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Abstract Many image denoising methods can be characterized as minimizing “loss +
penalty,” where the “loss” measures the fidelity of the denoised image to the data, and the
“penalty” measures the smoothness of the denoising function. In this paper, we propose two
models that use the L1-norm of the pixel updates as the penalty. The L1-norm penalty has the
advantage of changing only the noisy pixels, while leaving the non-noisy pixels untouched.
We derive efficient algorithms that compute entire solution paths of these L1-norm penalized
models, which facilitate the selection of a balance between the “loss” and the “penalty.”

Keywords Image denoising · L1-norm penalty · PCA · Regularization · Solution paths

1 Introduction

1.1 Background

Image denoising problems arise in many engineering fields and applied physics, because in
practice, images can often be contaminated when they are acquired by sensors or transferred
in communication channels. This problem has been studied for decades, and researchers
have proposed several categories of methods to tackle this problem, such as filtering meth-
ods (Harwood et al. 1987; Schulze and Pearce 1994; Weeks 1996), wavelet-based methods
(Bruce and Gao 1996), principal component analysis (PCA)-based methods (Mika et al.
1999; Takahashi and Kurita 2002) and sparse coding (SC) shrinkage methods (Hyvarinen
et al. 1998; Shang et al. 2006). These methods apply in different contexts and use different
strategies for denoising the contaminated image. When prior knowledge of the distribution
of an image is not available, filtering methods are often used. Filtering methods tend to blur
an image, however, and edges in the image are not well preserved. Wavelet-based meth-
ods are proposed to overcome this problem: they decompose a contaminated image using
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Fig. 1 The original face image
(left panel) and the
corresponding image corrupted
by impulse noises (right panel)

wavelet bases and reconstruct the image by shrinking some of the wavelet coefficients; in
this fashion, edges are often better preserved. PCA-based methods and SC shrinkage meth-
ods are used when some prior knowledge of the statistical properties of the image are avail-
able. These statistical properties are often obtained from a collection of images, which share
common characteristics of the target image. The methods we propose belong to the category
of PCA-based methods.

In most of the current literature, images are often assumed to be contaminated by an
additive Gaussian noise. Additive Gaussian noise, which comes from the background, is
often observed in analog systems. In that setting, all pixels are corrupted by normally dis-
tributed noise, and the magnitude of the noise is small. In this paper, we consider a different
type of noise, the “impulse noise”. In the impulse noise setting, only a portion of the pixels
are (completely) corrupted while the values of other pixels remain accurate. Impulse noise
is commonly found in digital systems, where digital images are corrupted because of, for
example, malfunctioning pixels in the camera sensors, faulty memory locations in the hard-
ware, transmission errors, analog-to-digital conversion errors, etc. Impulse noise poses new
challenges to traditional image denoising methods, because the noise is no longer Gaussian;
it is “sparse” and “spiky.” Figure 1 shows an example of an original face image and a version
corrupted by “impulse noise.” Ideally, good denoising methods for impulse noise should be
able to identify the corrupted pixels and correct only these pixels.

1.2 PCA-based methods

Images can be represented by vectors. From a collection of images which share common
characteristics, we can calculate their principal components (PC), which contain important
information of the images. PCA-based methods project the corrupted image to the space
consisting of these PC vectors.

Let x ∈ R
n denote the corrupted image and U ∈ R

n×p be the matrix with PCs as its
columns. Without loss of generality, we assume both x and the column vectors of U are
centered and standardized. Classical PCA-based methods project x to the column space of
U via the least squares regression, i.e.,

min
β

‖x − Uβ‖2
2, (1)

and the denoised image is constructed as Uβ . The least squares estimates often have low
bias but high variance, which hurts the accuracy of the denoised image. In this paper, we
propose regularization models that have the following form:

min
α,β

�(x + α,Uβ) + λ(‖α‖1 + ‖β‖1), (2)
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where �(·, ·) is a loss function describing the discrepancy between x + α and Uβ , ‖α‖1 and
‖β‖1 are L1-norm penalties of α and β , equaling |α1| + · · ·+ |αn| and |β1| + · · ·+ |βp|, and
λ is a tuning parameter controlling the balance between the loss and the penalty.

There are two major differences between our models and previous models:

• The introduction of α: α is a n-dimensional vector, and it is interpreted as a pixel-by-pixel
updating vector for the “impulse noise” contaminated image. Hence our methods deliver
two denoised images, x + α and Uβ , while previous models only deliver one denoised
image Uβ , which is a linear combination of the PC images. As we will see later, x + α is
often a better denoised image than Uβ when the noise is the impulse type.

• The usage of the L1-norm penalty: The L1-norm (LASSO) penalty sets some of the el-
ements in α and β exactly equal to zero, i.e., sparse property (Mallat and Zhang 1993;
Tibshirani 1996; Chen et al. 1998). When constructing the denoised image, some of the
PC images are important, and some of the PC images may not be important. The L1-norm
of β helps eliminate unimportant PC images. More importantly, since we consider the im-
pulse type noises, i.e., some pixels of the original image are corrupted but other pixels are
good, the L1-norm of α helps identify and repair only the corrupted pixels and leave the
uncorrupted ones untouched. This is related to the variable selection problem in statistics,
which has been studied extensively in the literature, for example, see George and McCul-
loch (1993), Breiman (1995), Tibshirani (1996), George and Foster (2000), and Fan and
Li (2001).

As we will see in numerical studies, these new models show promising results in denoising
the impulse type noise.

The rest of the paper is organized as follows: In Sect. 2, we propose two models for
image denoising that use the L1-norm of the pixel updates as the penalty. In Sect. 3, we
derive efficient algorithms that compute the entire solution paths of these two models. In
Sect. 4, we present numerical results on a real image dataset. We conclude the paper with
Sect. 5.

2 Models

Since the impulse type noise tends to have a heavy-tail distribution, and the squared error
loss is not robust to outliers, we consider the least absolute deviation (LAD) loss, in addition
to the least squares (LS) loss. Specifically, we consider the following regularization models
for denoising impulsely contaminated images:

LAD-LASSO: min
α,β

‖x + α − Uβ‖1 + λ(‖α‖1 + ‖β‖1), (3)

LS-LASSO: min
α,β

‖x + α − Uβ‖2
2 + λ(‖α‖1 + ‖β‖1). (4)

To further improve models (3) and (4), we apply the adaptive idea which has been used in
Breiman (1995), Shen and Ye (2002), Zhao and Yu (2006) and Zou (2006), i.e., to penalize
different components in α and β differently:

LAD-Adaptive-LASSO: min
α,β

‖x + α − Uβ‖1 + λ

(
n∑

i=1

|αi |
|α0

i |
+

p∑
j=1

|βj |
|β0

j |

)
, (5)
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LS-Adaptive-LASSO: min
α,β

‖x + α − Uβ‖2
2 + λ

(
n∑

i=1

|αi |
|α0

i |
+

p∑
j=1

|βj |
|β0

j |

)
, (6)

where |α0
i | and |β0

j | can be regarded as pre-fixed adaptive weights. The intuition is that for
unimportant PC images and uncorrupted pixels, we would like the corresponding weights
|β0

j | and |α0
i | to be small, hence βj and αi are heavily penalized, while for important PC

images and corrupted pixels, we would like the corresponding weights |β0
j | and |α0

i | to be
big, hence βj and αi are lightly penalized. How to pre-specify the weights |β0

j | and |α0
i |

from the data is discussed in Sect. 4.
As in every regularization problem, choice of the regularization parameter λ is critical.

In practice, people usually pre-specify a finite set of candidate values for λ that cover a wide
range, then either use a separate validation dataset or certain model selection criterion to
pick a value for λ that gives the best performance among the pre-specified set. For detailed
description of different model selection criteria for image denoising, we refer the readers to
Thompson et al. (1991). There is no theoretical guidance on how to pick the candidate set
of the regularization parameter; people have to rely on either their previous experience or
the trial-and-error approach. Since the denoising performance is often sensitive to the value
of the regularization parameter, parameter tuning can be very time-consuming and the best
parameter can be easily missed.

In the next section, we derive very efficient algorithms that compute the exact entire
solution paths of β and α as functions of λ, which facilitate selection of the regularization
parameter.

3 Solution path algorithms

In this section, we derive efficient algorithms that compute the exact solution paths for LAD-
Adaptive-LASSO (5) and LS-Adaptive-LASSO (6). Since the algorithm for LS-Adaptive-
LASSO is a simple modification of the LAR/LASSO algorithm (Efron et al. 2004), we focus
only on the algorithm for LAD-Adaptive-LASSO. We also note that the naive methods (3)
and (4) are special cases of the adaptive methods, with |α0

i | = 1 and |β0
j | = 1.

In the following sections, we use ui to denote the ith row of the eigen-image matrix U .

3.1 Problem setup

Criterion (5) can be re-written in an equivalent way:

min
α,β

n∑
i=1

εi (7)

subject to − εi ≤ xi + αi − uT
iβ ≤ εi, (8)

εi ≥ 0, i = 1, . . . , n, (9)

n∑
i=1

|αi |
|α0

i |
+

p∑
j=1

|βj |
|β0

j |
≤ s. (10)

Notice the absolute value loss is replaced with two linear constraints in (8). Also notice that
the tuning parameter λ is replaced by another equivalent tuning parameter s. We are going
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to show that the solutions α and β are piecewise linear functions with respect to s, which
allow us to develop an efficient algorithm to compute the entire solution path. Equations
(7)–(10) give the Lagrangian primal function:

Lp:
n∑

i=1

εi + λ∗
(

n∑
i=1

|αi |
|α0

i |
+

p∑
j=1

|βj |
|β0

j |
− s

)

+
n∑

i=1

η+
i (xi + αi − uT

iβ − εi)

−
n∑

i=1

η−
i (xi + αi − uT

iβ + εi)

−
n∑

i=1

γiεi,

where λ∗, η+
i , η−

i and γi are non-negative Lagrangian multipliers. Setting the derivatives of
Lp to zero, we arrive at:

∂

∂β
: −

n∑
i=1

(η+
i − η−

i )uij + λ∗ sign(βj )

|β0
j |

= 0, for j with βj �= 0, (11)

∂

∂α
: (η+

i − η−
i ) + λ∗ sign(αi)

|α0
i |

= 0, for i with αi �= 0, (12)

∂

∂εi

: 1 − η+
i − η−

i − γi = 0, i = 1, . . . , n, (13)

and the complementary slackness conditions are:

η+
i (xi + αi − uT

iβ − εi) = 0, i = 1, . . . , n, (14)

η−
i (xi + αi − uT

iβ + εi) = 0, i = 1, . . . , n, (15)

γiεi = 0, i = 1, . . . , n. (16)

Since the Lagrange multipliers must be non-negative, we see from (13) that 0 ≤ η+
i , η−

i ≤ 1.
We can also see that (8) and (13)–(16) lead to the following:

xi + αi − uT
iβ > 0 ⇒ εi > 0, γi = 0, η+

i = 1, η−
i = 0;

xi + αi − uT
iβ < 0 ⇒ εi > 0, γi = 0, η+

i = 0, η−
i = 1;

xi + αi − uT
iβ = 0 ⇒ εi = 0, γi ∈ [0,1], η+

i ∈ [0,1], η−
i ∈ [0,1].

We define ηi = η+
i − η−

i . Hence, using these relationships, we can define the following five
sets that will be used later when we calculate the solution path of LAD-Adaptive-LASSO:

• E = {i : xi + αi − uT
iβ = 0,−1 ≤ ηi ≤ 1} (Elbow)

• R = {i : xi + αi − uT
iβ > 0, ηi = 1} (Right of the elbow)

• L = {i : xi + αi − uT
iβ < 0, ηi = −1} (Left of the elbow)

• V = {j : βj �= 0} (Active set for β)
• W = {i : αi �= 0} (Active set for α)
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For pixels in R and L, their ηi are determined. Therefore, we will focus on pixels in E .
The basic idea of our algorithm is as follows: We start with s = 0 and increase it, keeping

track of the location of all pixels relative to the elbow and also of the magnitude of the fitted
coefficients βj and αi along the way. As s increases, by continuity, points in the elbow E
must linger on it. Since all points at the elbow have xi + αi − uT

iβ = 0, we can establish a
path for β and α. The elbow set will stay stable until either a new pixel comes to the elbow
or a non-zero fitted coefficient has dropped to zero.

3.1.1 Initialization

Initially, when s = 0, we can see from (8)–(10) that εi = |xi |, hence the initial dual variables
ηi ’s and the initial sets E , R and L can be determined.

When s → 0+, one of the αi ’s or βj ’s will become non-zero. Let λ∗
β =

maxj |β0
j

∑n

i=1 ηjuij | and λ∗
α = maxi |α0

i ηi |, then from (11)–(12), we can see

• If λ∗
β > λ∗

α , the initial V = {j ∗ = arg maxj |β0
j

∑n

i=1 ηjuij |}, W = ∅, sign(βj∗) =
sign(

∑n

i=1 ηj∗uij∗), and λ∗ = λ∗
β .

• If λ∗
β < λ∗

α , the initial V = ∅, W = {i∗ = arg maxi |α0
i ηi |}, sign(αi∗) = −sign(ηi∗), and

λ∗ = λ∗
α .

In the following, we use � to indicate the step number, with the initial � = 0.

3.1.2 The solution paths

When s is small, the constraint (10) is active, i.e.,
∑n

i=1 |αi |/|α0
i | + ∑p

j=1 |βj |/|β0
j | = s.

When s increases to a certain value, say s∗, this constraint will become inactive, and the
solution will not change beyond the value of s∗. This corresponds to λ = 0 in (5). Suppose
for a value s < s∗, we have the solution α and β , hence E , R, L, V , and W are also known.
Then α and β have to satisfy the following equations:

xi + αi −
∑
j∈V

uijβj = 0, for i ∈ E and i ∈ W,

xi −
∑
j∈V

uijβj = 0, for i ∈ E and i /∈ W,

∑
i∈W

|αi |
|α0

i |
+

∑
j∈V

|βj |
|β0

j |
= s.

This linear system consists of |E | + 1 equations and |V| + |W| unknowns. We also notice
that the linear system (11)–(12) consists of |V| + |W| equations and |E | + 1 unknowns.
Therefore, to satisfy both systems, we must have |V| + |W| = |E | + 1.

When s increases by a small enough amount, the sets E , R, L, V and W will not change
due to their continuity with respect to s, and the structure of the above linear system will not
change. Taking right derivatives with respect to s, we have


αi


s
−

∑
j∈V

uij


βj


s
= 0, for i ∈ E and i ∈ W, (17)

∑
j∈V

uij


βj


s
= 0, for i ∈ E and i /∈ W, (18)
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∑
i∈W

sign(α�
i )

|α0
i |


αi


s
+

∑
j∈V

sign(β�
j )

|β0
j |


βj


s
= 1. (19)

Since |E | + 1 = |V| + |W|, 
αi/
s and 
βj/
s are constant and can be uniquely de-
termined, assuming the linear system is non-singular. Therefore, if s increases by a small
enough amount, αi and βj change linearly in s

αi = α�
i + (s − s�)


αi


s
, for i ∈ W, (20)

βj = β�
j + (s − s�)


βj


s
, for j ∈ V, (21)

and the residual ri = xi + αi − uT
iβ changes as

ri = r�
i + (αi − α�

i ) −
∑
j∈V

(βj − β�
j )uij . (22)

When the increase in s is big enough, one of the E , V and W sets will change, and the
structure of the linear system will also change.

To identify changes in the structure of the linear system, we define three types of events,
corresponding to the changes in E , V and W .

• A pixel hits the elbow E from R or L, i.e., a residual xi +αi −uT
iβ changes from non-zero

to zero.
• A coefficient αi changes from non-zero to zero.
• A coefficient βj changes from non-zero to zero.

Given s�, (20)–(22) allow us to compute s�+1, the value of s at which the next event will
occur. This will be the smallest s larger than s�, such that either εi for i /∈ E reaches zero, or
one of the coefficients αi for i ∈ W or βj for j ∈ V reaches zero.

When an event occurs, by the definition of an event, the condition |E |+1 = |V|+ |W| no
longer holds. Therefore, to make the KKT conditions satisfied, we need to take some action.
We define three types of actions:

• remove a pixel from E ;
• add a new coefficient into V ;
• add a new coefficient into W .

The choice can be determined by solving the dual variables using (11)–(12).
Let E ∗, R∗, L∗, V ∗ and W ∗ denote the sets immediately after the (� + 1)th event has

occurred. Notice that |E ∗| = |V ∗| + |W ∗|. For pixels in R∗ and L∗, the values of ηi are
known and fixed, so we have

∑
i∈E ∗

(ηi − η�
i )uij = (λ∗ − λ∗�)

sign(β�
j )

|β0
j |

, ∀j ∈ V ∗,

−(ηi − η�
i ) = (λ∗ − λ∗�)

sign(α�
i )

|α0
i |

, ∀i ∈ W ∗.

To simplify, let 
ηi


λ∗ = (ηi − η�
i )/(λ

∗ − λ∗�). Then

∑
i∈E ∗


ηi


λ∗ uij = sign(β�
j )

|β0
j |

, ∀j ∈ V ∗,
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− 
ηi


λ∗ = sign(αi)

|α0
i |

, ∀i ∈ W ∗.

There are |V ∗|+ |W ∗| equations and |E ∗| unknowns. Since |E ∗| = |V ∗|+ |W ∗|, we can solve
for 
ηi/
λ∗, and we have

ηi = η�
i + (λ∗ − λ∗�)


ηi


λ∗ , for i ∈ E ∗. (23)

Thus for λ∗� > λ∗ > λ∗(�+1), the ηi ’s proceed linearly in λ∗.
Regarding adding a coefficient into V or W , from (11) and (12), we can see that when λ∗

decreases, it corresponds to

∑
i∈E ∗

(
η�

i + (λ∗ − λ∗�)

ηi


λ∗

)
uij +

∑
i∈R∗

uij −
∑
i∈L∗

uij

= λ∗ sign(βj )

|β0
j |

, for some j /∈ V ∗, (24)

or

−
(

η�
i + (λ∗ − λ∗�)


ηi


λ∗

)
= λ∗ sign(αi)

|α0
i |

, for some i /∈ W ∗. (25)

Equations (23)–(25) allow us to compute λ∗(�+1), the largest λ∗ smaller than λ∗�, such
that either one of the ηi for i ∈ E reaches 1 or −1, or one of the coefficients αi for i /∈ W or
βj for j /∈ V joins the active set.

Once an action is taken, we restore |E | + 1 = |V| + |W|. The algorithm keeps increasing
s and alternates between reaching the next event and taking an action, until λ∗ reduces to 0.

3.1.3 The computational cost

The major computational cost for updating the solutions at any step � involves two things:
solving the primal system (17)–(19) and solving the dual system (23)–(25). Since there are
|E | + 1 unknowns in each system, and |E | can be as large as n, it seems that the computa-
tional cost is expensive. However, by taking advantage of the special structure in these two
systems, we can significantly reduce the computational cost. From (17), we can write


αi


s
=

∑
j∈V

uij


βj


s
, for i ∈ W.

Plug it into (19), we then get a system with only |V| unknowns. Similarly, we can simplify
the dual system to be the same size. Since the sets differ by only one element between
consecutive events, using inverse updating and downdating, the computational complexity
is only O(|V|2). It is hard to predict the number of steps in the algorithm, but according to
our experience, the total number of steps taken by the algorithm is on average O(n). Since
|V| is upper bounded by p, the overall computational cost is O(np2).

4 Real data

In this section, we consider an application to a real world dataset. The dataset came from the
Max-Planck Institute (MPI) face database (Troje and Bulthoff 1996), which contains face
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Table 1 The results are averages over the 20 testing images. The numbers in the parentheses are the corre-
sponding standard errors. “PC-Projection” is for the denoised image Uβ , and “pixel-by-pixel” is for the de-
noised image x + α. “LAD” is for the LAD-LASSO method (3), and “LS” is for the LS-LASSO method (4).
“LAD-A” and “LS-A” are the corresponding adaptive version (5) and (6). “OLS” is the ordinary least squares
method, and “Ideal” is the “idealistic” method

PC-projection Pixel-by-pixel OLS Ideal

LS LAD LS-A LAD-A LS LAD LS-A LAD-A

Scenario I: “complete corruption”

MSE 222.9 234.0 222.4 227.5 187.2 188.1 135.3 115.1 2085.3 203.2

(13.9) (14.8) (12.7) (14.4) (12.1) (12.2) (9.8) (12.9) (18.2) (12.2)

Scenario II: “incomplete corruption”

MSE 221.5 225.1 216.9 218.3 163.8 161.5 149.2 147.3 624.9 203.3

(14.2) (14.2) (13.1) (13.5) (10.7) (12.3) (9.3) (11.7) (14.5) (12.2)

Scenario III: “block corruption”

MSE 230.4 233.8 224.5 231.5 153.3 152.3 140.6 140.1 284.7 210.0

(14.6) (14.6) (13.4) (15.0) (9.8) (12.0) (8.6) (12.3) (18.2) (12.7)

Fig. 2 The first 10 PC-images

Fig. 3 “Complete corruption”
scenario. The denoised images
using the OLS method (left
panel) and the “idealistic”
method (right panel)

images of 100 males and 100 females. We transformed them into gray-scale images with
resolution 64 × 64 (so n = 4,096).

We randomly split the 200 images into 180 for training and 20 for testing. We used the
training images to compute the principal components U . For each of the testing images, we
randomly selected 20% of the pixels and set them to the white color (“complete corruption”).
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Fig. 6 Left panel: the corrupted
pixels take values between 0 and
255 (“incomplete corruption”).
Right panel: the corrupted pixels
form a block (“block corruption”)

Figure 1 in Sect. 1 illustrates an example. As we can see, with 20% corrupted pixels, the
original face can hardly be recognized by visual inspection.

Figure 2 shows the first 10 principal components (or eigen-images). They are quite in-
formative, representing different features of the faces. We used the first 100 eigen-images in
our analysis.

Six different methods were compared: the ordinary least squares (OLS) (1), the “idealis-
tic” method (Tsuda and Ratsch 2005), the LAD-LASSO (3), the LS-LASSO (4), and their
adaptive versions (5) and (6). The OLS and the “idealistic” methods were used as bench-
marks. In the OLS method, all pixels in the corrupted image were projected onto the PC
space as in (1). The “idealistic” method first removed the corrupted pixels from the noisy
image and their corresponding components from the PC images, then projected only the
“good” pixels onto the PC space (via OLS). Notice that the “idealistic” method usually can-
not be implemented in practice, since we do not know in advance which pixels are corrupted
and which are not.

In the adaptive methods, we used the OLS result |βOLS
j | as the weight for βj , and

|xi − uT
iβ

OLS| as the weight for αi .
Tuning parameters in different LASSO methods were chosen via five-fold cross-

validation based on the training data (the eigen-images were also re-computed for each
fold). The denoised image was compared with the original un-contaminated image using
the mean squared error

MSE = 1

n

n∑
i=1

(x̂i − x0
i )

2,

where x̂ is the denoised image, and x0 is the original un-contaminated image. Notice that
each of the LASSO methods generated two denoised images: x + α, the pixel by pixel
denoised image, and Uβ , the PC-projected image. We compared both with the original un-
contaminated image.

Numerical results are summarized in the first part of Table 1. As we can see, for this par-
ticular dataset, the OLS method performed much worse than other methods, which agrees
with the general belief that some regularization is necessary. The PC-projected images Uβ

performed about the same across different methods, and they were all worse than the pixel-
by-pixel denoised images. Among the pixel-by-pixel denoised images, the adaptive meth-
ods tended to work better than the non-adaptive methods. The LAD-Adaptive method also
performed slightly better than the LS-Adaptive method. Interestingly, the pixel-by-pixel de-
noised images performed better than the “idealistic” method, by a margin as large as 40%.

Figure 3 shows examples of denoised images using the OLS method and the “idealis-
tic” method. Figures 4 and 5 show some of the representative images along the solution
paths (for different values of s) from different LASSO methods. Since the PC-projected



Ann Oper Res (2010) 174: 3–17 15

F
ig

.7
T

he
pi

xe
l-

by
-p

ix
el

de
no

is
ed

im
ag

es
,i

.e
.,

x
+

α
,u

si
ng

L
A

D
-A

da
pt

iv
e-

L
A

SS
O

.T
he

fir
st

ro
w

is
fo

r
“i

nc
om

pl
et

el
y

co
rr

up
te

d”
pi

xe
ls

(l
ef

tp
an

el
in

Fi
g.

6)
,a

nd
th

e
se

co
nd

ro
w

is
fo

r
“b

lo
ck

ly
co

rr
up

te
d”

pi
xe

ls
(r

ig
ht

pa
ne

li
n

Fi
g.

6)
.D

if
fe

re
nt

im
ag

es
co

rr
es

po
nd

to
di

ff
er

en
tv

al
ue

s
of

s
(f

ro
m

sm
al

lt
o

la
rg

e)



16 Ann Oper Res (2010) 174: 3–17

images, i.e., Uβ , of different models look similar, we only show one of them in Fig. 4. Fig-
ure 5 shows the pixel-by-pixel updated images, i.e., x +α, corresponding to models (3)–(6).
Different images correspond to different values of s (from small to large). There are sev-
eral interesting patterns we can see from these figures: (1) The PC-projected images are al-
ways smooth (blurred), since they are constructed from a linear combination of PC images.
(2) The LAD-based methods and the LS-based methods remove noise pixels in different
ways. As s increases, the LAD-based methods keep working on a noisy pixel until it is
completely recovered, before which the rest of the pixels are untouched. On the other hand
the LS-based methods tend to first repair pixels with the largest noise level, so they work on
different pixels “simultaneously”. (3) The LAD-Adaptive-LASSO method works differently
from the LAD-LASSO method. As s increases, the LAD-Adaptive-LASSO method tends
to select pixels with larger noise levels and fix them first, while the LAD-LASSO method
tends to randomly select a noisy pixel and fix it.

To further illustrate our methods, we also considered two other scenarios for the cor-
rupted pixels. In the second scenario, instead of setting a corrupted pixel to the white color,
i.e., “complete corruption”, we set the pixel to a value uniform between 0 and 255 (left
panel in Fig. 6). In the third scenario, instead of randomly selecting pixels in an image as
corrupted pixels, we restricted the corrupted pixels to form a “block” (right panel in Fig. 6),
and the corrupted pixels also took values uniform between 0 and 255. We note that when the
corrupted pixels form a block, the L1-norm penalty in (2) may not be the best choice, for
it does not take into account the block structure. The results are summarized in the second
and the third parts of Table 1 and Fig. 7. Similar as the previous result, the OLS method
performed the worst for this particular dataset, and the “pixel-by-pixel” based methods per-
formed better than the “PC-projection” based methods. Among different “pixel-by-pixel”
based methods, the adaptive methods were slightly better than the non-adaptive methods.
Notice that since the corrupted pixels were less “spiky” than the previous example, the least
squares loss (LS) and the least absolute deviation loss (LAD) performed similarly.

5 Conclusion

In this paper, we have proposed PCA-based models that use the LASSO penalty to remove
the impulse type noise for digital images. We have developed efficient solution path algo-
rithms for these models, which facilitate the selection of the tuning parameters. We have
also presented some promising evidence for our methods on a real world dataset.
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