focus on three recent frequentist approaches to
latent space and low-rank modelling for multiple networks, using them as baselines with which to
compare our proposed method. Arroyo et al. (2021) consider a collection of independent random
dot product graphs with a common invariant subspace; that is, the expected adjacency matrices
for each layer are assumed to share a common low-dimensional column space. This is similar
to approaches taken by Levin et al. (2017), Nielsen & Witten (2018), Jones & Rubin-Delanchy
(2021) and Wang et al. (2021). However, they do not consider the case where each layer also
contains meaningful individual signals in addition to shared structure.
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Latent space models for multiplex networks 685

Zhang et al. (2020) consider a model in which expected adjacency matrices, after a logistic
transformation, share a common low-rank structure. This framework allows for layer-specific
parameters controlling degree heterogeneity, but no other individual structure.

Wang et al. (2019) aim to decompose each expected adjacency matrix into a common part and
an individual part after applying a logistic transformation. They assume that the individual part
is of low rank, but make no such assumptions on the common part. Thus, this method loses the
interpretability afforded by the latent space approach, and has high variability unless there is a
large number of layers.

Finally, our model bears a resemblance to other recent work that aims to summarize multiple
matrix-valued observations outside of the networks setting. For example, Lock et al. (2020), in
the setting of multiview data, proposed a joint and individual approach to matrix factorization;
and De Vito et al. (2019) proposed a model for multi-study factor analysis that estimates both
common and individual factors.

In extending latent space models to the multiple-networks setting, we seek a modelling
approach that can leverage shared structure to improve estimation accuracy, but in an adap-
tive way, learning from the data how much the layers have in common instead of assuming that
the entire latent representation is shared across all layers. We also allow for nontrivial individual
structure in order to robustly estimate truly common structure.

As a motivating example, which will be analysed in § 6, we consider a multiplex network
of international trade, where nodes correspond to countries, layers correspond to different com-
modities, and each weighted intra-layer edge is the total trade of a given agricultural commodity
between two nations. We would expect the structure in this network to be governed by node
attributes corresponding to, for instance, geographical region, language or climate. Some of
these attributes would be expected to affect all commodities similarly; for example, geographical
proximity should encourage trade of any commodity. On the other hand, some attributes may
differ across layers; for example, climate may encourage production and hence trade of some
commodities, but not others, depending on which crops are easiest to grow in a given country’s
climate. In a setting like this, if latent space models were fitted to each layer individually, then
(i) a fitting procedure cannot leverage the shared structure across layers, and (ii) the latent repre-
sentation of the common structure will not be automatically aligned across layers. On the other
hand, if a single latent space model were fitted to all network layers jointly, or to some aggregated
version, then (i) an influential individual latent dimension, or one that is shared by some, but not
all layers, may be erroneously identified as a common effect; or (ii) the influence of a common
latent dimension may be overstated if it is not orthogonal to the individual latent dimensions. The
model we propose in the next section aims to address these shortcomings.

2. A new model for multiplex networks

2.1. Multiplex networks with shared structure

We propose a new model for multiplex networks with shared structure, henceforth referred to
as MultiNeSS, with the goal of ultimately learning the amount of shared structure from the data.
We start by defining some notation. Suppose that we observe m undirected networks, weighted
or unweighted, on a common set of n nodes with no self-loops. The networks are represented
by their n × n adjacency matrices {Ak}m

k=1. Each node i is associated with a fixed latent position
describing its function in layer k , denoted by xk , i ∈ R

dk . The edges are assumed to be independent
conditional on these latent positions:

Ak , ij
ind∼ Q{· ; κ(xk , i, xk , j),φ} (i = 1, . . . , n; j = 1, . . . , n; i < j; k = 1, . . . , m),
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686 P. W. MacDonald, E. Levina AND J. Zhu

where Q(· ; θ ,φ) is some edge entry distribution with a scalar parameter θ and possible nuisance
parametersφ, andκ(· , ·) is a symmetric similarity function, implying that the parameter θ captures
the effect of the latent similarity of nodes i and j in layer k on the corresponding edge. We denote
the latent positions for layer k by Xk , where the ith row of the n × dk matrix Xk corresponds to
the latent position of node i in layer k . In general, the position and its dimension may depend on
the layer k .

The choice of the similarity function κ may affect the identifiability of each Xk . For instance,
if κ(x, y) = ψ(xTy) is an invertible scalar functionψ applied to the Euclidean inner product, each
Xk is identifiable only up to a common orthogonal rotation of the rows. If κ(x, y) = ψ(‖x − y‖2)

is similarly defined as an invertible function of the Euclidean distance rather than the Euclidean
inner product, then Xk is identifiable only up to a common orthogonal rotation and/or reflection
of the rows, as well as a common shift of each row by a vector in R

dk .
The key assumption of the MultiNeSS model is that some, but not all, structure is shared across

network layers. We suppose that the matrix Xk can be written as

Xk = (
V Uk

)
(k = 1, . . . , m), (1)

where V ∈ R
n×d1 is a matrix of common latent position coordinates, and the Uk ∈ R

n×d2, k

are individual latent position coordinates for layer k . Writing Xk in this way further complicates
identifiability. The model will certainly be identifiable only up to some invariant transformation
of the rows of each Uk and of V , but we would still want V to be identifiable in such a way that it
is aligned across all the layers. Intuitively, for this to hold we need the common dimension d1 to
be maximal and unique, in the sense that any transformation which aligns the first d1 coordinates
must partition Xk into V and Uk as written above. We will formalize this intuition in § 2.2. First,
we present some concrete examples of latent space models that fit the general MultiNeSS model
framework.

Example 1 (Low rank, Gaussian errors). As a simple example, let the similarity function for
each layer be the generalized inner product as described in Rubin-Delanchy et al. (2020). For
vectors x and y in R

p+q,

κp, q(x, y) = x1y1 + · · · + xpyp − xp+1yp+1 − · · · − xp+qyp+q = xTIp, qy,

where Ip, q is the block-diagonal matrix

Ip, q =
(

Ip 0
0 −Iq

)
,

with Ir for a positive integer r denoting the r × r identity matrix. Under the generalized inner
product, the first p latent dimensions are referred to as assortative, while the remaining q are
disassortative (Rubin-Delanchy et al., 2020).

Assume that Q(· ; θ , σ) is the Gaussian distribution N (θ , σ 2). Then each layer’s adjacency
matrix has expectation

E(Ak) = Pk = VIp1, q1V T + UkIp2,k , q2,k U T
k (k = 1, . . . , m),

where p1 + q1 = d1, p2, k + q2, k = d2, k and each error matrix Ek = Ak − E(Ak) is symmetric
with independent and identically distributed zero-mean Gaussian entries.
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Latent space models for multiplex networks 687

If the setting does not allow self-loops, we can instead use

E(Ak) = Pk = VIp1, q1V T + UkIp2, k ,q2, k U T
k

− diag(VIp1, q1V T + UkIp2, k ,q2, k U T
k ) (k = 1, . . . , m)

to enforce zeros on the diagonal. The same can be done in any of the subsequent examples, if
needed.

Example 2 (Low rank, exponential family errors). Let the similarity function κ be the gen-
eralized inner product again, and let Q(· ; θ) be a one-parameter exponential family distribution
with natural parameter θ and log-partition function ν; that is,

Q(x; θ) ∝ exp{xθ − ν(θ)}.

For instance, Q may be a Bernoulli distribution, in which case ν(θ) = log{1 + exp(θ)}. In the
spirit of generalized linear models, we model the edges by applying the canonical link function
g = ν′ entrywise, so that adjacency matrices now satisfy

E(Ak , ij) = Pk , ij = g(vT
i Ip1, q1vj + uT

k , iIp2, k ,q2, k uk , j)

(i = 1, . . . , n; j = 1, . . . , n; i � j; k = 1, . . . , m).

In the Bernoulli example, the canonical link function is the inverse logistic function

g(θ) = exp(θ)/{1 + exp(θ)}. (2)

2.2. Identifiability

We present a sufficient condition for identifiability in the case where κ is a scalar function
of the generalized inner product. For more detailed discussion of the statistical implications of
such transformations, see Rubin-Delanchy et al. (2020). For other choices of similarity function,
conditions for identifiability will depend on the set of invariant transformations that it induces.

For the inner product model with one layer, it is natural to assume that the matrix of latent
positions X ∈ R

n×d is of full rank, i.e., it has linearly independent columns. We show that
a stronger linear independence condition for all pairwise concatenations of the latent position
matrices is sufficient for identifiability in the proposed MultiNeSS model. The proof is given in
the Supplementary Material.

Proposition 1. Suppose κp,q(x, y) = ψ(xTIp,qy) is an invertible scalar function of the
generalized inner product, and that the model is parameterized by V and {Uk}m

k=1 as in (1).
Define an undirected graph GI on the network layers, with vertex set {1, . . . , m} and edges

k ∼ l ⇐⇒ (
V Uk Ul

)
are linearly independent. (3)

If GI is connected, then the model is identifiable up to indefinite orthogonal transformation. That
is, if the probability distributions induced by two different parameterizations (V , U1, . . . , Um)

and (V ′, U ′
1, . . . , U ′

m) coincide, then

V = V ′W0, U1 = U ′
1W1, . . . , Um = U ′

mWm
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688 P. W. MacDonald, E. Levina AND J. Zhu

for some indefinite orthogonal transformations {Wk}m
k=0.

To simplify the condition in Proposition 1, consider the special case in which GI is the complete
graph, equivalent to assuming that for all 1 � k1 < k2 � m, the n × (d1 + d2, k1 + d2, k2) matrix(
V Uk1 Uk2

)
has linearly independent columns. In the special case where q1 = q2,1 = · · · =

q2,m = 0, the similarity function for the latent vectors is the standard Euclidean inner product,
and Proposition 1 holds with identifiability up to orthogonal rotation.

If we assume that the fully concatenated n × (d1 + ∑
k d2, k) matrix

(
V U1 · · · Um

)
has linearly independent columns, as in De Vito et al. (2019) for a similar factor analysis model,
then once again GI will be the complete graph and Proposition 1 will hold. Proposition 1 does
not require orthogonality of the columns of V and {Uk}m

k=1, although clearly it will hold if the
columns are all mutually orthogonal.

As visual intuition, consider a simple case with n = 10, d1 = d2 = 1 and m = 2. Standard
results for the random dot product graph (Athreya et al., 2017) suggest that the two-dimensional
latent positions for each layer are identifiable only up to orthogonal rotations, which differ across
layers. The recovered latent positions for the two layers may have different rotations, and so
would not share a common column according to the MultiNeSS model (1). Proposition 1 states
that pairwise linear independence is sufficient to uniquely align the rotations, and identify the
common and individual latent positions up to sign.

In Fig. 1 panels (a) and (b) we plot latent positions {(vi, uk , i)}n
i=1 in R

2 for k = 1 and 2,
respectively. Each point is labelled with its index, 1–10, for ease of matching across the panels.
The common dimension is on the x-axis and the individual dimension on the y-axis; thus the x-
coordinates are the same in panels (a) and (b). In Fig. 1 panels (c) and (d) we apply an orthogonal
transformation to each of the latent positions, which is equivalent to applying an unknown two-
dimensional orthogonal rotation. After rotation, the points in panel (c) do not match the points
in panel (d) in either their x- or their y-coordinates. The dashed lines denote the original x-axis
in the two rotated spaces; observe that the coordinates of projection onto these directions are
constant in panels (a) and (b). After rotation we identify two directions, indicated by dashed
lines in panels (c) and (d), with the property that for all points the coordinates of projection onto
these directions are the same, up to a sign flip, in panels (c) and (d). By Proposition 1, as long
as (3) holds, the original x-axis is the unique direction with this property, and the coordinates of
projection uniquely identify the entries of v, up to a sign flip.

3. Fitting the MultiNeSS model

3.1. Convex objective function

A natural approach to latent space estimation is likelihood maximization. A convex relaxation
of the likelihood can be maximized by introducing a nuclear-norm penalty and optimizing over
the entries of the low-rank matrices F = VIp1, q1V T, and Gk = UkIp2, k ,q2, k U T

k for each k = 1, . . .m
rather than the latent position matrices themselves.

With the notation defined in § 2, suppose κ is a generalized inner product on R
d . In terms of

the latent position parameters (V , {Uk}m
k=1), the negative loglikelihood, after dropping constants,

takes the form

�(V , {Uk}m
k=1 | {Ak}m

k=1) ∝ −
m∑

k=1

∑
i�j

log Q(Ak , ij; vT
i Ip1, q1vj + uT

k , iIp2, k ,q2, k uk , j,φ), (4)
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Fig. 1. Latent positions (a) in layer 1 before rotation, (b) in layer 2 before rotation, (c) in layer 1 after rotation, and
(d) in layer 2 after rotation. Points are labelled according to their index from 1 to 10.

where Q is the density of the edge weight distribution. Up to a rotation, we can rewrite this
likelihood in terms of symmetric n × n matrices F = VIp1, q1V T and Gk = UkIp2, k ,q2, k U T

k (k =
1, . . .m) by constraining the number of positive and negative eigenvalues of each matrix. For a
symmetric matrix M , let r+(M ) and r−(M ) denote, respectively, the numbers of strictly positive
and strictly negative eigenvalues of M . Then we equivalently minimize

�(F , {Gk}m
k=1 | {Ak}m

k=1) = −
m∑

k=1

∑
i�j

log Q(Ak , ij; Fij + Gk , ij,φ)

subject to the constraints

r+(F) � p1, r+(Gk) � p2, k (k = 1, . . .m),

r−(F) � q1, r−(Gk) � q2, k (k = 1, . . .m).

When κ is the Euclidean inner product, q1 = q2,1 = · · · = q2,m = 0, and the constraints are
equivalent to requiring each matrix to be of low rank and positive semidefinite.

To make this problem tractable, we ignore the constraint on the eigenvalue signs and perform
a further convex relaxation of the resulting rank constraint, leading to the unconstrained convex
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690 P. W. MacDonald, E. Levina AND J. Zhu

optimization problem

min
F , Gk

{
�(F , {Gk}m

k=1 | {Ak}m
k=1)+ λ‖F‖∗ +

m∑
k=1

λαk‖Gk‖∗

}
, (5)

where λ � 0 and αk � 0 (k = 1, . . . , m) are tuning parameters, and ‖·‖∗ denotes the nuclear
norm of a matrix, i.e., the sum of the singular values. The parameter λ appears in both terms as an
overall scaling that depends on n and the total entrywise variance across all the layers, while each
αk controls the individual penalties, depending on the entrywise variance of each layer. Since the
nuclear norm is convex, it is easy to see that (5) defines a convex optimization problem as long
as the edge distribution Q is log-concave in θ .

3.2. Proximal gradient descent algorithm

The optimization problem can be solved by applying proximal gradient descent blockwise to
each of the matrix arguments. In particular, we split the optimization variables into m + 1 blocks
of n2 variables: one block containing the entries of F , and m blocks, one for the entries of each Gk .

Then for each block the negative loglikelihood is convex and differentiable, and the nuclear-
norm penalty term is convex and, though nondifferentiable, has a well-defined proximal mapping
for step size η > 0 (Fithian & Mazumder, 2018). In particular, the nuclear norm scaled by λ � 0
has the proximal mapping

arg min
M ′

1

2η
‖M − M ′‖2

F + λ‖M ′‖∗ = Sηλ(M ),

where ‖·‖F denotes the matrix Frobenius norm, i.e., the Euclidean norm of the vectorized entries,
and ST (·) is the soft singular-value thresholding operator with threshold T � 0; that is, for a
diagonal matrix M ∈ R

q×q,

ST (M ) = diag{(M11 − T )+, . . . , (Mqq − T )+},
and otherwise ST (M ) = UST (D)V T, where M = UDV T is the singular-value decomposition of
M (Fithian & Mazumder, 2018).

Thus, we derive the following proximal gradient descent steps with step size η/m for updates
of F and step size η for updates of each Gk : at iteration step t � 1,

F̂ (t) = Sηλ/m

{
F̂ (t−1) + η

m

∂

∂F
�(F̂ (t−1), {Ĝ(t−1)

k ′ }m
k ′=1)

}
,

Ĝ(t)
k = Sηλαk

{
Ĝ(t−1)

k + η
∂

∂Gk
�(F̂ (t), {Ĝ(t−1)

k ′ }m
k ′=1)

}
(k = 1, . . . , m).

This particular choice of relative step sizes is discussed in the Supplementary Material.
When Q is a one-parameter exponential family and the edge distribution is modelled through

the canonical link function as in Example 2, the gradients take a particularly nice form. In
particular, up to an additive constant, for each fixed node pair (i, j),

(log Q)′(Ak , ij; Fij + Gk , ij) = Ak , ij − E(Ak , ij; Fij + Gk , ij) (k = 1, . . . , m),

where the equality follows from the choice of link function g = ν′. Hence, the gradients with
respect to each Gk can be interpreted as the residual from estimating the adjacency matrix by its
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Latent space models for multiplex networks 691

expectation, given the current low-rank parameters. The gradient with respect to F is the sum of
the residuals over all the layers.

If Q(· ; θ ,φ) is the Gaussian distribution as in Example 1, the appropriate link function is the
identity link. Then with step size 1/m for updates of F and step size 1 for updates of each Gk ,
proximal gradient descent recovers a natural alternating soft-thresholding algorithm: at iteration
step t � 1,

F̂ (t) = Sλ/m

{
1

m

m∑
k=1

(Ak − Ĝ(t−1)
k )

}
, Ĝ(t)

k = Sλαk

(
Ak − F̂ (t)

)
(k = 1, . . . , m). (6)

In § 4 we will provide theoretical guarantees on estimators found with this special case of proximal
gradient descent. When the observed networks have no self-loops, we perform proximal gradient
steps that ignore the diagonal entries, which should yield better empirical results in this case.

Although we have presented the algorithm for the generalized inner product similarity, it can
easily be adapted to the usual inner product similarity by enforcing a positive-semidefinite con-
straint on F and on each Gk in (5). The constraint can be enforced by adding a positive-semidefinite
projection step at each iteration of the proximal gradient descent algorithm, equivalent to shrinking
the negative eigenvalues of each iterate to zero.

The most computationally expensive part of each update is the singular-value decomposition
needed for soft singular-value thresholding. If the full singular-value decomposition is calculated,
each iteration step has a computational complexity of O(mn3). In practice, we use a truncated
singular-value decomposition that only finds the first s � n singular vectors and values, as in Wu
et al. (2017), reducing the complexity to O(mn2s). For synthetic multiplex networks generated
according to the models from Examples 1 and 2 with n = 400 and m = 8, as in § 5, our R (R
Development Core Team, 2022) implementation of proximal gradient descent is able to perform
approximately one iteration per second. When the signals are sufficiently strong, the algorithm
typically converges in fewer than 10 steps.

3.3. Refitting step

As we will show in Theorem 1, recovery of the correct rank requires a tuning parameter of
order λ ∼ √

n, and thus the effect of the soft-thresholding step on the estimated eigenvalues will
not disappear as n → ∞.

As in Mazumder et al. (2010), we propose a refitting step after solving the convex problem,
where we fix the ranks and eigenvectors of the estimated F̂ and Ĝk , and refit their eigenvalues to
maximize the original nonconvex likelihood.

Based on the output from the first step, we write the eigendecompositions

F̂ = Ṽ ̂F Ṽ T, Ĝk = Ũk ̂k Ũ T
k (k = 1, . . .m). (7)

Elementwise, we have

F̂ij =
d̂1∑
�=1

γ�(F̂)Ṽi�Ṽj� (i = 1, . . . , n; j = 1, . . . n),

where d̂1 is the rank of F̂ and γ�(F̂) denotes the �th eigenvalue of F̂ , ordered by magnitude. The
elements of each Ĝk can be expressed similarly, with d̂2, k denoting the rank of Ĝk . Then, fixing
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the estimated eigenvectors, the refitting step solves the convex problem

min
̂F , ̂k

⎡
⎢⎣−

m∑
k=1

∑
i�j

log Q

{
Ak , ij;

d̂1∑
�=1

γ�(F̂)Ṽi�Ṽj� +
d̂2,k∑
�=1

γ�(Ĝk)Ũk ,i�Ũk ,j�,φ
}⎤
⎥⎦ . (8)

When Q is a one-parameter exponential family and the edge distribution is modelled through the
corresponding canonical link function as in Example 2, solving (8) is exactly equivalent to fitting
a generalized linear model with n(n + 1)m/2 responses and d̂1 + ∑m

k=1 d̂2,k predictors.
With the solution to the refitting step problem (8), we can construct the final estimates for the

low-rank matrices based on these refitted eigenvalue estimates, along with the original estimated
eigenvectors defined in (7).

3.4. Choosing tuning parameters

A standard method for choosing tuning parameters is cross-validation, which requires some
care when performed on networks. We take an approach motivated by the edge cross-validation
method for networks proposed by Li et al. (2020), where a random subsample of node pairs is
repeatedly removed, a low-rank matrix completion method is applied to the adjacency matrix to
impute the missing pairs, and the original method is refitted on the completed matrix. Tuning
parameters are then selected to minimize a loss function evaluated on the held-out node pairs.

Whereas the general edge cross-validation procedure of Li et al. (2020) contains an imputation
step followed by a fitting step, the MultiNeSS fitting approach can be applied directly to adjacency
matrices with missing entries. Suppose we subsampled matrices {Ak}m

k=1 by removing the values
for a random sample of indices (i, j, k), accounting for symmetry. Denote the set of remaining
indices by �. The new loglikelihood will resemble (4), but with the summation restricted to the
triples in �, and the same proximal gradient descent algorithm can be applied.

Similar to the approach taken by Lock et al. (2020) for low-rank multiview data matrices, the
tuning parameters can also be chosen adaptively using random matrix theory. In particular, in
Example 1 with known σ constant across all layers, bounds on the singular values of

∑m
k=1 Ek

would suggest setting λ = (2+δ)σ (nm)1/2 for a constant δ. Gavish & Donoho (2014) introduced
an estimator σ̂MAD for σ based on the median singular value and suggested setting δ = 0.309,
which is optimal for hard singular-value thresholding. However, δ could also be selected using
edge cross-validation. Then, a constant σ across layers suggests the choice αk = m−1/2 (k =
1, . . . , m). This adaptive tuning scheme is used for the evaluation on synthetic networks in § 5.
While this approach is designed with Example 1 in mind, it gives sensible results in Example 2
with Bernoulli edges as well when the networks are sufficiently dense. For sparse networks with
Bernoulli edges, we recommend setting λ = C(nm)1/2 and αk = m−1/2 (k = 1, . . . , m), where
C is a constant selected using edge cross-validation.

This adaptive tuning approach can also be used to account for layer-specific variances. Suppose
σ̂ 2

MAD
(Ak) estimates the entrywise variance for layer k . Then, rather than taking αk to be the same

for all layers, we set it based on the relative variance estimates for the different layers:

αk =
{

σ̂MAD(Ak)
2∑m

k ′=1 σ̂MAD(Ak ′)2

}1/2

(k = 1, . . . , m).
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As above, λ is selected based on the singular values of
∑m

k=1 Ek ,

λ = (2 + δ)
√

n

{
m∑

k=1

σ̂MAD(Ak)
2

}1/2

, (9)

where again δ is a constant that is either chosen a priori or selected using edge cross-validation.
This layer-specific adaptive tuning is used for the real data analysis in § 6.

The estimation algorithms described in this section for the models in Examples 1 and 2, includ-
ing options for refitting and parameter tuning, are implemented in an R package multiness,
available at github.com/peterwmacd/multiness.

4. Theoretical guarantees

4.1. Notation

We denote the matrix �2 operator norm by ‖M‖2. Let

[M ]d = arg min
M ′: rank(M ′)�d

‖M − M ′‖F,

which is well-defined, by the Eckart–Young theorem, as the truncation of the singular-value
decomposition of M to the largest d singular values. For d, p, q � 0, let Od denote the set of
d × d rotation (orthonormal) matrices, and let Op, q denote the set of (p + q)× (p + q) indefinite
orthogonal matrices. Let col(M ) and row(M ) denote the column and row spaces of a matrix
M , respectively. For a symmetric matrix M , let γi(M ) denote the ith eigenvalue of M , with
eigenvalues ordered from largest to smallest in absolute value. Any reference to the leading or
first eigenvalue of a symmetric matrix refers to the largest eigenvalue in absolute value.

4.2. Main results

Throughout this section we assume the model described in Example 1, where Q(· ; θ , σ) is
the Gaussian distribution with known variance σ 2. To simplify notation, we assume that d2 is
constant in k , although the results generalize to the case where d2, k can depend on k , replacing
d2 in the assumptions by maxk d2, k . We allow the dimensions n, m, d1 and d2 to grow, subject to
the following restrictions.

Assumption 1. We have that d22d2m2n1−2τ = o(1), d1m−1 = o(1), d2m−1 = o(1) for some
constant τ ∈ (1/2, 1].

Assumption 1 places bounds on the total number of latent dimensions relative to the number
of nodes n. We study the estimator of the MultiNeSS model, defined as the limit of the proximal
gradient update steps (6), starting from some initial value F̂ (0). Let F̂ and {Ĝk}m

k=1 denote the
limits of this proximal gradient descent algorithm as t → ∞.

As in (7), let Gk = Ūkk Ūk (k = 1, . . . , m) denote the eigendecomposition of each Gk and
F = V̄F V̄ T the eigendecomposition of F . Suppose that they satisfy the following assumptions.

Assumption 2. We have that

b1nτ � |γd2(Gk)| � |γ1(Gk)| = ‖Gk‖2 � B1nτ (k = 1, . . . , m), (10)

b1nτ � |γd1(F)| � |γ1(F)| = ‖F‖2 � B1nτ
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694 P. W. MacDonald, E. Levina AND J. Zhu

for uniform constants 0 < b1 � B1. Further,

‖V̄ TŪk‖2 = o(d−1/2
1 m1/2n1/2−τ ) (k = 1, . . . , m), (11)

‖Ū T
AŪk‖2 � B2σ |A|1/2n1/2−τ (k = 1, . . . , m) (12)

for some uniform constant B2 > 0, where A ⊆ {1, . . . , m} \ {k} and ŪA is an orthonormal basis
for the subspace sum

∑
j∈A col(Gj). In particular,

‖Ū T
k1

Ūk2‖2 � B2σn1/2−τ (k1 = 1, . . . , m; k1 = 1, . . . , m; k1 |= k2). (13)

Although stated with fixed orthonormal bases, (11)–(13) are basis-free and can be written in
terms of the maximal cosine similarity between elements of the two column spaces. That is, if S1
and S2 are two subspaces of R

n, then for any of their respective orthonormal bases US1 and US2 ,

‖U T
S1

US2‖2 = sup
x∈S1, y∈S2

|xTy|
‖x‖2‖y‖2

.

Comparing (11) and (13), we observe that these conditions allow for slightly more similarity
between the column spaces of F and any one Gk than between the column spaces of Gk and Gj
for k |= j.

Assumption 2 controls the signal strength through the eigenvalues of F and each Gk , and
controls the separation between the common and individual latent dimensions through bounds on
the inner products of eigenvectors of F and each Gk . As our framework treats the latent positions
as deterministic, we make assumptions directly about these eigendecompositions rather than
about the generative distribution of the latent positions.

Under these assumptions we have the following consistency result. The proof is given in the
Supplementary Material.

Theorem 1. Suppose Q(· ; θ , σ) = N (θ , σ 2) and that Assumptions 1 and 2 hold. Let λ =
3cλσ (nm)1/2 and αk = (cλ

√
m)−1 (k = 1, . . . , m), where cλ is a universal constant. Then with

probability greater than 1 − (m + 1)n exp(−C0n) for some universal constant C0 > 0, the
initializer

F̂ (0) =
[

1

m

m∑
k=1

Ak

]
d1

satisfies

‖F̂ (0) − F‖F = o(n1/2), (14)

and for n sufficiently large and for all k ∈ {1, . . . , m}, we have

n−1‖F̂ −F‖F � C1σd1/2
1 (nm)−1/2, n−1‖Ĝk −Gk‖F � C2σd1/2

2 n−1/2 (k = 1, . . . , m) (15)

for positive constants C1 and C2 that do not depend on n, m, d1, d2 and σ . Moreover, if all the
eigenvalues of F and each Gk are nonnegative, then F̂ and each Ĝk are positive semidefinite.
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Remark 1. The initializer F̂ (0) uses the true value of d1, which is generally unknown in practice.
However, since the objective is convex, the estimators should not be sensitive to the initial value.

Remark 2. The conditions of Theorem 1 provide a regime under which our convex approach
achieves the same rate as an oracle hard-thresholding approach. In particular, if we estimated
each Gk with full knowledge of F and estimated F with full knowledge of each Gk by

F̂ (oracle) =
[

1

m

m∑
k=1

(Ak − Gk)

]
d1

, Ĝ(oracle)
k = [Ak − F]d2 (k = 1, . . . , m),

they would have the same Frobenius-norm error rates as the estimators in Theorem 1.

Remark 3. In the proof of Theorem 1, we bound the operator norm of each error matrix
Ek using a concentration inequality for Gaussian random matrices (Bandeira & Van Handel,
2016). With a different operator-norm concentration inequality (Chatterjee, 2015), we can show
that a similar result holds if the entries of Ek are uniformly bounded instead of Gaussian. For
instance, this would yield consistency for a random dot product graph-like binary edge model
with F + Gk ∈ [0, 1]n×n for k = 1, . . . , m and

Ak ,ij ∼ Ber(Fij + Gk ,ij) (i = 1, . . . , n; j = 1, . . . , n; i < j; k = 1, . . . , m).

Although Assumption 1 allows us to match the oracle error rate, it also places a strong require-
ment on the latent dimensions, especially the individual latent dimension d2. Theorem 2 gives an
alternative result under a weaker assumption on d2, when it is allowed to grow polynomially in
n. The proof is given in the Supplementary Material.

Assumption 3. We have that m2n1−2τ = o(1), d2d1m−1 = o(1) for some constant τ ∈ (1/2, 1].
Theorem 2. Suppose Q(· ; θ , σ) = N (θ , σ 2) and that Assumptions 2 and 3 hold. Let λ =

3cλσ (d2nm)1/2 and αk = {cλ(d2m)1/}−1 (k = 1, . . . , m), where cλ is a universal constant. Then
with probability greater than 1 − (m + 1)n exp(−C0n) for some constant C0 > 0, the initializer

F̂ (0) =
[

1

m

m∑
k=1

Ak

]
d1

satisfies

‖F̂ (0) − F‖F = o(n1/2),

and for n sufficiently large, we have

n−1‖F̂ − F‖F � C3σ(d1d2)
1/2(nm)−1/2,

n−1‖Ĝk − Gk‖F � C4σd1/2
2 n−1/2 (k = 1, . . . , m)

for positive constants C3 and C4 that do not depend on n, m, d1, d2 and σ . Moreover, if all the
eigenvalues of F and each Gk are nonnegative, then F̂ and each Ĝk are positive semidefinite.
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Theorems 1 and 2 provide bounds on the recovery of the n × n matrix-valued parameters F
and Gk ; however, in practice we are often interested in the latent position matrices V and Uk
as well. With an additional assumption on the eigenvalue gaps of F and each Gk , the following
proposition establishes overall consistency for an adjacency spectral embedding-based estimate
of the latent positions, after a suitable linear transformation.

Since in general F̂ and each Ĝk may have negative eigenvalues, we define the adjacency
spectral embedding based on the absolute values of the eigenvalues as in Rubin-Delanchy et al.
(2020). For instance, denoting by F̂ = Ṽ ̂F Ṽ T the truncated eigendecomposition up to rank d1
of F̂ , we define the d1-dimensional adjacency spectral embedding of F̂ by V̂ = Ṽ |̂F |1/2.

Assumption 4. We have that minj∈{2,...,d1}
{|γj(F)| − |γj−1(F)|

}
� b3nξ for some ξ ∈ (1/2, τ ]

and positive constant b3, and an analogous condition holds for the eigenvalues of each Gk matrix
with the same constant ξ .

This assumption on the eigenvalue gaps ensures that the ordering of latent dimensions is
preserved in the estimates of F and of each Gk . We have the following consistency result for the
latent matrices V and each Uk , up to rotation. The proof is given in the Supplementary Material.

Proposition 2. SupposeTheorem 1 andAssumption 4 hold.Then with probability greater than
1 − (m + 1)n exp(−C0n) for some universal constant C0 > 0 and for sufficiently large n, F̂ and
each Ĝk are low-rank matrices. Further, let V̂ be the (n × d1)-dimensional adjacency spectral
embedding of F̂, and let Ûk be the (n × d2)-dimensional adjacency spectral embedding of Ĝk for
each k = 1, . . . , m. Let p1 and q1 denote the numbers of assortative and disassortative common
latent dimensions, respectively, so that F = VIp1, q1V T. Define p2 and q2 similarly. Then

(d1n)−1/2 inf
W∈Op1,q1

‖V̂ − VW‖F � C5σd1/2
1 m−1/2nτ/2−ξ , (16)

(d2n)−1/2 inf
W∈Op2,q2

‖Ûk − UkW‖F � C6σd1/2
2 nτ/2−ξ (k = 1, . . . , m) (17)

for some positive constants C5 and C6.

Remark 4. Since we assume ξ > 1/2 � τ/2, Proposition 2 shows that under the asymptotic
regime of Assumption 1, the average entrywise error of the latent position matrices, after suitable
linear transformation, goes to zero. As in Theorem 1, the rate of convergence for the common
structure exceeds that of the individual structure by a factor of

√
m.

5. Evaluation on synthetic networks

5.1. Baseline methods

Throughout this section we compare the estimator for the MultiNeSS model with baseline
methods on two types of synthetic networks, those with weighted edges generated according
to the Gaussian model in Example 1, and those with binary edges generated according to the
logistic model in Example 2. We compare the proposed method with nonadaptive optimization
approaches for the MultiNeSS model and with other methods for multiple networks (Wang et al.,
2019; Arroyo et al., 2021) that can capture the common or individual low-rank structure.

We also include two nonconvex oracle approaches in our comparison. For the Gaussian model,
we apply a nonconvex alternating rank truncation algorithm that assumes oracle knowledge of
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the true ranks d1 and d2. The alternating updates for t � 1 are given by

F̂ (t) =
[

1

m

m∑
k=1

(
Ak − Ĝ(t−1)

k

)]
d1

, Ĝ(t)
k = [

Ak − F̂ (t)
]

d2
(k = 1, . . . , m)

and are initialized with Ĝ(0)
k = 0 (k = 1, . . . , m). These update steps are applied until convergence

or until a prespecified maximum iteration number tmax is reached.
For the logistic model, we compare our convex approach with a nonconvex gradient descent

algorithm, similar to that of Ma et al. (2020), which also assumes known d1 and d2. This procedure
directly updates the entries of the latent position matrices V and each Uk by performing gradient
descent on the negative loglikelihood function.

The COSIE method recently proposed by Arroyo et al. (2021) fits a low-rank model to multiple
binary undirected networks on a common node set. This method provides estimates of the expected
adjacency matrices for each layer, but does not decompose the estimates into common and
individual parts, so we can only compare the accuracy of the overall expectation. Although
COSIE is designed for the random dot product graph model, it can also be applied unchanged
to the Gaussian model. We use an oracle version assuming knowledge of the true d1 and d2. For
a fair comparison with our method, we first identify the d1 + d2 leading eigenvectors for each
layer and then fit a common invariant subspace of dimension d1 +md2, the total number of latent
dimensions in the MultiNeSS model.

The second baseline method under comparison is the M-GRAF algorithm proposed by Wang
et al. (2019) for a similar logistic link model for multilayer networks with common and individual
parts. The M-GRAF model does not assume any structure, low-rank or otherwise, for entries of the
common matrix F and does not employ regularization; it is thus better suited to the regime with
small n and large m. We apply an oracle version that assumes knowledge of the true individual
rank d2. Since M-GRAF does not assume a common low-rank structure, it does not need a value
for d1.

5.2. Gaussian model results

We consider instances of the Gaussian model with no self-loops and the usual inner product
similarity. We set d1 = d2 = 2 and σ = 1, and we vary n ∈ {200, 300, 400, 500, 600} with fixed
m = 8 and vary m ∈ {4, 8, 12, 15, 20, 30} with fixed n = 400. In each setting we generate 100
independent realizations from the model. The entries of the common and individual latent position
matrices are generated as independent standard normals, so while they are not strictly orthogonal,
their expected correlation is zero. Under the Gaussian model we compare four methods: the
MultiNeSS estimator with and without the refitting step, denoted by MultiNeSS and MultiNeSS+,
respectively; the alternating rank truncation approach, referred to as Nonconvex; and the COSIE
method of Arroyo et al. (2021).

We evaluate the methods on how well they do in recovering the common structure, the indivi-
dual structure and the overall expectation of the adjacency matrix, using relative Frobenius-norm
errors with ‖·‖F̃ denoting the Frobenius norm that ignores diagonal entries:

ErrF = ‖F̂ − F‖F̃

‖F‖F̃
, ErrG = 1

m

m∑
k=1

‖Ĝk − Gk‖F̃

‖Gk‖F̃
,

ErrP = 1

m

m∑
k=1

‖F̂ + Ĝk − F − Gk‖F̃

‖F + Gk‖F̃
.

(18)
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Fig. 2. Frobenius-norm errors for the common structure (top row), individual structure (middle row) and overall
expected value (bottom row) under the Gaussian model. The left panels plot the errors against the number of nodes
n, with a fixed number of layers m = 8. The right panels plot the errors against the number of layers m, with a
fixed number of nodes n = 400. The methods under comparison are MultiNeSS (�, solid) , MultiNeSS+ (�, solid),

Nonconvex (◦, dashed) and COSIE (�, dotted).

The results are shown in Fig. 2. Several general conclusions can be drawn. MultiNeSS without
the refitting step does not outperform the nonconvex oracle, but MultiNeSS+ is uniformly the
best method in all cases, though the nonconvex oracle performs very similarly in estimating the
individual layers Gk . One possible explanation for the improvement over the nonconvex oracle is
that the convex optimization approach ignores the diagonal elements of the adjacency matrices,
which do not reflect the true low-rank structure.

All the methods perform better as the number of nodes n grows, as we would expect. Increasing
the number of layers m has no effect on errors in estimating the individual components for
MultiNeSS, since each one is estimated separately, but it helps us estimate F better by pooling
shared information across more layers and therefore also improves the overall estimation of P.
The rate of decrease of the error in F seems to match well the rate of m−1/2 predicted by the
theory. COSIE, on the other hand, benefits from increasing n, but suffers when m grows, with the
overall error in P going up with m. We conjecture that this happens because COSIE must first
estimate a subspace of dimension d1 + md2, which leads to high variability as m increases.

Comparing panel (e) to panels (a) and (c), and comparing panel (f) to panels (b) and (d), we
see that the estimation error for Pk is on average less than the estimation error for Gk , implying
that the error in Pk does not decompose additively into the error in Gk and the error in F . Even
when the expected correlation in the latent position matrices is zero, it is challenging to correctly
distinguish common structure from individual structures.
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Fig. 3. Frobenius-norm errors for the common structure (top row), individual structure (middle row) and overall
expected value after the logistic transformation (bottom row) under the logistic model. The left panels plot the errors
against the number of nodes n, with a fixed number of layers m = 8. The right panels plot the errors against the
number of layers m, with a fixed number of nodes n = 400. The methods under comparison are MultiNeSS (�, solid),

MultiNeSS+ (�, solid), Nonconvex (◦, dashed), COSIE (�, dotted) and M-GRAF (�, dot-dash).

5.3. Logistic model results

We also consider instances of the logistic model with no self-loops, the same inner product
similarity, and d1 = d2 = 2, where we vary n ∈ {200, 300, 400, 500, 600} with fixed m = 8 and
vary m ∈ {4, 8, 12, 15, 20, 30} with fixed n = 400. In each setting we generate 100 independent
realizations of the model. The entries of the common and individual latent position matrices are
generated as independent standard normals. We compare five methods: the MultiNeSS estimator
with and without the refitting step, again denoted by MultiNeSS and MultiNeSS+, the nonconvex
approach, COSIE and M-GRAF. COSIE does not use the correct model for these data, since it
assumes a random dot product graph model without a logistic link. We evaluate the recovery of
the common and individual structures using the same relative Frobenius-norm errors given in
(18). To evaluate the overall recovery of the expected value for each layer, we use the relative
Frobenius-norm error after elementwise application of the inverse logistic link function; that is,
we redefine

ErrP = 1

m

m∑
k=1

‖g(F̂ + Ĝk)− g(F + Gk)‖F̃

‖g(F + Gk)‖F̃
,

where g is as defined in (2).
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The results are shown in Fig. 3. Many of the general conclusions in this example are the same
as for the Gaussian model. M-GRAF does not perform better as n increases, and performs much
worse for small values of m, since it does not regularize the common matrix F in any way. In
contrast to the Gaussian model, here the nonconvex approach slightly outperforms MultiNeSS+.
The difference between the nonconvex and MultiNeSS+ errors is driven by large-magnitude
entries in F and Gk , which have a substantial effect on the log-odds scale, but little effect on
the expectation of the adjacency matrix. Hence, the difference between these two methods is
attenuated in panels (e) and (f) after applying the inverse logistic link function.

For the binary networks generated from the logistic MultiNeSS model, we also compare
performance over a range of network edge densities by subtracting a density-controlling parameter
β � 0 from the log-odds of each edge. As above, we generate V and {Uk}m

k=1 as n×2 matrices of
independent standard normals, resulting in Pk = g(VV T +UkU T

k −β1n1
T
n). This is equivalent to

generating networks from a logistic MultiNeSS model with generalized inner product similarity,
augmenting the common latent position matrix with an extra disassortative latent dimension with
coordinates β1/21n.

We consider instances of this logistic MultiNeSS model with no self-loops, n = 400, m = 8
and β ∈ {0, 1, 2, 3, 4, 5, 6}. MultiNeSS networks generated with these choices of β have edge
densities of approximately 0.5, 0.34, 0.21, 0.12, 0.06, 0.035 and 0.015, respectively. We compare
the MultiNeSS estimator with and without the refitting step, the nonconvex approach, COSIE
and M-GRAF. In order to easily implement the nonconvex oracle approach, we fit it with full
knowledge of d1, d2 and β. MultiNeSS without refitting is tuned adaptively with a fixed constant,
as in the previous dense network simulations. MultiNeSS+ is tuned with edge cross-validation.
The error ErrF for the recovery of the common structure is normalized by ‖VV T‖2

F̃
, ignoring the

effect of β on the common structure; ErrP is calculated as above, including β in the normalizer.
The results are shown in Fig. 4. For highly sparse networks with edge densities of approximately

3.5% and 1.5%, M-GRAF does not converge consistently, so its results in these settings are
omitted.

For edge densities greater than approximately 5%, the relative performances of the methods
are similar to those seen for dense networks. As the edge density decreases, the nonconvex oracle
unsurprisingly performs much better than MultiNeSS in panel (a), as it does not have to fit the
density-controlling parameter β. For highly sparse networks with edge densities under 5%, we
see that MultiNeSS+ outperforms MultiNeSS without refitting in panels (a) and (b), but has
slightly worse error in panel (c). While MultiNeSS+ better controls the ranks of F and Gk , and
more accurately recovers the latent coordinates, MultiNeSS without refitting performs best with a
much smaller choice of λ, and can more accurately recover the expected adjacency matrix despite
greatly overestimating the number of latent dimensions. Finally, we see that in the sparsest regime
in panel (b), MultiNeSS+ outperforms the nonconvex oracle. In this case, MultiNeSS+ is able to
adaptively ignore some weak latent dimensions, while the oracle nonconvex approach is forced to
fit two individual latent dimensions per layer, even when the signal is too weak for its coordinates
to be reliably estimated.

6. An agricultural trade network analysis

To illustrate the insights that can be gained from fitting a MultiNeSS model, we analyse a
dataset of food and agriculture trade relationships between countries, collected in 2010. Each
node corresponds to a country and each layer to a different agricultural product. The undirected
edges are weighted by the bilateral traded quantity of the commodity. This dataset was previously
analysed by De Domenico et al. (2015), who looked at structural similarities between layers.
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Fig. 4. Frobenius-norm errors for the common structure (top panel), individual structure (middle panel) and overall
expected value (bottom panel) under the logistic model with varying edge density. The methods under comparison are
MultiNeSS (�, solid), MultiNeSS+ (�, solid), Nonconvex (◦, dashed), COSIE (�, dotted) and M-GRAF (�, dot-dash).

As a pre-processing step, we remove low-density layers and nodes.The original dataset contains
214 countries and 364 products. We kept layers with at least 10% nonzero edges, and included
nodes with a mean of at least five nonzero edges across these layers. The result is an undirected
multiplex network containing no self-loops, with n = 145 nodes and m = 13 layers corresponding
to agricultural products with high trade volume. Following common practice for this type of data,
we use log trade volumes as edge weights, which also makes the assumption of Gaussian edge
weights with constant variance within each layer more realistic.

We fit a Gaussian model using the MultiNeSS algorithm with refitting. The tuning parameters
are selected using the layer-specific adaptive tuning approach described in § 3.4. The constant in
(9) is set to δ = 1/2 using edge cross-validation.

Figure 5 displays the results for the first four common latent dimensions, and Figs. 6 and 7 show
the results for the first two individual dimensions for two example layers, wine and chocolate,
respectively.

The estimated common matrix F̂ has rank 39, with 25 assortative dimensions and 14 disas-
sortative dimensions. Figure 5 shows scatter plots of the points projected onto the leading four
latent dimensions, the first and second in panel (a), and the third and fourth in panel (b), which
are all assortative. The first four singular values account for approximately 47% of the sum of
the singular values of F̂ . The scatter plots suggest that the first latent dimension corresponds
roughly to the total volume of trade and the subsequent dimensions correspond to regional trade
relationships. In particular, the second dimension primarily separates Europe from Asia, the third
separates the Americas from the rest of the world, and the fourth separates the Middle East and
Africa from Asia and the Pacific.
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Fig. 5. Scatter plots of the first four MultiNeSS common latent dimensions for the food trade data: (a) dimensions 1
and 2; (b) dimensions 3 and 4. Dimensions are labelled assortative or disassortative. Points are drawn by geographical

region: +, Africa; �, Asia-Pacific; �, Europe; ◦, Middle East; ⊗, North America; ×, South America.

For the individual component of the wine trade layer, shown in Fig. 6, we estimate
rank(Ĝwine) = 18, with nine assortative and nine disassortative latent dimensions. We plot the
coordinates of the first two latent dimensions, which account for about 37% of the sum of the
singular values of Ĝwine. The second latent dimension corresponds roughly to the total volume
of wine production after correcting for the common structure, with countries such as France,
Spain, Chile and New Zealand having very high scores, and majority-Muslim nations such as
Saudi Arabia and Indonesia having very low scores. The first latent dimension is disassortative
and assigns large positive coordinates to the major wine exporters who do not trade wine among
themselves, separating them from major wine importers such as China.

For comparison, we also plot the countries projected onto the first two latent dimensions
constructed by adjacency spectral embedding applied to just the wine layer of the trade network.
We swap the order of the adjacency spectral embedding dimensions to ease visual comparison
with the MultiNeSS embedding.While the adjacency spectral embedding dimensions have similar
interpretations to those of MultiNeSS and lead to the same general conclusions about high-volume
wine producers, the interpretation of the lower-left part of the scatterplot is much clearer in the
MultiNeSS individual embedding.

For the chocolate trading network, we estimate the individual component rank as
rank(Ĝchocolate) = 7, with five assortative and two disassortative latent dimensions. Projections
onto the first two individual latent dimensions, which account for about 48% of the sum of the
singular values of Ĝchocolate, are shown in Fig. 7. Overall, the pattern is similar to that in Fig. 6(a),
with the two axes swapped. The first latent dimension gives chocolate-producing nations such
as Switzerland and Belgium the highest scores, and countries such as Vietnam, which has a very
low per-capita chocolate consumption, low scores. The second latent dimension is disassortative
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Fig. 6. Scatter plots of the first two individual latent dimensions for the wine layer: (a) dimensions 1 and 2 by Multi-
NeSS; (b) dimensions 1 and 2 by adjacency spectral embedding. Dimensions are labelled assortative or disassortative.
Points are drawn by geographical region: +, Africa; �, Asia-Pacific; �, Europe; ◦, Middle East; ⊗, North America;

×, South America.

and gives large positive coordinates to major chocolate exporters that do not trade chocolate with
each other. Egypt and the U.A.E. also have outlying coordinates, as according to these data they
primarily trade chocolate with other Middle Eastern nations rather than importing directly from
Europe. The adjacency spectral embedding in Fig. 7(b) looks very similar to Fig. 5(a). Since this
embedding does not account for the common structure, it primarily captures patterns common to
all products, rather than the chocolate-specific patterns revealed by the MultiNeSS embedding.

7. Discussion

There are several directions in which we plan to take this work forward. Firstly, although in
§ 4 we establish consistency only for a Gaussian edge weight model, we expect that this can
be extended to other well-behaved edge weight distributions. The models we have developed
so far allow for only two kinds of latent dimensions: those which are individual to one layer,
and those which are common to all layers. Extension to more structured models, where latent
dimensions can be shared by some, but not all layers, would open up a larger range of applications.
For example, we could impose a group structure on the layers, allowing for group effects and
enabling an analogue of analysis-of-variance on networks. An example application in which this
would be useful is neuroimaging, where brain connectivity networks of a treatment group and
a control group of patients could be analysed jointly and the treatment effect estimated more
accurately. These groups could also be learned from data, in a natural extension of this set-up to
clustering.
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Fig. 7. Scatter plots of the first two individual latent dimensions for the chocolate layer: (a) dimensions 1 and 2
by MultiNeSS; (b) dimensions 1 and 2 by adjacency spectral embedding. Dimensions are labelled assortative or
disassortative. Points are drawn by geographical region: +, Africa; �, Asia-Pacific; �, Europe; ◦, Middle East; ⊗,

North America; ×, South America.

Another possible extension is to dynamic networks, where each layer represents a network
snapshot at a discrete time-point. In this setting, the ordering of the layers matters. Latent dimen-
sions could be modelled as constant over time or constant over a contiguous time window, with
obvious applications to prediction and changepoint analysis. Finally, a highly interpretable latent
structure could be obtained by imposing a tree structure on the latent dimensions, with shared
latent dimensions between nodes determined by their last common ancestor on the tree.

While this work focuses on undirected networks, we also recognize the importance of extending
the model to directed networks. In this case each node would have both incoming and outgoing
coordinates for each latent dimension. For instance, we could model the common structure
as VoutV T

in for n × d1 matrices Vin and Vout. Such a directed model would further complicate
identifiability and interpretation. There is now a scale unidentifiability for each latent dimension,
which means that we cannot distinguish between the contributions of incoming and outgoing
node behaviour.

Finally, recent work has demonstrated that linear embeddings, which assume a low-rank struc-
ture on expected adjacency matrices, may be too restrictive for modelling complex real data
(Rubin-Delanchy, 2020). In our data application, we find our latent embedding of worldwide
agricultural trade to have a relatively high dimension compared with the number of nodes. There
may be potential to further reduce the latent dimension by applying additional manifold dimension
reduction to the common and individual embeddings.
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Supplementary material

Supplementary Material includes a more detailed description of the proximal gradient descent
algorithm in § 3.2, technical proofs of the mathematical results, additional results on synthetic
networks, and further analysis of the trade network data in § 6.
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